MICROPROCESSOR REPORT

OBLIQUE PERSPECTIVE

Is Intel Sandbagging on Speed?
So Just How Fast Will the P6 Really Run?

by John Wharton, Applications Research

So Intel went and sharpened its pencils, recali-
brated its ’scopes, and ran some more tests, and discov-
ered—lo and behold!—the maximum clock frequency of
its upcoming P6 processor might actually be a smidgen
or two higher than the company first thought (see
091001.PDF). It seems early devices won’t be limited to
133 MHz after all, but will actually do up to 150! This
200-SPECint92 beast may actually deliver 220!

Hunh.

I can’t say I'm surprised. I've been telling my clients
for months that the P6 was clearly designed to run
much, much faster than Intel initially let on; rumors of
220-SPECint92 performance were first floated as far
back as February. But I think even the 12% boost Intel
just discovered is grossly conservative. Indications are
that the current P6 design, using the current P6 process,
could someday run at 266 MHz or more.

Subdivided Pipeline Stages

For starters, compare the design of the current P6
with that of the 0.6-micron Pentium, née P54C. (Curi-
ously, the process geometry Intel calls “0.6 micron” has a
gate length equivalent to other vendors’ 0.5-micron pro-
cesses.) A major difference in philosophy is clear. The P6
may be the first processor yet to earn the oft-used appel-
lation “superpipelined”: whereas the Pentium pipeline is
five stages long, the P6 breaks execution of even the
simplest instructions into a 14-stage ordeal (see
090202.PDF). Granted, several of these stages perform
new functions, like renaming registers and retiring re-
sults, but for some aspects of the two designs that didn’t
change, the P6 performs significantly less work in each
stage.

For example, both Pentium and the P6 contain an
8K instruction cache, but whereas Pentium can trans-
late a virtual address, access the cache, compare tags,
and return data all in a single clock cycle, the P6 allo-
cates 2.5 cycles to do the same work. Ditto with data:
again, the Pentium and P6 data caches each contain 8K
bytes, but P6 accesses take three cycles versus one.

Likewise with instruction decoding. Pentium can
examine a block of instruction bytes, determine the
starting address and length of the first two instructions,
decode each, and decide whether both may be issued at
the same time, all in a single cycle. The P6 apparently
devotes considerable extra logic to instruction decoding,

with a massively replicated “speculative predecoder
array” that cracks instruction formats beginning at
every possible byte boundary of the prefetch buffer,
which should actually accelerate the decoding process.
Even so, the P6 design allots 2.5 CPU cycles to perform
decoding tasks Pentium performs in one.

Stated differently, a P6 running at more than twice
the core frequency of a Pentium would actually have
more time to access the same-sized caches and to decode
the same instructions. The 0.6-micron Pentium has been
shipping at speeds up to 100 MHz since mid '94; dou-
bling its 100-MHz clock would yield 200 MHz, not the
150 MHz Intel now claims for the P6.

Moreover, Intel demonstrated a P54C system run-
ning at 150 MHz at the ISSCC conference in February of
1994. Granted, this may have been a specially binned,
specially tuned, specially chilled oddity; on the other
hand, both the P54C design and the process on which it
is built were quite young in 1994, and each has since had
18 months to mature. Plus, the P6 may have tricks up its
voltage-tuning sleeve (see below). The point is that the
ISSCC demo proved it’s within the realm of technical
feasibility for a 0.6-micron Pentium-like pipeline to run
at 150 MHz. 2 x 150 MHz = 300 MHz, not 150.

Unnecessarily Precise Clock Distribution

At the sub-microarchitecture level, the P6 is differ-
ent as well. Conventional microprocessors contain tim-
ing circuitry at a central location, with powerful drivers
that distribute the signal to all the various points at
which it’s needed. The P6, in contrast, puts clock drivers
at 80 separate locations on the die, each of which is
tuned to match the specific load and timing needs of the
functional units it controls. As a result, the worst-case
clock skew is less than 250 ps across the entire chip.

Whatever time is lost to clock skew comes right off
the top of the minimum clock period, so skew should be
kept as low as practical—but no lower: past a certain
point, the returns from further improvements diminish.
One rule of the design engineer’s thumb is that skew
should be 5% to 10% of the total period. Reducing skew
from 5% to 4%, for instance, would yield an effective in-
terstage clocking time of 96% of the total period, an in-
significant improvement over the original 95%.

Now consider the P6: at 150 MHz, a 250-ps skew
corresponds to just 3.75% of the clock period. The P6
would have to run between 200 and 400 MHz in order for
250 ps of skew to fall within the 5-10% guidelines.

Oblique Perspective: Is Intel Sandbagging on Speed?

Vol. 9, No. 11, August 21, 1995

© 1995 MicroDesign Resources

MICROPROCESSOR REPORT

Locally Distributed Control Logic

But it may be that total edge-to-edge clock skew
isn’t even crucial for this chip. The P6 greatly reduces
the need to synchronize signal timing across great ex-
panses of silicon. In more conventional microprocessor
designs, a central module generates control signals that
affect other blocks throughout the chip; if an integer
unit, FPU, data cache, and bus interface all respond to
timing signals from central control logic, for example, all
four functional units plus the control block had better be
locked tightly onto the same core clock.

But the P6 CPU is divided into four largely au-
tonomous machines—an in-order front end, an out-of-
order dataflow engine, an in-order back end, and a bus
interface unit—with the functional blocks that make up
each machine grouped into geographically separate re-
gions. Data generally passes between these regions via
holding stations and queues for synchronization, and the
control signals for each region are derived locally from
information passed between the blocks. (Indeed, control
logic and data storage functions are often replicated
within the functional blocks themselves; see below.)

Moreover, comparing the P6 block diagram to the
device floorplan shows that each functional block gener-
ally talks just to its physically adjacent neighbors, with
relatively short buses and unidirectional data flow. Sel-
dom do signals pass from one block to another, get
processed, and return in a single cycle. These factors all
relax the need for tight device-wide timing constraints;
all imply a design that was truly built for speed.

Massive Local Data Replication

Early microprocessor designs pooled each resource
in a central location, with data transferred to nether re-
gions of the chip as needed. The 486 has just one register
file and cache; in Pentium, both execution pipelines ac-
cess the same files, so the same register may have to be
read through up to four ports at once. The need for mul-
tiple access ports impedes register access time.

In contrast, the P6 design tends to replicate data—
sometimes massively—within each functional unit that
may eventually need it. Micro-operations (uops) are
replicated within both the reservation station (RS) and
the reorder buffer. Within the RS, 40 separate registers
hold operands for the execution units; all 40 may at
times contain the same value. This ensures that when
an internal uop is eventually ready to execute, its data
will all be right there where it’s needed and not have to be
retrieved from a register file or data bus elsewhere.

Even more remarkably, there appear to be (Intel
hasn’t released the details) 40 more registers within the
RS that hold the six-bit indexes of the temporary-register
values for which each uop might be waiting, plus some
120 or so six-bit comparators that constantly monitor the

execution-unit result buses. When register EAX (e.g.) is
eventually returned after a particularly glacial load op-
eration, all 40 operand-holding registers could in theory
glom onto it at once.

All these registers and comparators appear to be lo-
cated within the RS itself, such that comparisons are
made, control signals generated, and data captured
using physically adjacent circuitry. This is not your par-
ents’ microprocessor; this is a chip designed to run much,
much faster than the conventional state of the art.

Unnecessary Clock Configuration Options

The internal CPU clock of a 486DX2 is designed to
run at twice the frequency of the bus clock; a DX4 runs
three times faster. In the P6, however, the clock multi-
plier factor is configurable at run time, with even the
earliest devices able to multiply the bus clock by factors
up to four. The local bus of the P6 runs at 66 MHz, which
Intel says will accommodate a fully populated multi-
processor array with four CPUs, two main-memory sys-
tems, and two I/O subsystems. Quadrupling a 66-MHz
bus clock would produce a core frequency of 266 MHz,
not 150. (Well, 264, actually, but with microprocessors,
multiples of 66 traditionally round up.)

Why would Intel allow the P6 to be configured to
run at 266 MHz if it thought the chip could handle just
half that? At 150 MHz, the 4x multiplier could only be
used if the local bus were slowed to 37.5 MHz, but there’s
little reason for a P6 bus ever to run below 60 or 66 MHz.
Indeed, with a somewhat less fully populated uniproces-
sor system, it’s far more likely that the enhanced Gun-
ning transceiver logic (GTL+) protocol on which the bus
is based could hum along nicely at 100 MHz or more;
with a 100-MHz local bus, even the 2x frequency multi-
plier would boost the clock to 200 MHz, not 150.

Frequency-Independent L2 Caches

The P6 design partitions the CPU and a second-
level cache (L2C) onto two separate die, the better to re-
duce production costs and increase marketing flexibility
(see 0906VP.PDF). This has the side benefit of ensuring
ready sockets for future products that allow faster exe-
cution. Were the L2 cache to be located off-package—as
it is with most conventional system designs—its perfor-
mance would be limited by the speed of whatever SRAM
devices were present on the motherboard. Cranking up
the CPU clock to 200 or 266 MHz (to pick a number)
wouldn’t do much good if the L2-cache bus then had to be
slowed back down. But by teaming a sufficiently fast
L2C in the same package as the P6 CPU, Intel can en-
sure that faster products could drop readily into the
socket of any existing motherboard design.

This would clearly benefit Intel; since the days of
the iAPX432 “micromainframe,” the company has pur-
sued schemes to sell multiple CPUs for every mother-

2 Oblique Perspective: Is Intel Sandbagging on Speed?

Vol. 9, No. 11, August 21, 1995

© 1995 MicroDesign Resources

MICROPROCESSOR REPORT

board shipped. End-user upgrades are a good way to do
this. But end users tend not to replace existing CPUs un-
less they can get at least 50% to 100% more speed. When
introducing a new product, then, it may be strategically
advantageous to start slow in order to leave as much fre-
quency headroom as possible. The P6 system partition-
ing will let Intel crank the clock *way up while remaining
compatible with all existing sockets.

Post-Production Voltage Tweaking

As mentioned above, at least some 0.6-micron P54C
devices can run at 150 MHz already, but doing so re-
quires carefully tuning the power supply and cooling the
CPU. For any given chip, the higher the voltage, the
faster (and hotter) it runs, until at some point its oxides
punch through or its package melts down. Conventional
microprocessors must thus be designed to accommodate
variations in process oxide thickness, system supply
voltage, and heat dissipation, yet support the rated fre-
quency under worst-worst-worst case conditions. With
special tuning and tweaking, then, standard chips can
generally run considerably faster than specified.

But the P6 is already designed for post-production
tweaking. Four pins on every P6 package are configured
at assembly time to indicate the voltage at which the
chip should be run; digitally programmable regulators
on the motherboard read this code and adjust them-
selves accordingly. This capability might be used to give
the P6 a 10% to 20% edge over conventional designs by
letting each processor be tuned to operate at the maxi-
mum safe voltage for the particular die it contains.

(More intriguingly, this scheme may give Intel a
hardware governor on processor operation: each chip
could have its preferred Vcc setting downgraded to the
lowest value for which it could still meet its rated fre-
quency. This would also benefit end users, since chips
would then not dissipate any more power than what’s
needed to meet their guaranteed frequency specs.)

Technical Caveats

The whole history of the microcomputer industry is
one of vendors promising more than they can deliver,
then backing off when the products are introduced.
Chips always speed up as they move to smaller pro-
cesses, but here’s a design that may run faster than Intel
says with the process technology it’s on. Smaller pro-
cesses should let the P6 run proportionately faster still.

Suppose, for the sake of discussion, the P6 could al-
ready run considerably faster than the 150 MHz Intel
now admits. Why wouldn’t Intel just say so? Maybe tech-
nical issues are involved. Maybe the design’s not quite
there yet; early silicon of a revolutionary new CPU often
serves as a proof-of-concept demonstration vehicle,
rather than a be-all and end-all product. Maybe a few (or
a few hundred) relatively slow nodes currently limit the

P6 to “just” 150 MHz. If so, as they are identified and
fixed, these bottlenecks may go away.

Or maybe the CPU chip would indeed be able to run
faster today, except that the level-2 cache chip currently
limits the clock. The L2C chip runs at the same fre-
quency as the CPU core and is designed to retrieve data
in three clock cycles, the same as the on-core caches.
Intel has never been strong in SRAMS; it’s not unreason-
able to assume that a 256K L2C would be hard-pressed
to match the speed of an 8K cache built on the same 0.6-
micron process. Intel is known to be moving the L2C
design aggressively to a 0.35-micron process in order to
increase its capacity; if cache speed is currently a bottle-
neck, perhaps a smaller L2C with a tighter process
geometry would let the clock run faster still.

Would Intel Lie to You?

But it’s more likely—and more fun—to assume that
performance is all a marketing game. Pentium is still
the king of the hill; recently published evaluations show
that the fastest systems based on NexGen Nx586 devices
consistently underperform 100-MHz Pentia, even on
integer-only code, to say nothing of Intel’s 120- and 133-
MHz parts. The FPU version of the Nx586 and antici-
pated onslaughts from the Cyrix M1 and AMD K5 have
thus far failed to materialize. And all the various RISC
factions, most recently spearheaded by the IBM/Moto-
rola PowerPC, have thus far failed to put much of a dent
into the x86-compatible marketplace.

Maybe Intel hasn’t claimed the P6 is any faster
than it has because it doesn’t have to. Too slow a product
would underwhelm the market, but an excessively fast
P6 could cannibalize Intel’s own Pentium sales and spur
its competitors to ever-greater levels of inventiveness
and achievement. Intel is willing to kill off its own young
provided it can do so by selling newer parts instead, but
the company surely wants not to Osborne itself by in-
ducing users to stop buying Pentia several months be-
fore P6-based systems are ready to take their place.

The goal of any flagship product is to get the mar-
ket’s attention and draw the competitors’ fire. At 200
SPECint92—or 220, or 250—the P6 has already suc-
ceeded in catching the industry eye. Let others claim to
match P6 performance, or discover bottlenecks in exist-
ing 16-bit code; Intel may then “discover” another 12%,
or 25%, or whatever it takes to stay on top. It may not be
until Pentium comes under serious fire from the compe-
tition—next year, maybe, or maybe in ’97—before we
learn what today’s P6 design can really do. ¢

John Wharton (jwharton@netcom.com) is the editor
and primary author of The Complete x86: The Definitive
Guide to 386, 486, and Pentium-Class Microprocessors.
Contact MicroDesign Resources for ordering information
on this and other Technical Library reports.

3 Oblique Perspective: Is Intel Sandbagging on Speed?

Vol. 9, No. 11, August 21, 1995

© 1995 MicroDesign Resources

	Is Intel Sandbagging on Speed?
	Subdivided Pipeline Stages
	Unnecessarily Precise Clock Distribution
	Locally Distributed Control Logic
	Massive Local Data Replication
	Unnecessary Clock Configuration Options
	Frequency-Independent L2 Caches
	Post-Production Voltage Tweaking
	Technical Caveats
	Would Intel Lie to You?

