
M I C R O P R O C E S S O R R E P O R T
by Brian Case and Linley Gwennap

Despite offering significantly better price/perfor-
mance, RISC processors have been unable to take mar-
ket share from the dominant x86 family in the high-
volume desktop market. The x86 has tenaciously held its
lead due to its vast installed base of software, a base that
is not compatible with RISC processors.

To overcome this incompatibility, RISC vendors
have tried to convince software developers to port their
applications to RISC instruction sets. Although this ap-
proach has had some success in niche markets, most
general-purpose software is still unavailable on RISC.
Now, many processor vendors are turning to a different
strategy: acquiring the entire x86 software base in one
fell swoop by emulating an x86 CPU.

During the past few years, products like Insignia
Solutions’ SoftPC and SoftWindows have become avail-
able, emulating the x86 processor and allowing users to
run DOS and Windows on a variety of RISC platforms.
These products provide a bridge to the x86 world, but
many users are dissatisfied with the performance of em-
ulated x86 applications, which is generally no better
than that of a low-end 486SX.

More recently, processor vendors have begun to
consider ways to improve the speed of RISC processors
when emulating x86 code. IBM has confirmed that it is
“investigating” ways to combine x86 execution with a
RISC core in a new device reportedly called the PowerPC
615. MIPS Technologies’ Glenn Henry has discussed a
similar program under way at that company. Interna-
tional Meta Systems (IMS) is the furthest along: it is
testing a prototype chip that executes x86 code on a pro-
prietary RISC core (see 0805MSB.PDF).

There is a variety of ways to improve the perfor-
mance of emulated x86 code, ranging from adding in-
structions that speed the software emulator to replacing
it entirely with hardware emulation. A hardware-based
strategy could be as “simple” as adding an x86 core to a
RISC design or as complex as modifying a RISC pipeline
to execute x86 instructions. These options offer different
tradeoffs in emulated x86 performance, native RISC per-
formance, manufacturing cost, and time to market.

Compatibility Is Two-Pronged Problem
Emulating the x86 instruction set has two aspects:

decoding the x86 instructions and executing the opera-
tions (semantics) of the instructions. The CISC-style x86
instructions are difficult to decode because they vary in

RISC Processors Can
Fast Emulation Requires Both Ha
RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May 30,
length, have inconsistent formats, and can have prefix
bytes. A software emulator spends much of its time de-
coding the instructions and extracting their operands.

Executing the semantics of x86 instructions is also
difficult for a standard RISC processor, which lacks x86-
compatible condition codes as well as support for 8- and
16-bit ALU operations and the x86 multicomponent, seg-
mented memory-addressing model. Without specific
support, emulating each of these features requires many
RISC instructions.

On the bright side, the x86 architecture specifies
only eight registers, making it possible to directly map
x86 registers onto the larger RISC register file while
leaving enough room for the x86 segment registers and
temporary values.

Floating-point instructions are also difficult for
RISC-based emulators. Implementing the 80-bit opera-
tions of the x86 model with the 64-bit operations found
on RISCs requires many instructions. Fortunately, most
productivity applications do not use floating point, and
many FP-intensive programs are either already ported
or likely to be ported to popular RISC chips.

The following discussion focuses on the x86 integer
instruction set. Even ignoring floating point, we can pro-
vide only an overview of some of the key decisions and is-
sues involved in x86 emulation.

Software Solutions Cheap but Slow
A pure software solution is attractive because it

adds no cost to the processor chip and can be used on any
system. Emulation performance scales as native proces-
sor performance increases, and the emulation software
can easily be upgraded and corrected.

There are some hidden costs, however. The first is
the cost of the emulation software itself: Insignia’s Soft-
Windows for Macintosh, for example, retails for $499
($199 bundled with system). Another is the extra DRAM
required to run the emulator. SoftWindows needs 13M of
memory to run well on the Mac, more than is installed on
most systems. Even in a 16M system, the emulator
leaves room for the Mac OS but no native applications.

The biggest drawback of software emulation is its
poor performance compared with native x86 chips. For
example, ZD Labs’ measurements of a 66-MHz Power
Macintosh (Macworld, 5/94) show that CPU-bound
benchmarks run about as fast as a 25-MHz 386. Appli-
cation test performance is more varied but can be up to
25-MHz 486 speeds, depending on how much time is
spent executing operating system code, some of which

Emulate x86 Quickly
rdware and Software Techniques
1994 © 1994 MicroDesign Resources

FETCH

DECODE

EXECUTE

MEMORY

WRITE-BACK

Limit +

Instruction
Cache

Data Cache

Register File

ALU/Shift
x86

C-Codes
RISC

C-Codes

Over.

Register File

Decode
Logic

x86 Decoder
runs natively. In any case, this speed—typical for soft-
ware-only emulation—is inadequate for many x86 appli-
cations, especially in light of cheap Pentium boxes.

Accelerating Software Emulation
One way to improve x86 performance is to add

hardware to accelerate the emulation software. Because
the emulator spends much of its time decoding instruc-
tions, a valuable improvement would be to implement an
x86 instruction decoder as a RISC execution unit, as Fig-
ure 1 shows. This unit could accept 32 bits of data—
fetched from the x86 instruction stream—and extract
the various register, opcode, and immediate fields. These
fields could be placed into special registers or, assuming
sufficient write ports into the register file, directly into
predetermined general registers.

In addition to extracting register and immediate
fields from the x86 instruction, the decode unit could use
the opcode field(s) to generate a jump-table offset that
the software emulator would use to index into a table of
emulation routines. The offset would direct the emula-
tor—via an indirect jump—to short routines for common
instructions that can be decoded directly by the hard-
ware. For long instructions that the decode unit cannot
handle, the offset would direct the emulator to a routine
that completes the decoding in software.

The decode unit would be accessed by a special in-
struction that specifies the source register containing
the x86 instruction bytes and possibly one or more target
registers. This structure could reduce the execution of a
simple x86 instruction to four steps.
• Execute current x86 instruction (may take several

RISC instructions).
• Load next x86 instruction into a register.
• Decode next x86 instruction (using decoder).
• Jump indirect to execution routine.

For efficiency, this generic routine overlaps the execu-
tion for one x86 instruction with the fetch-decode-
dispatch overhead for the following x86 instruction. The
“decode” instruction collapses potentially many shift and
mask operations into a single RISC instruction.

This routine assumes the new RISC “decode” in-
struction automatically updates the emulated x86 PC.
This action is not trivial, however, as any x86 instruction
fetch must check for page faults and segment overruns.
These checks cannot be done when instruction bytes are
loaded, because the processor doesn’t yet know how
many bytes are in the current instruction. This problem
must be addressed for proper x86 emulation.

Function Units Speed x86 Execution
Most x86 instructions cannot be executed by a sin-

gle RISC instruction because of the x86’s special condi-
tion codes and complex addressing modes. Many x86 in-
structions could be speeded by including an x86-style

M I C R O P R O C E S S O R R E P O R T
2 RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May
ALU to automatically generate the needed condition
codes as well as a couple of three- or four-input adders to
perform x86 address calculations and segment-limit
checks. These could also be added as execute-stage func-
tion units, as Figure 1 shows, and accessed by new in-
structions that perform x86-like loads, stores, and arith-
metic operations. Some of this hardware could be used to
solve the PC-update problem noted above.

A potential problem with this approach is that
extra inputs on the ALU may increase cycle time and
thus decrease the maximum operating frequency, reduc-
ing native performance. Instead of the arrangement
shown in Figure 1, it may be necessary for the EX stage
to have three arithmetic units: a limit adder, an address
adder, and a traditional ALU/shifter with two inputs.

This modified pipeline would execute RISC instruc-
tions as usual and still be able to accelerate x86 emula-
tion. For example, consider an x86 memory-to-register
ADD, which takes two cycles in the Pentium pipeline.
With the pipeline in Figure 1, two instructions are re-
quired (neglecting the overhead of instruction decoding):
• LOADX86. This is a new “RISC” instruction that im-

plements the x86 addressing model. It specifies a
three- or four-part address, perhaps by naming some
registers implicitly. It triggers an exception if the
limit-check adder detects a segment overflow.

• ADD. This is the usual RISC ADD, but it also generates
x86 condition codes, storing them in a special register.

Figure 1. With the addition of four-input adders and a decode unit, a
basic RISC pipeline can be modified for significantly faster x86 em-
ulation without significantly increasing the die area or cost.
30, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

FETCH

DECODE

EXECUTE

MEMORY

WRITE-BACK

Register File

Limit +

Instruction
Cache

Data Cache

RISC
PC Unit

Register File

ALU/Shift

x86
Condition

Codes

RISC
Condition

Codes

Overflow

x86
PC
Unit

µCode ROM &
Sequencer

Prefetch
Buffer &

Hardware
Decoding

x86 PC

RISC Decode
Logic
This instruction takes two cycles, due to the load/use
interlock, unless either the instruction flow or the
pipeline is rearranged to avoid this penalty.

Note that this sequence assumes the x86 ADD instruc-
tion specifies 32-bit operands. If the instruction uses 8-
or 16-bit operands, additional instructions or hardware
are required for correct execution.

Emulation Improved with Modest Cost
After modifying the emulation software to use these

new hardware features, most x86 instructions should
take about half as many cycles as required by an emula-
tor running on an unmodified RISC design. The new em-
ulator would also have an improved cache hit rate due to
the smaller instruction execution routines, which would
further improve emulation performance and reduce sys-
tem RAM requirements.

One drawback is that the emulator creates an
instruction stream with some data dependencies and
frequent unpredictable indirect branches, making it dif-
ficult to extract maximum performance from a super-
scalar RISC processor. The emulator could be coded to

Figure 2. A combined RISC/x86 pipeline would look something like
this. The execute stage would have an ALU and an adder to speed
x86 address computations, and the decode stage would have fetch,
decode, and dispatch logic for both RISC and x86.
3 RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May
process two x86 instructions simultaneously to improve
the chance of fully exploiting the superscalar RISC core,
but doing so would make the emulator complex and
more difficult to maintain; unpredictable x86 branches
would still make it difficult for the emulator to reach
peak performance.

In summary, a significantly modified RISC proces-
sor could reasonably double emulation performance
compared with a standard RISC chip. The modifications
consist of adding a couple of new function units to an ex-
isting design and, for a high-end chip, might increase the
die area by only 5–10%.

This hardware-assisted approach retains some of
the advantages (and disadvantages) of a pure software
solution. With the emulation code in software, correc-
tions and improvements can be made without changing
the processor chip. Given that correct x86 emulation is
difficult to achieve, this may be a compelling advantage.
Also, a user can buy a base system and add x86 emula-
tion later if needed.

A big disadvantage of this approach is that the em-
ulation software is as much a part of the microprocessor
product as is the chip itself. The software must be ported
to all operating systems and platforms in which the
microprocessor is used. Developing and supporting a
software emulator may be too much to ask of most micro-
processor vendors, but if a relationship could be devel-
oped with a company like Insignia, the software aspect
could be manageable.

Hardware Approach Is Fastest
Even with special function units to accelerate de-

coding and executing x86 instructions, emulation perfor-
mance significantly lags native performance. A fully
hardware-based solution can use hardware pipelining to
fetch, decode, and execute x86 instructions simultane-
ously. In this case, the control code would be contained in
an on-chip ROM, but this code would be smaller than a
software emulator because many tasks would be per-
formed directly by the hardware. Some mechanism to
switch between RISC and x86 execution (perhaps a
mode bit in the processor status register) is also needed.

Figure 2 shows a RISC pipeline with an x86 PC unit
that implements an x86 program counter, instruction
fetcher, and instruction decoder. When the RISC chip
operates in x86 mode, the x86 PC unit takes over the du-
ties of keeping track of program flow, fetching instruc-
tions, and generating and dispatching RISC instructions
into the pipeline(s). The PC unit would be essentially the
same as is implemented by the 486 or Pentium, but it
might directly decode and execute only the most fre-
quently occurring x86 instructions.

This approach essentially creates an x86 processor
on the RISC chip. The two personalities—RISC and
x86—share most of the hardware of the chip, including
30, 1994 © 1994 MicroDesign Resources

More Overhyped Vaporware
The prospect of x86-compatible RISC chips is cur-

rently generating a lot of speculation and hyperbole in
the press. For example, in one issue of PC Week (5/2/94),
an article and a separate editorial touted two different
x86-on-RISC emulation schemes. The article claimed
that the 100-MHz PowerPC 604 chip would be able,
through software emulation, to execute x86 code at
roughly the speed of a 60-MHz Pentium.

Is this realistic? As a sanity check, consider that 80-
MHz 601-based Macintosh computers, using SoftWin-
dows, are said to be achieving about 25-MHz 486 speeds
running Windows. The 604, which is expected to have
twice the native performance of the 80-MHz 601, might
be able to double the emulation speed to 50- or 66-MHz
486 speeds, which, while excellent, is clearly not Pen-
tium-class performance. As another sanity check, it is
unreasonable to expect a 160-SPECint92 processor to
deliver 60 SPECint92 in emulation: although an emula-
tion overhead of 2.5 is theoretically possible—with ag-
gressive dynamic compilation (see MPR 1/89, p. 4)—the
complexity of this technique has prevented anyone from
building a commercial version of such an emulator yet.

The editorial lavishes praise on the prospects for the
IMS 3250 RISC chip with integrated 680x0 and x86 em-
ulation and claims “its emulator technology is available
now and will work with any RISC chip.” While this
statement may be true, it implies that adding the tech-
nology to “any RISC chip” is a simple task and can be
completed quickly. Based on the discussion here, it
should be clear that modifying pipelines, adding decod-
ing hardware, and translating the x86 emulation micro-
code are nontrivial tasks.

Despite exciting, breathless accounts in the popular
press, high-performance x86 compatibility is neither
easy nor free. The decision to add x86 compatibility to a
RISC chip must be made with the understanding that
the instruction-set emulation is only part of the task of
achieving PC compatibility, and that including the x86
instruction set as part of the chip architecture requires
some sacrifices and tradeoffs.

—BC
cache and execution resources, but have separate in-
struction fetch and dispatch logic. To keep the complex-
ity of the x86 PC unit reasonable, it would be advanta-
geous to “trap” to the RISC personality when a very
complex or uncommon x86 instruction is encountered.
The RISC routines could be either in an on-chip ROM
(microcode) or in a software emulator (trap handler).

By modifying the RISC pipeline to efficiently exe-
cute x86 instructions, a processor designer can achieve
the best possible x86 performance. Without doing a full
design and extensive performance simulations, it is diffi-
cult to quantify the performance of such a chip. The mod-
ified pipeline will execute many x86 instructions at the
same speed as a 486 or Pentium; some x86 instructions,
such as memory operations and taken branches, will be
slightly slower. Depending on the instruction mix, the
modified RISC pipeline could achieve 75–100% of the
performance of a 486 pipeline at the same clock rate.

This approach further improves cache utilization.
With software emulation, the emulator itself is stored in
the RISC instruction cache while x86 code and data are
held in the data cache. Moving the emulator into micro-
code enables the RISC instruction cache to store x86 in-
structions, freeing the data cache for x86 data. This
change, however, raises the bugaboo of self-modifying
code, which x86 CPUs permit; the RISC instruction
cache may have to be modified to handle this issue.

Clearly, the advantage of this approach is superior
x86 emulation performance. Once a large amount of
hardware assist is added and pipelines are restructured,
an “x86-enhanced RISC” can become virtually indistin-
guishable from a “real” x86 chip.

As in a real x86 chip, however, the disadvantages
are increases in complexity and design time and a likely
sacrifice of native RISC performance, since the added
complexity in the pipeline might make the critical paths
longer or add a cycle to RISC instruction execution in
certain cases. Some of the artifacts that can lengthen
critical paths are the complexity of x86 instruction de-
code logic, microcode ROM access, microcode sequenc-
ing, and unaligned-access multiplexers on the data
cache. If enough of these artifacts are grafted onto the
processor, “the death of a thousand cuts” can signifi-
cantly lengthen cycle time.

Die size may also increase significantly if large
amounts of hardware assist are added. In the best case,
the RISC/x86 chip could end up with a die size compara-
ble to that of a high-end x86 processor, offering half the
performance of the fastest x86 chip and a performance
gain in its native RISC mode. In the worst case, the
RISC/x86 chip could end up providing competitive per-
formance for neither x86 nor RISC code. As one micro-
processor designer who is currently wrestling with these
tradeoffs points out, it is difficult to hit one price/perfor-
mance target and even harder to hit two.

M I C R O P R O C E S S O R R E P O R T
4 RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May
Why Not Separate Processors?
Instead of expending lots of design effort to produce

a dual-mode chip, it is possible to simply put two micro-
processor chips in a system, or even on the same die. The
advantages are excellent compatibility and performance,
fast time to market, and no sacrifices in the RISC design;
the crippling disadvantages are the added cost of the x86
processor, and the increased complexity of the system de-
sign. The disparate buses of the x86 and RISC chips must
somehow use a common main memory and set of system
peripherals. The operating system must be modified to
coordinate two processors with different instruction sets
and potentially different memory-management units.
 30, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Software Layer Also Needed
In favor of the hardware/software combination ap-

proach is the fact that in a real operating environment,
where the main operating system is executed in the na-
tive RISC instruction set, some software management
is required no matter how x86 compatibility is achieved.
At a minimum, this software must create a virtual x86
environment, manage access to it, and enable simple
functions such as cut-and-paste between environments.
The software may also be required to emulate IBM PC
hardware and assist DOS and Windows emulation.

Some or all of this layer is required regardless of
whether the x86 instruction set is executed by the
microprocessor alone or through a combination of hard-
ware and software. Thus, requiring the use of a soft-
ware package to implement part or all of the x86 com-
patibility may not be a significant burden.

In addition, the RISC microprocessor vendor may
find it advantageous to avoid direct implementation of
the x86 instruction set for several reasons:
• The documentation and maintenance of the x86 in-

struction set is a big burden. Documenting and main-
taining a few instructions and registers that access the
x86-acceleration hardware is significantly easier.

• It may be easier to avoid patent infringement with a
small collection of acceleration hardware than with a
complete processor implementation.

• The implementation is simpler. No microcode ROM is
needed, which saves die area and design time.

• The substantial investment needed to develop x86
microcode is avoided.

Still, important PC system vendors will probably pre-
fer complete on-chip x86 emulation precisely because of
the software issues involved. From their point of view,
the less special software required, the better. Thus,
RISC vendors will probably be driven to build micro-
processors that include full x86 compatibility on chip.
To reduce the cost of a separate x86 processor, one
could add an x86 integer core to an existing RISC chip,
sharing the caches and system interface. Assuming an
x86 core is already available, this approach has many of
the advantages described in the previous approach.

The 486 integer core operates at 100 MHz and re-
quires 13 mm2 in Intel’s 0.5-micron, four-metal-layer
process. If this core were combined with a PowerPC chip,
for example, using IBM’s advanced CMOS-5X process
(see 080504.PDF), it would add only about 15% to the 601
or 10% to the 604—not insignificant but within reason
for the important x86 compatibility it provides. In this
technology, the 486 core should run at 120 MHz or
faster, likely exceeding the integer performance of a
60-MHz Pentium.

Unfortunately, quirks in the x86 architecture re-
quire that modifications be made in the caches and sys-

—BC
5 RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May
tem interface for such a shared approach to work prop-
erly. Either the x86 MMU (another 7 mm2) must be
added, or the RISC MMU must be modified for compati-
bility with the x86 segmented addressing model. The
caches and bus interface must support (or emulate) un-
aligned accesses. The possibility of self-modifying code
again rears its ugly head.

Still, for a vendor with access to a fast 486 core, this
option enables a faster time to market than modifying
the RISC pipeline. It provides competitive x86 perfor-
mance without impacting native performance, unless
some of the issues noted above degrade cache-access
times. The increase in die area appears manageable and
may be about the same as the merged-pipeline design.
The danger, however, is that a dual-core chip may be so
large that it loses its cost competitiveness in both the
RISC and x86 markets.

Hardware Approach Is Difficult
Although the software-only approach has the bene-

fit of being broadly applicable to a range of processor de-
signs, including those with no special hardware, the per-
formance of software-based solutions is inadequate to
attract committed x86 users to RISC platforms. Emula-
tion provides some value to RISC users that need to run
one or two x86 applications that are not performance-
critical. Even with some hardware assistance, software
emulation speed will significantly lag the performance of
high-end x86 processors.

On the other hand, hardware-based solutions can
add significant cost and complexity to the RISC proces-
sor in order to boost x86 emulation speed. In the worst
case, native performance may suffer as the complexity of
the CPU increases. Even with full hardware emulation
of x86 code, a software layer is still needed to manage ac-
cess to the DOS/Windows environment (see “Software
Layer” sidebar). But processors with x86 emulation in
hardware will clearly offer x86 performance superior to
software emulators and could come close enough to the
speed of true x86 chips to attract PC users.

Hardware-based designs also require more design
effort from the CPU vendor, which could instead reduce
its effort by relying on a software house like Insignia to
provide the needed emulation software. Legal issues
must also be considered: while IBM, HP, and SPARC
foundry Texas Instruments are protected by Intel patent
licenses, other microprocessor vendors may be vulnera-
ble to infringement charges if they include x86-specific
hardware in their processors.

Any vendor that markets an “x86-compatible” RISC
chip will have to prove this compatibility over time, just
as AMD and Cyrix have in the past. IBM probably has
the most credibility in this regard, but any new x86 ven-
dor will be met with skepticism by some buyers for a
year or more. Any minor incompatibilities found in the
 30, 1994 © 1994 MicroDesign Resources

The Ultimate Weapon for RISC
Given the strategy of executing x86 applications in

emulation, a RISC processor vendor must consider the
required level of performance. Of course, more speed is
always better, but more moderate levels typically make
a better cost tradeoff. Assuming that a good RISC de-
sign can deliver twice the native performance of an x86
chip at a similar cost, it should be adequate for emu-
lated x86 performance to be about half of the native
RISC performance. This speed would be 2–4 times
faster than that of the pure software emulators avail-
able today.

Ideally, the performance would not increase the
chip’s manufacturing cost, but an increase of 10–20%
would be bearable. This premium could be absorbed by
the profit margin of the processor or the system should
the vendor wish to gain market share.

With such a weapon, a system maker could offer a
RISC box that executed x86 code at the same speed as a
comparably priced x86 system while running native ap-
plications at twice the speed of the x86 product. Such a
product can be successful even if the number of native
applications initially is small; if “x86” is replaced by
“680x0,” the above scenario aptly describes Apple’s new
Power Macintosh systems.

Over time, if a RISC/x86 product grows in popularity,
more ISVs will port their applications to the native
RISC instruction set, increasing the attractiveness of
the product. In the best case, this feedback loop would
result in a large base of native applications and vault
the RISC machine past the x86 in sales. Of course, this
outcome requires maintaining the 2:1 native perfor-
mance advantage over the x86 and would take years.

This scenario is the dream of many RISC processor
vendors and is the basis of the recent interest in x86 em-
ulation. Because ISVs prefer to work with only a few
processor architectures, however, it is likely that the
first vendor to successfully start this feedback loop
could block any others. Don’t count Intel out; it could
use the same strategy to introduce its own new archi-
tecture into the market (see 0706ED.PDF).

Note that this strategy works best with a base of ex-
isting RISC-based customers that will buy x86 emula-
tion as a useful feature. These customers will provide
an initial cash flow to the RISC vendor while it uses the
new system to convert x86 users. Conversely, a vendor
like IMS has no existing customer base; it must sell its
chip essentially as a 486 competitor. In this case, emu-
lation performance must be better than a comparably
priced x86 chip, since the native RISC mode offers little
advantage.

Apple may also be interested in such a strategy to
convert x86/Windows users to the Power Macintosh
platform. The software issues are more complicated in
this case, but fast emulation of Windows applications
could clearly help users make the switch to the Mac.
IBM, however, may not share its PowerPC 615 chip.

—LG
early going will increase this skepticism and make it
even more difficult to gain sales and design wins.

IBM, Intel Have Best Position
Because of these factors, the optimal emulation

strategy may differ for each processor vendor. Digital,
with limited resources and no Intel patent license, may
find it best to rely on software emulation, perhaps in-
cluding hardware assist in some of its processors. Sun is
currently relying on its Wabi software emulation but will
probably add hardware assist to some of its processors at
some point, perhaps in a partnership with TI. HP has
the patent license but not the resources to do more than
minimal hardware tweaks. MIPS Technologies is ag-
gressively pursuing the PC market and is developing
some sort of hardware assistance for x86 emulation.
Motorola, possibly lacking access to IBM’s PowerPC 615,
is said to be in talks with IMS.

IBM is probably in the strongest position among the
RISC vendors. Along with its Intel patent license and
tremendous development resources, it has significant ex-
pertise with the x86 architecture, having designed its
own 486 core for the Blue Lightning family. Although
the Blue Lightning core is restricted by IBM’s contract
with Intel, Big Blue recently obtained the rights to
Cyrix’s 486 and M1 cores (see 080602.PDF) and has also
purchased x86-related intellectual property from Chips
and Technologies. Finally, IBM has already made a com-
mitment to bring PowerPC to the desktop through its
Power Personal Systems division.

We expect that the rumored PowerPC 615, using
some of the hardware-based emulation techniques de-
scribed here, will debut in 1995. This chip will likely
combine a PPC 604 core with Pentium-class x86 perfor-
mance, either by adding hardware to the RISC core or by
adding a fast 486 integer unit to the chip.

Let us not forget Intel itself. Persistent rumors
claim that the P7, already being designed and due to
ship in 1997, will be based on some sort of RISC (or even
VLIW) core processor. Intel swears that the P7 will be
fully compatible with x86 software, but this could be
achieved through the hardware emulation techniques
described here. If any company can combine a RISC core
with fast x86 emulation without ballooning the die size,
Intel is the one. Of course, Intel also has the advantage
of owning the necessary x86 patents.

Ultimately, it will be difficult for any RISC-based
processor to match the absolute performance or cost/per-
formance of a pure x86 implementation. With the appro-
priate combination of emulation software and hardware,
adept RISC vendors may able to offer enough of a bridge
to entice some x86 users to switch to RISC. Such a pro-
cessor could be the ultimate weapon against the x86
hegemony—if the RISC companies can actually deliver
it. Several appear to be willing to try. ♦

M I C R O P R O C E S S O R R E P O R T
6 RISC Processors Can Emulate x86 Quickly Vol. 8, No. 7, May 30, 1994 © 1994 MicroDesign Resources

	RISC Processors Can Emulate x86 Quickly
	Compatibility Is Two-Pronged Problem
	Software Solutions Cheap but Slow
	Accelerating Software Emulation
	Function Units Speed x86 Execution
	Figure 1. With the addition of four-input adders and …
	Figure 2. A combined RISC/x86 pipeline would look something …
	Emulation Improved with Modest Cost
	Hardware Approach Is Fastest
	Why Not Separate Processors?
	Hardware Approach Is Difficult
	IBM, Intel Have Best Position

	More Overhyped Vaporware
	Software Layer Also Needed
	The Ultimate Weapon for RISC

