
VOLUME 10, NUMBER 5
APRIL 15, 1996
by Jim Turley

The world may not applaud the appearance of yet another
32-bit microprocessor architecture, but Patriot Scientific
thinks it has found the right design to address a number of
growing markets. The small Southern California startup
recently unveiled its first microprocessor. The chip’s stack-
based architecture lends itself to efficient Java and PostScript
execution, and the company has already landed its first
design win: an Internet terminal.

The chip, which has a 32-bit internal architecture but
uses tiny 8-bit instructions, stands to deliver some of the
tightest, most compact code of any 32-bit microprocessor so
far. Its name is as peculiar as its architecture: ShBoom.

Patriot received silicon of its first ShBoom implemen-
tation, the PSC1000, in October of last year and expects sam-
ples of a revised design to arrive this week. General sampling
is slated to begin midyear, with 1,000-piece pricing set at $20.
Patriot expects the chip to run at 50–75 MHz, delivering
17–21 Dhrystone MIPS performance.

The PSC1000 has no cache or on-chip RAM; it relies on
a programmable memory controller adaptable for DRAM,
VRAM, SRAM, and ROM. Future implementations may
include RAM or ROM and a cache to improve performance.

The first ShBoom chip’s modest power consumption
and compact object code should help it in its struggle to gain
market acceptance. The company is targeting industrial and
automotive applications, real-time systems, and Internet ter-
minals. Patriot has not licensed the design or teamed with
any fabrication partners, although the company is consider-
ing both moves. For now, the 10-person firm hopes to sell the
PSC1000 on its own, buying manufacturing capacity from a
number of semiconductor vendors.

The ShBoom architecture has a long and checkered his-
tory. From an original design by Forth advocate Chuck
Moore, the project was acquired by Nanotronics in 1991 and
then by Patriot in 1994. After some initial fits and starts and
a few generations of silicon, the first working parts are
almost ready for general sampling.

T H E I N S I D E R S ’ G U I D E T O M

MICROPROCE
New Embedded CPU
Patriot Scientific’s Unusual 32-Bit Stack
© M I C R O D E S I G N R E S O U R C E S A P R I L
Weird Can Be Good
The ShBoom architecture is fundamentally different from
most other microprocessors because it is stack-based. The
chip’s register set, illustrated in Figure 1, is a combination of
last-in first-out queues, or stacks, and individually address-
able registers. The primary operand stack is addressable only
as a stack; the local register file is addressable both as a stack
and as individual registers; the global registers are only
directly addressable.

Operands are pushed onto and popped off the operand
stack, and instructions operate mainly on the top one or two
items. An ADD instruction, for example, always replaces the
top two items on the stack with their sum.

Forth programmers and those familiar with Hewlett-
Packard calculators will recognize this system as postfix
notation, also called reverse-Polish notation (RPN). Al-
though not as common as the familiar algebraic notation
most people are taught in school, postfix notation is efficient

I C R O P R O C E S S O R H A R D W A R E

SSOR REPORT
 Goes ShBoom
 Machine Has 8-Bit Instruction Word
31 0

31
s17

s0
s1
s2

Operand
Stack

Local
Register

Stack

Global
Registers

x

ct

mode

00 31

g0r0

r15 g15

Figure 1. The ShBoom register set includes a primary operand
stack and two additional resources: a local register file/stack and a
global register set.
1 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O
2 N E W E M B E D D E D C P U G O E S S H B O

in terms of its data storage (i.e., code density). To use postfix
notation effectively, though, requires a different program-
ming model than most engineers are used to.

Primary Register Set Is Managed As a Stack
All of the PSC1000’s registers are 32 bits wide, and most
instructions operate on 32-bit data. In our taxonomy, these
features classify the chip as a 32-bit microprocessor, despite its
diminutive instruction word.

The major programming resource is the operand stack,
s0–s17. To the programmer, this is managed as a true stack,
with only the top three items accessible. With very few excep-
tions, all ShBoom instructions operate on only the top of the
operand stack, register s0. Data is pushed onto the stack
before processing; most operations consume one or two of
these items and push the result onto the stack.

Besides the operand stack, the programmer has access
to two additional resources: the local register stack, r0–r15,
and the global registers, g0–g15. As the name implies, the
local register stack is managed as a second stack, but it is also
directly addressable as registers. The global registers are
© M I C R O D E S I G N R E S O U R C E S A P R I L
M V O L . 1 0 , N O . 5

addressable only as individual registers.
Stack-based architectures have their good and bad sides.

Instructions are very compact, because no bits are needed to
specify operands. Stack-oriented programming can theoreti-
cally be very efficient, but in practice, some fudging is always
required. Ideally, only those operands that are actually needed
are pushed onto the stack, with intermediate results remain-
ing on the stack only as long as they are required. Unneeded
values should be removed from the stack, allowing more
important results to surface. In reality, having an additional
resource for storing temporary variables and intermediate
values results in more efficient (and less awkward) code.
Hence, the local and global registers.

Programs can push values onto the local register stack
by popping them off the top of the operand stack. Like the
operand stack, values can be pushed onto the local register
stack and popped back off. The local register stack grows and
shrinks as it is used. Transferring operands between these
two stacks serves to reverse their order, a useful side effect.

The global registers, in contrast, act like the general-
purpose registers in a more conventional microprocessor
ADD Add
ADDC Add with carry
ADDA Add address
SUB Subtract
SUBB Subtract with borrow
MULS Multiply signed
MULU Multiply unsigned
MULFS Multiply fast signed
DIVU Unsigned divide
INC #1 Increment by 1
INC #4 Increment by 4
DEC #1 Decrement by 1
DEC #4 Decrement by 4
DEC CT Decrement ct register

AND Logical AND
IAND Logical invert-AND
OR Logical OR
XOR Logical exclusive-OR
NEG Two's complement negate
NOTC Invert carry flag
SHIFT Shift by signed count
SHIFTD Shift double by signed count
SHR #1 Shift right by 1
SHR #8 Shift right by 8
SHL #1 Shift left by 1
SHL #8 Shift left by 8
SHLD #1 Shift left double by 1
SHRD #1 Shift right double by 1
CMP Compare
MXM Select maximum
TESTB Test byte for zero
EQZ Set if equal zero

BR Branch unconditionally
BR [] Branch indirect
BZ Branch if zero
DBR Decrement and branch
CALLl Call subroutine
CALL [] Call subroutine indirect
RET Return from subroutine
RETI Return from interrupt
MLOOPcc Microloop on condition
SKIPcc Skip on condition
BKPT Call breakpoint trap

EXTEXP Extract exponent
EXTSIG Extract significand
DENORM Denormalize FP number
NORMR/L Normalize FP right/left
ADDEXP Add exponents
SUBEXP Subtract exponents
REPLEXP Replace exponent
TESTEXP Test exponent
EXPDIF Exponent difference
RND Round FP number

LD [R0] Load indirect through r0
LD [X] Load indirect through x
LD [] Load indirect through s0
LD.B [] Load byte indirect thru s0
LD [--R0] Load, predecrement r0
LD [--X] Load, predecrement x
LD [R0++] Load, postincrement r0
LD [X++] Load, postincrement x
LDO [] Load from on-chip resource
LDO.L [] Load bit from on-chip
ST [R0] Store indirect through r0
ST [X] Store indirect through x
ST [] Store indirect through s0
ST [--R0] Store, predecrement r0
ST [--X] Store, predecrement x
ST [R0++] Store, postincrement r0
ST [X++] Store, postincrement x
STO [] Store to on-chip resource
STO.L [] Store bit to on-chip

PUSH Duplicate top of stack
PUSH CT Push from ct register
PUSH X Push from x register
PUSH Rn Push from local register n
PUSH Gn Push from global register n
PUSH Sn Push from operand register n
PUSH LSTACK Remove from local stack
PUSH MODE Push from mode register
PUSH.N #n Push nibble constant
PUSH.B #n Push byte constant
PUSH.L #n Push word constant
PUSH LA Push local stack pointer
PUSH SA Push operand stack pointer

POP Discard top of stack
POP CT Load ct register
POP X Load x register
POp Rn Load local register n
POP Gn Load global register n
POP LSTACK Push onto local stack
POP MODE Load mode register
POP LA Load local stack pointer
POP SA Load operand stack pointer

REPLB Replace byte into word
COPYB Copy byte into word
SPLIT Split word
REV Revolve operand stack
XCG Exchange operands
EI/DI Enable/disable interrupts
STEP Single-step CPU
NOP No operation

LCACHE Confirm local stack size
SCACHE Confirm operand stack size
LDEPTH Return local stack size
SDEPTH Return operand stack size
LFRAME Allocate local stack space
SFRAME Allocate operand stack space

Push Value

Pop Value

Load/Store to/from Memory

Flow Control
Floating-Point Support

Shift and Logical

Arithmetic

Stack-Cache Control

Miscellaneous

Table 1. The ShBoom instruction set includes a collection of data-movement instructions to transfer data to and from the primary operand
stack, integer arithmetic functions, memory loads and stores, and a set of floating-point conversion instructions for handling FP values.
1 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O
3 N E W E M B E D D E D C P U G O E S S H B O

architecture. Values can be moved from the operand stack to
any of the global registers or copied from a global register to
the top of the operand stack. This, and accessing registers in
the local register stack, are the only cases wherein ShBoom
instructions can designate a specific register to use.

Physically, the operand stack is implemented as on-
chip RAM, with a queue pointer identifying the current top
of stack. The stack is 18 words deep; pushing additional data
onto the stack causes the word in s17 to overflow to external
memory. Likewise, when operands are consumed off the top
of the stack and the stack shrinks, previously overflowed val-
ues are reloaded from external RAM. This protects the
operand stack from overflow or underflow and is invisible to
the programmer, although the memory accesses degrade
performance. It also allows future versions of ShBoom to
implement more or fewer physical registers. The local regis-
ter stack works the same way as the operand stack.

The PSC1000 has only one condition-code flag: a carry
bit in the mode register. Conditional instructions reference
the carry flag or test the top of the operand stack for sign and
zero. The ct, or count, register controls repetitive operations.
Finally, the x register is used as an address pointer.

Instruction Set Includes Conventional Functions
One of the PSC1000’s most significant features is its compact
instruction set. All instructions are encoded in exactly eight
bits. This remarkably compact encoding is possible only
because (with very few exceptions) none of the instructions
specify a source register, destination register, or memory
address. Nearly all ShBoom instructions operate only on the
data at the top of the operand stack. Therefore, all eight bits
of each instruction are dedicated to specifying the operation,
not the operands. For ShBoom, the definitions of an opcode
and an instruction are virtually identical.

Despite the severe limitations on instruction size, the
PSC1000 has a reasonably rich instruction set. As Table 1
shows, ShBoom includes load, store, push, and pop instruc-
tions to transfer data between memory and the stack or
between the stack and the other registers. The chip can add
and subtract with carry/borrow, multiply, divide, shift,
invert, and compare operands. The usual logical instructions
are also included: OR, AND, XOR, and NOT AND.

ShBoom does not have a rotate instruction. To perform
a logical rotate, programs duplicate the data on the top of the
stack and execute a 64-bit shift instruction, shifting bits into
the destination from the copy of the source.

Memory-resident data is referenced through one of
three address pointers: the top of the stack (s0), x, or r0. Both
r0 and x support predecrement and postincrement address-
ing for loads and stores, greatly simplifying memory-scan
and -fill operations. No special addressing modes are sup-
ported; programs must calculate memory addresses via the
usual instructions, leaving the result in s0. The address can
then be moved to one of the other two pointer registers.

Most instructions operate on an entire 32-bit register.
© M I C R O D E S I G N R E S O U R C E S A P R I L
M V O L . 1 0 , N O . 5

To support common C data types such as unsigned chars,
ShBoom can load a single byte from memory, sign extend
bytes, or merge a byte into a register.

Flow-control instructions are handled as in any other
microprocessor. ShBoom has unconditional branch and call
instructions, one conditional branch (if s0 equals zero), and
a decrement-and-branch instruction. The processor also
includes conditional and unconditional forms of the SKIP

and MLOOP (micro-loop) instructions, which are useful for
either skipping or repeating, respectively, very small three-
instruction constructs.

Instruction Grouping Plays a Significant Role
Because ShBoom instructions are only a single byte, the chip
is able to fetch four at a time over its 32-bit bus. Each group
of four instructions is held in a simple fetch buffer. One
instruction is removed from the buffer and executed to com-
pletion on every clock cycle. ShBoom has no pipeline to
speak of; only one instruction is in process at any given time.
When the group of four instructions is finished, the next
group of four is fetched.

This grouping is not arbitrary and is of significant
interest to the programmer. Because the PSC1000 holds four
instructions at once, it can branch backward by up to three
instructions without fetching the target instruction again.
This is the purpose of the MLOOP instruction. By loading an
unsigned 32-bit loop count into the ct register and executing
an MLOOP instruction, programs can repeat a short loop up
to four billion times without accessing external memory. For
a chip with no instruction cache, this is a significant feature.

The MLOOP instruction does not accept a branch-target
address; this is where the instruction grouping becomes an
issue. The destination of an MLOOP is always the first instruc-
tion of the four-instruction group, regardless of where in
that group the MLOOP instruction itself appears. Thus, it is
important that the programmer (or compiler) structure
ShBoom code so that the intended target of the microloop
falls on a 32-bit boundary. This is one of the unusual features
that contributes to the PSC1000’s code density.

The SKIP instruction works in a similar manner. Like
MLOOP, SKIP has no target address but simply skips over the
remaining instructions in the group. The number of instruc-
tions skipped depends on the alignment of the SKIP instruc-
tion itself. A SKIP at the end of a group is treated as a NOP.

Operand Specifications Depend On Alignment
Specifying immediate operands is even more peculiar. With
little room in an 8-bit instruction for immediate data,
ShBoom can place only nibble-sized operands (-7 to +8) in
line. For larger values, the chip relies on instruction grouping
to identify data constants or literals. As a rule, when any
instruction specifies a byte constant, the data is taken from
the least-significant byte of the four-byte instruction group—
regardless of where the instruction is in the group.

For example, if the first instruction of a four-instruc-
1 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O
4 N E W E M B E D D E D C P U G O E S S H B O

tion group specifies an 8-bit constant (such as a PUSH.B #n

instruction, which pushes a byte onto the stack), ShBoom
interprets the last byte of the group as the data value in ques-
tion. This is true whether the PUSH.B appears as the first, sec-
ond, or third instruction of the group. Placing such an
instruction at the end of a group would push the encoding of
the instruction itself onto the stack.

Figure 2 illustrates three examples. The placement of
the actual instruction is irrelevant; the data is always taken
from the last byte of the group. If the constant instruction
appears first in the group, the two intervening instructions
do not affect its outcome. The PSC1000 will execute the three
instructions in order, skipping over the data value at the end
before executing another group of four instructions.

Writing code with more than one such instruction in a
single group is not generally effective; each instruction will
simply reference the same byte constant. This construct
could, for instance, be used to push the same value onto the
stack three times in a row.

To encode 32-bit values, such as address pointers, data
is read from the next four-byte group. Again, it doesn’t mat-
ter which of the four byte locations the instruction occupies.
Unlike the byte-sized example, programs can load multiple
32-bit operands in series, chaining them together in consec-
utive words of memory. As many as four such instructions
may be grouped, each specifying a 32-bit constant. Their
respective values are fetched in the order they appear. Thus,
four 32-bit load instructions occupy five words of memory.

In contrast to data constants, PC-relative branches are
highly dependent on their position when encoding their
branch targets. The branch and call instructions are each
encoded such that their least-significant three bits are
unused. These three bits, plus all the remaining bits in the
instruction group, are used to specify the offset. The magni-
tude of the offset is thus utterly dependent on the alignment
of the instruction within a word. Figure 3 demonstrates how
branch offsets of 3, 11, 19, and 27 bits are encoded, depend-
ing on the relative location of the branch within a word.
© M I C R O D E S I G N R E S O U R C E S A P R I L
M V O L . 1 0 , N O . 5

Why the bizarre addressing scheme? The simple answer
is simplicity. Patriot’s designers wanted to avoid the com-
plexity of byte-steering logic, so the chip was designed for
right-justified values. Compilers, and even the assembler,
automatically justify these values, so the peculiar alignment
characteristics of the PSC1000 are largely invisible.

Floating-Point Support Included
Although the PSC1000 does not have an FPU or traditional
floating-point instructions, Patriot realized that many indus-
trial and motion-control applications perform limited float-
ing-point calculations. The processor, therefore, includes
some floating-point “support” instructions that ease the task
of converting FP values to integers and back.

The chip includes 11 instructions to normalize, denor-
malize, round, and check boundary conditions for single-
and double-precision IEEE-754 numbers. By conditioning
FP numbers with these functions, programs can more effi-
ciently implement FP libraries. The chip’s mode register
includes 13 bits to control FP rounding, precision, and
exceptions. All in all, the chip provides considerably better
FP support than most integer processors.

External Bus Includes DRAM Controller
The PSC1000’s external interface includes a multiplexed
32-bit address/data bus and a programmable memory
controller. The chip drives RAS, CAS, and other signals to
four groups of memory devices according to user-selected
timing parameters. The memory-control signals can be
programmed to accommodate page-mode DRAM, VRAM,
SRAM, or ROM devices; device types can be mixed among
the four groups.

Because the processor has no on-chip cache or mem-
ory, its performance is at the mercy of the system memory.
ShBoom’s one-byte instructions work in its favor here,
allowing the chip to fetch four instructions in a single bus
cycle. But consuming one of those instructions on every
clock forces the processor to fetch another word every 80 ns
(at 50 MHz) or stall the processor. Disregarding the effects of
microloops and data accesses, the PSC1000 needs to be fed at
a constant 50 Mbytes/s to reach optimum performance.

The overhead in the chip’s memory controller prevents
most systems from maintaining this rate. Even fast page-
mode DRAMs with 30-ns column-access times will decrease
push.b #n

(opcode)(opcode)

(opcode)(opcode)

push.b #n

data

data(opcode)(opcode) push.b #n

32-bit data

32-bit data

32-bit data

push #n push #n push #n

p

32-bit data

push #n(opcode) (opcode) (opcode)

32-bit data

data

push #npush #npush #n

Figure 2. ShBoom processors implicitly encode literal byte values
by placing them at the end of a group of instructions.
1

(opcode)(opcode)(opcode)

(opcode)(opcode)

(opcode)

branch

branch

branch

branch
offset

offset3-bit offset

11-bit offset

19-bit offset

27-bit offset

Figure 3. Like data constants, offset addresses are right-justified
in a four-byte group of ShBoom instructions.
5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O
5 N E W E M B E D D E D C P U G O E S S H B O

performance to about 82% of optimal, according to the
chip’s designers. Faster (and far more expensive) 12-ns
SRAMs allow a 50-MHz chip to run at full speed. Keeping up
with a proposed 75-MHz implementation would be prob-
lematic without reworking the memory interface.

Before the end of the year, Patriot hopes to deliver a
derivative of the PSC1000 with an enhanced memory con-
troller that reduces the overhead of DRAM accesses. Another
version with on-chip cache is also being considered. Because
the part is so memory dependent, speeding up the controller
could significantly improve the chip’s overall performance.
Customers could instead choose less expensive memories
and maintain current performance levels.

Separate I/O Processor Runs Concurrently
The PSC1000 has still more tricks up its sleeve. In keeping
with Patriot’s emphasis on industrial and control-oriented
applications, the chip includes an independent I/O processor
(IOP), shown in Figure 4, that executes its own code in paral-
lel with the main CPU. The IOP is fairly straightforward and
has a simple instruction set with 12 opcodes geared for tim-
ing, control, and pulse-width-modulation (PWM) functions.

The IOP is not stack-based, nor does it have its own
register set. Instead, it uses g1–g15 from the PSC1000’s global
registers. The IOP uses these registers to communicate with
the CPU and to pass values back and forth between them.

Like the main CPU, the IOP executes one instruction
per clock cycle, has a four-instruction buffer, and shares the
chip’s memory controller and address map. The two proces-
sors execute in lockstep from separate instruction streams.
Although both cores fetch instructions from the same exter-
nal memory, their instruction sets are unrelated and incom-
patible. In concept, Patriot’s IOP is similar to Motorola’s tim-
ing processor unit (TPU) and other autonomous peripherals
found on several of that company’s 68300-family devices.

The IOP includes only the most basic flow-control,
loop, load, and input/output instructions, plus a REFRESH

instruction for external DRAM. The two output instructions
can toggle any of the chip’s eight output pins. At 50 MHz,
each pin can be toggled every 20 ns, a considerably finer res-
olution than most programmable timers allow. Fine motor
control and other PWM applications are also practical.

Deterministic Performance Guaranteed
With the IOP and the main CPU sharing memory and some
registers, some contention is inevitable. Patriot’s goal was to
guarantee completely deterministic performance for the
IOP, so all arbitration is resolved in favor of the IOP. Techni-
cally, no arbitration ever occurs: enough information is
available to determine when memory accesses will impact
performance and schedule them accordingly.

For example, before every CPU or DMA access to
external memory, internal logic first checks the IOP. If it is
not about to make a memory request, the CPU or DMA
access is allowed to proceed. Otherwise, the CPU or DMA
© M I C R O D E S I G N R E S O U R C E S A P R I L
M V O L . 1 0 , N O . 5

will be stalled until the IOP completes its bus transaction.
Because the PSC1000 controls all memory timing, the chip
can accurately calculate exactly how long each DRAM access
will take and correctly estimate whether a CPU or DMA
access to memory will interfere with the IOP.

The IOP’s four-instruction buffer prevents it from hog-
ging the PSC1000’s bus. Normally, the IOP and the CPU each
use 25% of the available bus bandwidth to fetch code; the
remainder is free for data transfers. When either the IOP or
the CPU is looping, bus utilization is lower.

Design Is Portable Across Fab Processes
Patriot’s four-person design team used portable 1.0-micron
design rules for the PSC1000. The first generation was built
by Oki in 1990; subsequent iterations have been fabricated
by National Semiconductor on its 0.8-micron double-metal
process. For National’s fab, the transistor size was shrunk to
0.8 micron, leaving the metal pitches alone. The shrink
resulted in a slightly faster chip, but not a smaller one.

The die, shown in Figure 5, measures 8.7 × 7.7 mm, or
68 mm2. While not a particularly small die compared with
other 32-bit chips, the part’s dimensions aren’t helped by
National’s doddering process technology. The MDR Cost
Model yields an estimated manufacturing cost of $11, on par
with a 68020 or a 960JA.

Initial indications from sample silicon are that the chip
will run at 50 MHz, with 75-MHz operation a possibility. At
50 MHz, the part should draw about 250 mW from a 5-V
supply. A 75-MHz version would burn roughly 350 mW, or
1

Address Bus

Data Bus

32

32

CPU

ALU

s0
s1 r0

r1

r15
s17

s2
g0

g15

PC

Instruction
Latch

Decoder
Memory
Interface

DMA
Contrl

I/O
Processor

/RAS

RAS

Out[0:7]

In[0:7]

CAS[0:3]

RAS[0:3]

AD[0:31]

CAS

Fault

Clk

Reset

/CAS

+

+

Figure 4. Block diagram of the PSC1000 processor illustrates the
chip’s division among CPU, I/O processor, and DMA.
5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O

about 4.5–5.0 mW/MHz. These numbers make the PSC1000
far cooler than any other 5-V part, with about half the power
of an ARM610 and just a bit more than that of a 3.3-V
PowerPC 403GA, for example.

Chip Complements Stack-Based Languages
For assembly-language programmers, the PSC1000 will most
likely demand some adjustment period. C programmers,
however, should not be exposed to any underlying architec-
tural differences. Patriot has developed both an assembler
and a C compiler; a debugger is expected by midyear.

The assembler takes some steps toward code rational-
ization. It inserts unconditional SKIP instructions, for exam-
ple, when required to force alignment of certain instructions.
The assembler also accepts conventional register-to-register
nomenclature, converting the instruction MOV s0, g5 to the
sequence PUSH s0, POP g5.

Patriot initially had high hopes the PSC1000 would
make an attractive PostScript processor; the chip’s architec-
ture complements the language’s stack-oriented design. The
design was not ready soon enough, however, to attract any
customers, and the company has since set its immediate
© M I C R O D E S I G N R E S O U R C E S A P R I L 1
M V O L . 1 0 , N O . 5

sights on another stack-oriented language: Java.
Patriot’s only publicly announced customer so far is

WebBook (Birmingham, Mich.), a company with designs on
the nascent Internet-terminal market for its eponymous
product. The WebBook is similar to a notebook PC, but with
no applications of its own. Instead, it downloads and runs
Java applets exclusively. WebBook designers felt that the
PSC1000 was ideal for such a system. The company is writing
its own Java interpreter, which it will license to Patriot.

Unwilling to put all its eggs in the Internet basket,
Patriot is pursuing automotive, robotic, and other motion-
control customers. The company will also be marketing an
ISDN interface based on a combination of PSC1000 and a
68302. The PSC1000’s I/O processor provides considerably
finer granularity for timing functions than do most pro-
grammable controllers or embedded CPUs. The IOP’s guar-
anteed deterministic performance and simple instruction set
make the chip more straightforward to program than Moto-
rola’s complex TPU, another possible bonus.

On the other hand, industry support for ShBoom is
nonexistent, and a company with Patriot’s resources cannot
afford to subsidize third-party tool development. The com-
pany will have to depend on adventurous, resourceful cus-
tomers who are attracted either by the chip’s programming
model or by its I/O capabilities. The design is portable, so a
licensing agreement with a fab partner is a possibility, as is
selling the design outright to a semiconductor vendor.

Fresh Approaches Are Sometimes Valuable
Patriot has bucked design convention by embracing a long-
established, but little-used, stack-based architecture. It’s an
unusual approach that most companies would not have
taken. Apart from AT&T’s Hobbit (see 061403.PDF) and
SGS-Thomson’s ST20 Transputer (see 091003.PDF), very
few stack-based microprocessors have been developed for
commercial use. Patriot believes the unique benefits of post-
fix notation, tight object code, and deterministic I/O perfor-
mance will help its ShBoom chips eke out a niche in the
crowded embedded market.

The company may be right, but the hurdles are formi-
dable. Granted, the PSC1000 isn’t like most other micro-
processors; neither is Hitachi’s successful SuperH. But
Hitachi and other vendors have the considerable advantage
of huge manufacturing capabilities, worldwide marketing
forces, multimillion-dollar development budgets, and loyal
customers—none of which Patriot can claim. In a crowded
market, it will be very tough indeed for an upstart with a
unique product and no track record to make any headway.

New devices like Internet terminals are just taking
shape, however, and the needs of that market (if, indeed, any
ever develop) have not been established. With new applica-
tions come new criteria for success, and ShBoom might be
just the fresh approach some of these applications need. M
6 N E W E M B E D D E D C P U G O E S S H B O

P r i c e a n d Av a i l a b i l i t y

Initial samples of the PSC1000 are available now for
beta customers at 50 MHz; general sampling begins in
June. In 1,000-unit quantities, the 50-MHz PSC1000 is
priced at $20. For more information, contact Patriot Sci-
entific (Poway, Calif.) at 619.679.4428; fax 619.679.4429
or access the Web at www.ptsc.com.
Figure 5. Using 1.0-micron design rules, PSC1000 measures
about 68 mm2 in National’s 0.8-micron two-layer-metal process.

Local Register Stack

D
ec

od
e/

Ex
ec

ut
e

Operand Stack

G
lo

ba
l R

eg
is

te
rs

I/
O

 P
ro

ce
ss

or
In

te
rr

up
t

&
 D

M
A

I/
O

 P
ro

ce
ss

or
5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	New Embedded CPU Goes ShBoom
	Weird Can Be Good
	Figure 1. The ShBoom register set...
	Primary Register Set Is Managed As a Stack
	Table 1. The ShBoom instruction set...
	Instruction Set Includes Conventional Functions
	Instruction Grouping Plays a Significant Role
	Operand Specifications Depend On Alignment
	Figure 2. ShBoom processors implicitly encode literal byte values...
	Floating-Point Support Included
	External Bus Includes DRAM Controller
	Figure 3. Like data constants, offset addresses are right-justified...
	Separate I/O Processor Runs Concurrently
	Deterministic Performance Guaranteed
	Design Is Portable Across Fab Processes
	Figure 4. Block diagram of the PSC1000 processor...
	Chip Complements Stack-Based Languages
	Fresh Approaches Are Sometimes Valuable

	P r i c e and Availability

