
M I C R O P R O C E S S O R R E P O R T
By Mike Johnson, AMD

A recent article by Mark Bluhm and Ty Garibay of
Cyrix (see 0912VP.PDF) purported to argue certain advan-
tages of a “native design,” presumably represented by
Cyrix’s M1 (6x86), over the “RISC-like” designs from all of
Cyrix’s main competitors. Although this is mostly a reli-
gious debate—and heaven knows it’s about time for
another version of the RISC-vs-CISC debate, now that the
original one is largely decided—this article is misleading
in several respects.

Stalking a Paper Tiger
Bluhm and Garibay base most of their argument on

the complexity of a RISC-like processor they postulated,
shown in Figure 1. This design, however, is unlike any
existing RISC-like design that has been announced. The
design in the figure is a composite of features found in
AMD’s K5 and Intel’s Pentium Pro, neither of which is a
two-issue design, as implied by the figure. This figure
appears intended to show such designs in the worst possi-
ble light. It certainly misrepresents the issue bandwidth
available in the processors being criticized, which is rea-
son enough to complain. But there are many other inac-
curacies. I’ll point these out relative to the AMD-K5.

First, the K5 doesn’t have anything corresponding to
the “Xbar3” shown in the figure, because the K5 uses dis-
tributed reservation stations. The authors state that a
centralized reservation station is a feature of a RISC-

RISC-like Design Far
Argument for Native Design Is Ov

V I E W P
Viewpoint: RISC-like Design Fares Well for x86 Vol. 9, No. 15, No

Figure 1. Cyrix compared a native x86 processor to a RISC-like pro-
cessor of its own invention that does not resemble actual RISC-like
x86 designs. (Source: Cyrix)

Addr
Calc Exec Addr

Calc
Exec

Instruction Decode

Instruction Fetch

Xbar1

Xbar2

Xbar4

Xbar2

Ex
Unit

Ex
Unit

Ld
Unit

St
Unit

Xbar3

Xbar4

Xbar1

Native RISC-like

Instruction
Fetch

Inst
Decode 1

Inst
Decode 2

Reservation
Station
based design, whereas “distributed reservation stations
can be added transparently to the native design.” Cer-
tainly, they can’t really believe this. Only Pentium Pro
has this organization, and the K5 has distributed reser-
vation stations that are just as “transparent” as anyone’s.

This argument is overblown on another count. Inter-
connect is a major concern in any implementation, but the
authors have grossly inflated the interconnect in the
RISC-based design by treating all global interconnect as
“crossbars.” The AMD-K5 implements most of these
crossbars using global shared buses. For example, a sin-
gle decode position has a single, dedicated bus to commu-
nicate commands and data to all function units, each of
which is connected to the same bus. There are four such
buses, because there are four decode positions. Since each
bus connects to six function units, the authors would con-
clude that this represents 24 “interconnects.”

This line of reasoning inflates the cost of intercon-
nect from one that is on the order of the number of de-
coders to one that is on the order of the number of decoders
times the number of function units. I can think of no jus-
tification for expressing the cost in these terms, except to
make it look as large as possible. Certainly there is addi-
tional cost for each function unit that is attached, but this
is comparable to the cost of local interconnect, which the
authors dismiss in their own design.

Native Design Is Also Complex
Let’s turn our attention to the other side of this argu-

ment: the advantages of a native design. Here, too, there
are inconsistencies in the authors’ position. It is not possi-
ble to achieve any appreciable level of parallelism in the
native design shown in Figure 1 because there is insuffi-
cient communication between the native function units.
For example, Figure 2 (taken from the original article,
0912VP.PDF) shows an example of the parallel execution
of two complex instructions. This parallel execution, how-
ever, relies on the output of an add instruction feeding the
second operation in a read-modify-write sequence (a reg-
ister-to-memory subtract). The interconnect necessary for
this communication isn’t accounted for in Figure 1.

Furthermore, consider what would happen if the
first instruction were merely a memory-to-register move
(a more common way to start an x86 computational
sequence). In this case, parallel execution would call for
the load to directly feed the subtract, requiring communi-
cation from the address unit/data cache in the first pipe-
line to the execution unit in the second pipeline. This

es Well for x86 CPUs
erblown; Advantages Nonexistent

O I N T
vember 13, 1995 © 1995 MicroDesign Resources

ld

add

ax

sub

st

ld
add ax, 4[di]
sub 8[di], ax

di4

8 di
Int

Unit
X

Int
Unit
Y

ax

Figure 3. An execution fragment from AMD’s K5 processor shows
that RISC-like designs can achieve significant parallelism. (Source:
Dave Christie, AMD)

L

S
A

A
A
L

A

M

L
A

B

M

A

S
A

M

L

M

L

L
A

A
A

B
L
A

A
L
S
A

L
B
A
A

cycle:
sub ebx, ecx
mov ecx,eax
movzx eax, [edx+disp8]

mul [ebp+disp8], eax

mov [ebp+disp8]
mov eax,ecx
pop ecx

shr eac,cl
jmp rel32 (taken)
push eax

mov ecx, [ebp+disp8]
movzx eax, edx

mov esi, [ebp+dip8]
mov eax, edx
test eax, imm32
jz rel8 (taken)
pop eax

bt eax, ebx
mov ecx, [ebp+disp8]
push eax

mov eax, [ebp+disp8]
jb rel8
dec ebx
or ecx, imm8

1 2 4 5 6 7 8 9 10 11 12 13 14 153

L Load
S Store
A ALU
B Branch
M Multiplier

wait
result
retire
communication might conceivably be handled by Xbar4,
but this would cause conflicts for this interconnect with
previous instructions that use Xbar4 for writeback.

The crossbars in the RISC-like version serve an
essential purpose: communicating data between parallel
computations. In the native design, the forwarding paths
that appear within the native function units must be
duplicated between function units. If this interconnect is
not provided, the native dual-pipeline design doesn’t even
run as fast as a scalar pipelined design, because the for-
warding paths that are available within a single pipeline
aren’t available between pipelines. Alternatively, a single
pipeline must be used most of the time to gain access to
the local forwarding paths, defeating the purpose of hav-
ing dual pipelines. Parallel computation requires parallel
communication, and the fact that these communication
paths are omitted from Figure 1’s native design suggests
that either the figure is incorrect or the design is much
slower than implied.

Most x86 Code Is RISC-like
Finally, native function units are used effectively

only when there is an appreciable number of complex
instructions in the dynamic instruction stream. Unfortu-
nately, most dynamic x86 code, particularly so-called 32-
bit code, maps directly to single RISC-like operations
(ROPs). The reason is very simple, one that has been
known for more than 20 years: compilers have a hard
time generating complex instructions. Instead, they usu-
ally generate code sequences from basic instructions.

The timing diagram in Figure 3 shows an execution
fragment of an MPEG decoder (Huffman decoding of an
interblock frame) as executed by the K5. In this diagram,
24 x86 instructions require 12 cycles to execute—a rate of
2 x86 instructions per cycle. In this sequence, only 7
instructions are “complex,” and those instructions all gen-
erate two-ROP sequences.

A native design organized around basic read-modify-
write sequences would have hardware idle in its function
units most of the time, because most instructions can’t
use the full capability of these units. In the RISC-like
design, the function units are made available across the
operations of all instructions, regardless of their origin.

In the native design, furthermore, a multicycle oper-
ation like multiplication (e.g., the fourth instruction in
Figure 3) ties up the entire execution unit, and all its
resources, for the duration of the calculation. In the RISC-
like design, the multiplier is a separate function resource
that doesn’t block the execution of independent instruc-
tions. In this example, the K5 achieves fully overlapped
execution with the multiplier. It’s hard to imagine getting
close to this throughput with a native design, because its
resources aren't balanced to the needs of the instructions
but instead are designed for and dedicated to the worst-
case sequence (a read-modify-write).

M I C R O P R O C E S S O R R E P O R T
2 Viewpoint: RISC-like Design Fares Well for x86 Vol. 9, No. 15
Neither Choice Is Superior
So is a native design the wrong choice? It depends.

I think Cyrix chose a native design to leverage its expe-
rience with simple, scalar pipelines. There is nothing at
all wrong with making these sorts of tradeoffs in favor of
reduced time-to-market. To claim all these other bene-
fits is unwarranted, however, particularly because they
don’t exist. ♦

Mike Johnson is the chief architect of AMD’s K5 and
superscalar 29K processors. He is also the author of the
book Superscalar Microprocessor Design.

Figure 2. In a native x86 processor, the operations required to com-
plete each instruction are all handled by a single execution unit.
(Source: Cyrix)
, November 13, 1995 © 1995 MicroDesign Resources

	RISC-like Design Fares Well for x86 CPUs
	Stalking a Paper Tiger
	Figure 1. Cyrix compared a native x86 processor to a RISC-like …
	Native Design Is Also Complex
	Most x86 Code Is RISC-like
	Figure 2. In a native x86 processor …
	Neither Choice Is Superior
	Figure 3. An execution fragment from AMD’s K5 processor …

