
M I C R O P R O C E S S O R R E P O R T
by Brian Case

Over the past two decades, microprocessor design-
ers have ceaselessly adopted existing advanced tech-
niques, most of which were pioneered in mainframes and
minicomputers. The most advanced technique in use
today—decoupled superscalar organization (see
081102.PDF)—was first implemented in mainframe
CPUs. Cutting-edge microprocessors, however, are actu-
ally implementing decoupled designs that go beyond
mainframes in sophistication. Furthermore, their single-
chip implementations permit higher clock rates.

Instead of asking “What existing technique should
we borrow next?” the microprocessor-design commu-
nity suddenly finds itself asking “Is there anything left
we haven’t done yet?” For all intents and purposes, the
answer is “no.” When it comes to mainframes and
microprocessors, the student seems to have become the
teacher.

One technique that has been the backbone of the
biggest mainframe CPUs has not been subsumed by
single-chip microprocessors: multiprocessing. Multi-
processor systems based on microprocessors have been
around for years, but it has never made economic or
technical sense to build a general-purpose, single-chip
multiprocessor. Are the economic and technical barriers
finally low enough? Are single-chip multiprocessors the
way of the future?

Of course, these questions can be given definitive
answers only by active microprocessor designers, but we
can ponder the possibilities even without inside informa-
tion. (See also 080605.PDF for another discussion of sin-
gle-chip multiprocessor issues.)

One-Chip Multiprocessors: Pro and Con
Single-chip multiprocessors offer one major entice-

ment to the microprocessor designer: the ability to
increase the sophistication of a design with what is
essentially a macrocell, cookie-cutter approach. With
multiprocessing, a faster, more expensive microproces-
sor can be built by simply pasting down another instance
of an existing processor core. Performance can be im-
proved without increasing the clock rate or changing the
core design. Single-chip multiprocessors leverage very
pleasingly the huge investment required to design a
modern uniprocessor core.

Unfortunately, designing a single-chip multipro-
cessor is not really as simple as plopping down processor

What’s Next for Mic
Some Variant of Multip

V I E W P
Viewpoint: What’s Next for Microprocessor Design? Vol. 9, No. 13
cores. Designers must address complex issues such as
processor synchronization and shared access to caches
and external buses. Furthermore, the bandwidth and
latency of microprocessor buses is already a limiting fac-
tor on performance; external interfaces may require
rethinking and redesign to accommodate the demands of
multiple on-chip processors.

Perhaps the primary downside to multiprocessors
in general is the lack of software: there just aren’t many
programs that can take advantage of multiple proces-
sors. Before this situation can improve, a multiprocessor
infrastructure must be built. The software industry
needs programmers, compilers, and operating systems
that are multiprocessor aware.

There are signs of change along these lines. Win-
dows NT can use multiprocessors, and even Windows 95
supports parallel-execution threads within a single
program. Pervasive glueless multiprocessing in next-
generation processors, including Pentium Pro (the P6),
combined with increasing OS support could spur the
development of a multiprocessor infrastructure within a
couple of years. That means CPU designers need to begin
contemplating single-chip multiprocessors now.

If building single-chip multiprocessors is done by
simply adapting and shrinking current multiprocessor
system design techniques, then there is little to say
about the future; we’ll simply have to wait for a software
infrastructure and advances in IC process technology.
But what if single-chip multiprocessors could be more
than simple adaptations of traditional multiprocessor
system design? Are there other ways to organize multi-
ple processors on a chip?

Multiprocessing for a Single Program
An inspired adaptation of replicating multiple pro-

cessor cores to form a single logical processor is reported
by Manoj Franklin in his 1993 Ph.D. dissertation from
the University of Wisconsin, Madison. This organization,
called a multiscalar architecture, places multiple uni-
processor cores in a ring, as shown in Figure 1. Each unit
is essentially a complete processor core with some extra
logic to buffer and keep track of register values that
propagate around the ring (counterclockwise in Figure
1). The following is a cursory description of multiscalar
concepts; for a complete discussion, see Franklin’s
dissertation, Technical Report #1196, November 1993
(now available on the Web at www.cs.wisc.edu:80/tr/
uwmadisoncs: cs-tr-93-1196).

roprocessor Design?
rocessing Seems Likely

O I N T
, October 2, 1995 © 1995 MicroDesign Resources

Bank 2

Bank 3

ank 0

Bank 1 Global Address ResolutionBuffer

Global
Control Unit

Local
I-Cache

Execution
Unit

Reg.
File

Local
D-Cache

Unit 2t 1

Unit 7 Unit 5
Unit 4

Unit 3

Global
I-Cache

Bank 3

Head
Pointer

Tail
Pointer

Bank 0

Bank 2

X-Bar

Bank 1

Multibanked
Franklin’s multiscalar machine executes
multiple threads of control from a single
program. The global control unit (GCU) dis-
patches contiguous blocks of instructions,
called tasks, to each of the processing units.
The single program being executed has been
sliced up into tasks by the compiler. A task is
nothing more than a sequence of instructions
and can be as simple as one or a few instruc-
tions in a basic block or as complex as an
entire loop. Tasks are chosen to be as inde-
pendent as possible.

To dispatch a task, the GCU simply hands
an initial program counter value and a special
bit-vector mask to a processing unit; the masks
help the units locate the most up-to-date copy
of each register. The GCU uses the head and
tail pointers to manage the processing units as
a circular buffer.

The global control unit is capable of dis-
patching a new task each cycle. It does so by
predicting the flow through the task list (with
branch prediction) and speculatively dispatch-
ing tasks. At any given time, all tasks but the
first (i.e., the least recently dispatched task at
the tail of the list) are executing speculatively.

Each processing unit is free to execute the
instructions in its task as quickly as possible;
each unit can be a simple pipelined processor
or a sophisticated superscalar processor. Reg-
ister values needed because of dependencies
(e.g., one task needs a value computed by an earlier task)
are communicated through the ring-like communication
path connecting the execution units. Given suitable
tasks, all of the execution units are busy running their
little parts of the whole program concurrently, and the
amount of communication overhead is small. Typically,
each processor takes a bite out of the program that is at
least several instructions long.

Finding More Parallelism
This approach has some advantages. One problem

for decoupled superscalar designs is that data depen-
dencies can limit available parallelism; when one instruc-
tion depends on the result of a previous instruction, the
second must wait for the first to be executed. One solu-
tion to this problem is a large window of pending instruc-
tions (the reservation station and reorder buffer in Pen-
tium Pro) (see 090202.PDF). As the window size increases,
the probability of finding independent, ready-to-execute
instructions increases, but a large window also increases
implementation complexity.

The multiscalar organization attacks the problem
of dependencies in two ways. First, the compiler can col-
lect a data-dependent sequence of instructions into a sin-

M I C R O P R O C E S S O R R E P O R T

Figure 1. Blo
are tradition
scalar, etc).
each unit.

B

Unit 0
Uni
2 Viewpoint: What’s Next for Microprocessor Design? Vol. 9, No
gle task, which means that only one processing unit is
tied up; the others can proceed with later, more parallel
portions of the program. Second, since task sizes tend to
be relatively large (several to tens of instructions), the
multiscalar processor effectively implements a large
window into the instruction stream, which helps it find
maximum instruction-level parallelism.

It is possible to build a multiscalar processor that
forms lists of tasks at run time, but most practical imple-
mentations would rely on a compiler to group instruc-
tions into tasks. Another possibility not mentioned in
Franklin’s dissertation is the use of a binary post-proces-
sor to build a list of tasks. A compiler is likely, however,
to do the best job, given its knowledge of the program
source code.

The processing units could use an existing instruc-
tion set. For example, it is possible to build a multiscalar
x86 implementation, which would provide good back-
ward compatibility along with benefits for new software
applications.

Initial simulation results for multiscalar organiza-
tions show promise, especially for integer programs that
are thought to have small amounts of parallelism. Per-
haps more than anything, the multiscalar research

ck diagram of an eight-unit multiscalar processor. The execution units
al uniprocessor cores of any appropriate design (pipelined, super-
The global control unit dispatches blocks of instructions (“tasks”) to

Nonblocking Data Cache
. 13, October 2, 1995 © 1995 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Instruction
Fetch
Unit

. . .

. . .

Reservation
Station

Exec.
Unit 1

Exec.
Unit 2

Exec.
Unit 3

Exec.
Unit 4

Exec.
Unit 5

Exec.
Unit n

. . .

. . .

Instruction
Fetch
Unit

Local
I-Cache

. . .

Reg.
File

Reorder

. . .

Data

Instruction
Fetch
Unit

Local
I-Cache

Instruction
Fetch
Unit

Local
I-Cache

Reg.
File

Instruction
Fetch
Unit

Local
I-Cache

Instruction
Fetch
Unit

Local
I-Cache

Reg.
File

Instruction
Fetch
Unit

Local
I-Cache

Instruction
Fetch
Unit

Local
I-Cache

Reg.
File

Local
I-Cache
shows that a lot of parallelism can be found by looking
far enough ahead into the instruction stream.

A multiscalar processor would be more complex
than a traditional multiprocessor, but the multiscalar
design has the advantage of being able to speed up the
execution of a single program without explicit work on
the part of the programmer. With traditional multipro-
cessors, multithreading can speed the execution of a sin-
gle program, but the programmer is required to create
threads explicitly.

Using One Processor for Multiprocessing
Another approach to multiprocessing does not use

multiple processors at all. Instead, it builds on the strong
foundation of a decoupled superscalar organization. As
Figure 2 shows, this multiple-program-counter (which
we’ll call multi-PC) superscalar organization allows sev-
eral instruction fetch units (IFUs) to dispatch instruc-
tions to a common pool of execution resources. Whereas
a familiar decoupled implementation has just one
I-cache/IFU/register-file block, the modified organiza-
tion has several such blocks, which expands the pool of
execution units, expands the sizes of the reservation sta-
tion and reorder buffer, and increases the number of
buses to carry operands and operations. As operations
are dispatched, they must be tagged with an identifier
unique to the originating IFU, so the reservation station
and reorder buffer know how to forward intermediate
operands from previous instructions and know which
register file to write results into.

This organization requires a large number of exe-
cution units to accommodate a high rate of instruction
issue. Since the reservation station contains operations
from different programs or threads from one program, it
is likely that there are always operations ready to exe-
cute. Consequently, the execution units will seldom sit

Figure 2. Decoupled superscalar organization enhanced to allow
multiprocessing.

BufferCache
3 Viewpoint: What’s Next for Microprocessor Design? Vol. 9, No
completely idle, and the average utilization will be
higher than with just one I-cache/IFU/ register-file unit.

The multi-PC superscalar design could be used to
simulate Franklin’s multiscalar organization, except
that it lacks the inter-register-file communication ring.
A similar communication path could be added, or a vari-
ation on the multi-PC organization with a single central
register file might be devised.

While a multi-PC design looks attractive in a block
diagram, it has one major drawback: a potential explo-
sion in complexity. The designers of P6 and K5 have
already remarked on the costs associated with routing
operands and comparing tags to determine how to store
and forward results. The implementation costs of the
reservation station and reorder buffer are high in cur-
rent designs; the multi-PC organization can only make
those structures more costly.

In return for the complexity, however, this organi-
zation offers higher execution rates for single threads of
execution that are inherently highly parallel. When only
a single thread is executing (a worst-case scenario), the
large number of execution units will result in very high
throughput if that thread is highly parallel. In contrast,
the worst-case throughput for the multiscalar design—
when only one processing unit is able to make progress—
is determined by the sophistication of the individual pro-
cessing units. Since all the execution resources are
divided statically among several processing units, each
of the multiscalar processing units is less capable than
the execution engine in the multi-PC design, which has
a common pool of execution resources that can be dynam-
ically allocated. Given a constant number of execution
resources, the multi-PC design is more flexible.

There’s a Multiprocessor in Your Future
In my view, some sort of single-chip multiprocessor

makes good sense. Multiprocessing is the easiest way to
increase instruction throughput. When will we see mul-
tiprocessor microprocessors? Only the chip vendors
know for sure, but it’s a safe bet that uniprocessors will
rule for at least one more generation.

I suspect that single-chip multiprocessors, at least
at first, will be shrunken versions of current multipro-
cessor systems, because the traditional multiprocessing
paradigm is reasonably well understood and an infra-
structure of operating system and hardware support
seems to be under construction. But, as this article has
shown, there are a couple of alternative approaches that
deserve investigation, and others will probably be pro-
posed. The multiscalar and multi-PC ideas show that it
may be worthwhile to search for the holy grail: speeding
up a single program with multiprocessing concepts. ♦

Will single-chip microprocessors be the next step, or
will another technique be more popular? Let us know by
sending e-mail to editor@mdr.zd.com.
. 13, October 2, 1995 © 1995 MicroDesign Resources

	What’s Next for Microprocessor Design?
	One-Chip Multiprocessors: Pro and Con
	Multiprocessing for a Single Program
	Figure 1. Block diagram of an eight-unit multiscalar processor...
	Finding More Parallelism
	Figure 2. Decoupled superscalar organization enhanced …
	Using One Processor for Multiprocessing
	There’s a Multiprocessor in Your Future

