
M I C R O P R O C E S S O R R E P O R T
by Linley Gwennap

A recent story (see 080205.PDF) examined the use of
VLIW architectures to increase performance in future
highly parallel microprocessors. This article discusses an
alternative method of using increased parallelism to
achieve high performance.

Striving to improve performance, many computer
scientists see a limit to simply adding more function
units to a CPU. Some studies have indicated that there
may not be enough instruction-level parallelism (ILP) in
typical programs to make effective use of very many
function units. If this limit is real, no instruction set—
CISC, RISC, or VLIW (very long instruction word)—will
see a significant benefit from processors that are much
more complex than those that ship in the next year.
Without alternative designs, performance improvement
will be limited to increases in transistor speeds.

At last year’s Microprocessor Forum, computer ar-
chitect John Hennessy proposed placing multiple CPUs
on a single chip to break this potential bottleneck (see
071604.PDF). By executing two or more instruction
streams, such a chip could increase the available paral-
lelism and thus use a large number of function units
more effectively than a uniprocessor chip. This concept
includes several possibilities, such as homogeneous MP,
heterogeneous MP, and a shared-dispatch approach.
Some of these techniques have already been imple-
mented, and all are likely to appear in mainstream mi-
croprocessors by the end of this decade.

Microprocessors Head
Future Processors May Use Mul
Microprocessors Head Toward MP on a Chip Vol. 8, No. 6, May 9

Figure 1. A chip with two processors that share the same system in-
terface would be relatively easy to design.

Instruction Cache

Dual
Integer

FPU

Dispatch

Data Cache

Load
Store

Instruction Cache

Dual
Integer

FPU

Data Cache

Load
Store

System Interface (with optional L2 cache)

Dual-Ported
Cache Tags

Dual-Ported
Cache Tags

PC
Registers DispatchPC

Registers
The Cookie-Cutter Approach
The simplest way to implement multiple processors

on a chip is to place two identical processors onto a die.
Given the high pin counts of most modern processors,
however, it would be prohibitive to duplicate the system
interface for two processors in a single package. There-
fore, it would be best for the processors to share a single
system interface, as Figure 1 shows. This interface must
have enough bandwidth to handle the two processors.

Figure 1 shows two processors, each with its own in-
dividual caches. In this situation, the single system in-
terface must check the bus transactions generated by
each processor against the data cache of the other to
maintain consistency. As in most MP systems, dual-
ported cache tags reduce the overhead of this transaction
snooping. An advantage of MP on a chip is that, on a
snoop hit, wide on-chip buses could quickly update the
other data cache, reducing MP overhead. This design
could easily be extended to three or more processors.

One variation adds a unified second-level cache to
the system interface. (This approach was used in a two-
processor chip that Hitachi Research Labs presented at
ISSCC in 1992 but never commercialized.) Given a fixed
transistor budget, this variation requires the individual
caches to be reduced in size. Despite the smaller primary
caches, the overall hit rate will be improved, as the sec-
ond-level cache can be dynamically allocated between
the processors and between instructions and data.

This variation also eases data sharing and, as a side

 Toward MP on a Chip
tiple CPUs to Boost Performance
, 1994 © 1994 MicroDesign Resources

Figure 2. In this shared-cache design, a single set of instruction and
data caches supports two processors.

Dual-Ported Instruction Cache

Dual
Integer

FPU

Dispatch

Dual-Ported Data Cache

Load
Store Dual

Integer
FPULoad

Store

System Interface

Dual-Ported
Cache Tags

Dual-Ported
Cache Tags

PC
Registers DispatchPC

Registers

Dual-Ported Instruction Cache

Dual-Ported Data Cache

Load
Store Dual

FPU

Load
Store

System Interface

Dual-Ported
Cache Tags

Dual-Ported
Cache Tags

PC #0
PC #1 Instruction Dispatch Regs #0

Regs #1

Quad
Integer
effect, reduces the size of the dual-ported tag arrays.
With the second-level cache on-chip, the first-level miss
penalty should be only one cycle (assuming no con-
tention), and a complete cache line can be refilled in a
single cycle using a wide on-chip bus.

Figure 2 shows an alternative design that uses two
large shared caches, one containing instructions for both
processors and the other containing data. In this design,
the caches must be dual-ported, perhaps using a multi-
bank strategy, to avoid restricting execution speed to the
access rate of the cache. A single data cache eliminates
the need for on-chip snooping. As in the two-level cache
design, it is easier for the processors to share data, and
the processors can dynamically determine the amount of
cache needed by each at any given time.

This design would be difficult to extend to more
than two CPUs, because each CPU must be able to ac-
cess the cache simultaneously. With four processors, for
example, the cache tags would have to have four ports
and the data arrays would need a large number of banks
to avoid conflicts. Because of the linear nature of in-
struction accesses, a set of prefetch buffers could be used
to reduce the number of accesses to the instruction
cache; the data cache also could have less than one port
per processor if the design could tolerate occasional con-
flicts. Both of these changes, however, increase complex-
ity relative to the split-level cache approach.

One CPU, Multiple Program Counters
Figure 3 takes the concept of sharing to the extreme

by using a unified instruction dispatcher. From the dia-
gram, it is nearly impossible to distinguish this design
from a classic superscalar processor. The trick lies in im-
plementing multiple logical register files and multiple
program counters. Instead of fetching eight instructions
from a single instruction stream, this processor fetches
four instructions each from two streams. Because the
two streams use different logical registers, there can be
no register dependencies between the streams. The dis-
patcher attempts to execute as many instructions as pos-
sible using a large pool of function units.

This chip contains a single physical register file di-
vided into two logical register sets, one for each stream.
The decoder simply adds a high-order bit to each register
address to indicate which register set should be used; the
function units then operate as if there were a single reg-
ister file. As in a highly superscalar processor, the regis-
ter file must be multiported, but the number of accesses
to either half of the physical register file would be limited
by the number of instructions that could be dispatched
from a single stream (four in this example).

This approach, suggested by Digital’s Dick Sites
(see 061606.PDF), uses its function units more efficiently
than other MP designs. For example, if one stream in-
cludes two consecutive floating-point instructions, those

M I C R O P R O C E S S O R R E P O R T
2 Microprocessors Head Toward MP on a Chip Vol. 8, No. 6, Ma
instructions will take two cycles to execute on the
shared-interface or shared-cache processors; the shared-
dispatch design can execute them in a single cycle if both
FPUs are available.

Because of this efficiency, the designer could repar-
tition or reduce the number of function units. The pro-
cessor in Figure 3 retains the same set of function units
as the other example designs, but four integer units may
be overkill; three could suffice. Certainly one integer
multiplier would be adequate, whereas the other exam-
ples require two. Depending on the target application,
one FPU might be enough. Thus, the area spent on the
more complex dispatcher could probably be regained by
eliminating excess function units, although the added
complexity might also slow the clock.

Like the shared-cache processor, however, the
shared-dispatch design needs complicated caches capa-
ble of sourcing data from several addresses at once. The
ability of these caches to handle multiple accesses would
be the factor limiting the number of instruction streams
that could be handled by a single chip.

Easier to Design Than Complex CPUs
The shared-interface processor has the benefit of

significantly reducing design complexity. This chip could
simply combine existing processor designs. Only the sys-
tem interface would have to be modified, and the com-
plexities of cache coherency among multiple processors
are well understood from discrete MP systems.

The other two options are complicated mainly by the
cache design but offer the advantage of using on-chip re-
sources more efficiently. Dual-ported caches are already
appearing in Pentium-class x86 processors (due to the
large number of memory references in x86 code) and will
probably be used in some next-generation RISC chips;
this effort could be leveraged in a future MP chip.

Figure 3. A more complex design fetches instructions from multiple
streams and executes them using a single pool of function units.
y 9, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

The Limits of Parallelism
Superscalar processors examine incoming instruc-

tions and attempt to issue two or more to the internal
function units on each cycle. In theory, a processor with
four function units could execute four instructions every
cycle, delivering four times the performance of a scalar
(single-issue) processor of the same clock speed.

In reality, however, it is nearly impossible for such a
processor to sustain anything close to four instructions
per cycle. Because each function unit can handle only
certain types of instructions, some units will be idle fre-
quently unless the ratio of instruction types matches
the ratio of function-unit types. Some instructions can-
not execute until a previous instruction calculates a re-
sult, often stalling one or more function units. Branches,
which occur in typical programs every six instructions
or so, cause problems by changing the flow of instruc-
tions in mutable and often unpredictable ways.

Several studies have attempted to determine the
maximum amount of instruction-level parallelism (ILP)
in programs (see MPR 9/19/90, p. 13). Although the re-
sults are not conclusive, some have indicated that, even
with an infinite number of function units, ILP peaks at
three to five operations per cycle for typical (nonscien-
tific) code. Josh Fisher and other compiler gurus argue
that new compiler techniques will increase ILP (see
080205.PDF), but the jury is still out.

Without new compiler techniques, it seems fruitless
to build processors with more than six to eight function
units. Several mainstream microprocessors with this
number of function units are due in the next year, in-
cluding the PowerPC 604 and 620, MIPS T5, Digital’s
21164, and Sun’s UltraSparc. These vendors could dis-
cover that the next step is a long and difficult one.
Even so, the shared-interface processor will have
significantly lower design costs and, more important, a
faster design cycle. As discussed, the shared-interface
approach is also the easiest to extend to more than two
processors, due to the complexity of the shared caches in
the other designs. With individual primary caches, the
only limit to placing multiple processors on a chip is the
available transistor budget.

Any of the MP approaches would be simpler than
designing a highly superscalar RISC (or CISC) CPU.
Such a processor must incorporate highly accurate
branch prediction, speculative and out-of-order execu-
tion, and complex dependency checking. Many of these
features could be left out or simplified in MP chips, due
to the lower issue rate of their CPUs. The complex de-
sign of a highly superscalar processor, combined with
the increased probability of design bugs, could signifi-
cantly extend the design cycle of these chips. In the fast-
moving computer market, long design cycles may be the
fatal flaw of complex superscalar processors.
3 Microprocessors Head Toward MP on a Chip Vol. 8, No. 6, Ma
Combining Different Processors
Multiple processors on a chip are not constrained to

homogeneous arrangements. For at least some applica-
tions, it is advantageous to specialize the processors. In
the simplest case, one could contain a floating-point unit
while the others do not; FP-intensive instruction streams
could be routed to that processor by the operating sys-
tem. This design would eliminate the cost of implement-
ing a full FPU in one or more processors.

Special-purpose hardware also could be added to
one of the processors to create a heterogeneous design.
For example, a fast integer multiplier would speed sig-
nal-processing algorithms. A Huffman decoder and DCT
(discrete cosine transform) engine accelerate video de-
compression. MP chips will probably migrate toward
heterogeneous designs to take advantage of such fea-
tures without burdening all processors on the chip.

In the extreme case, the processors need not share
a compatible instruction set. Texas Instruments’ MVP
(see 080405.PDF) includes four symmetric DSPs plus a
RISC CPU, all on a single chip. The RISC processor uses
a different instruction set than the DSPs, making the
RISC portion easier to program, particularly for simple
overhead tasks. The DSPs, on the other hand, offer bet-
ter number-crunching performance but typically must
be hand-coded.

Another example is Motorola’s 68322 processor for
printers (see 080604.PDF). This $18 chip combines a
small 68000 CPU core with a specialized graphics pro-
cessor. The two autonomous processors work in parallel
to increase throughput; restricting the function of the
second processor to a single task improves its perfor-
mance. This design uses its processing power more effi-
ciently than a faster uniprocessor chip. Zilog has taken a
similar tack, combining a low-cost Z8 processor with a
DSP on a single chip, as have a few other manufacturers.

The downside of a heterogeneous design lies in
matching the resource mix to the target application. For
the MVP, the ratio of four DSPs to one RISC CPU makes
it suited for high-end signal processing. A workstation,
on the other hand, would be better served by a chip with
four RISC CPUs and one DSP. With the wrong mix, por-
tions of the design will be poorly utilized.

Software Must Be Rewritten
A VLIW processor (see 080205.PDF) would be easier

to design than any comparable MP chip. Because it de-
livers pregrouped operations in a single long instruction,
VLIW eliminates the dispatch logic and does not require
a multiported instruction cache. Ideally, it could also
achieve better performance than the MP designs by
using the compiler to most efficiently schedule the func-
tion units. The simplicity of the VLIW hardware might
also allow it to reach faster clock speeds.
y 9, 1994 © 1994 MicroDesign Resources

This performance boost, however, assumes that
new compilers will be able to expose enough ILP for the
VLIW chip to operate effectively; current compilers do
not achieve this feat. Any VLIW processor would also re-
quire a new instruction set; at best, it could emulate ex-
isting RISC or CISC binaries. The MP designs have the
advantage of compatibility with existing instruction sets
and current compiler technology.

MP designs require their own leap of faith, how-
ever. To take advantage of multiple processors, applica-
tions must be rewritten with multiple threads.

Threading exposes task-level (coarse-grained) par-
allelism, as opposed to the instruction-level parallelism
sought by superscalar and VLIW designs. For example,
a payroll program might generate a hundred paychecks.
Instead of executing these hundred tasks serially on a
single processor, each paycheck can be assigned to a dif-
ferent thread; these threads can then be distributed
among any number of processors to increase throughput.
Because the task of generating one paycheck does not af-
fect any other, these tasks can occur in parallel.

For the most part, compilers cannot identify tasks
that are intuitively obvious to humans. Thus, threading
is typically done by hand; programmers must rewrite ap-
plications to use multiple threads. Most commercially
available software, particularly for PCs, is not multi-
threaded and must be rewritten to take advantage of fu-
ture MP designs. Otherwise, its performance will be no
better than on single-processor systems.

One advantage of desktop software for MP is that
an increasing percentage of time is spent in the user in-
terface. Future interfaces will take advantage of 3-D
graphics, video decompression, speech synthesis, and
voice recognition, all tasks that are relatively easy to
thread. Furthermore, if common interface routines are
threaded, they can be leveraged among many applica-
tions to increase performance on MP systems even if the
core application code is not threaded.

Is the World Ready for Multiprocessing?
There is little difference between MP on a chip and

a discrete MP system from the perspective of the user,
the application, or even the operating system. Although
MP systems have found some success in specialized
areas such as scientific computing and high-end servers,
they have not done well in volume markets, particularly
on the desktop. This could lead to the conclusion that MP
chips would have a limited market as well.

The biggest problem with MP systems today is the
lack of MP software. Most versions of Unix now support
multiple processors, but mainstream operating systems
such as Windows, Macintosh, and NetWare do not.
Chicago, the next generation of Windows, will be multi-
threaded but will not support multiple processors. Ei-
ther Windows NT, which already supports MP, or a fu-

M I C R O P R O C E S S O R R E P O R T
4 Microprocessors Head Toward MP on a Chip Vol. 8, No. 6, Ma
ture MP version of Chicago will bring multiprocessing to
the masses; other OS vendors will probably follow suit.

ISVs have been slow to develop multithreaded ap-
plications due to the effort required and the lack of MP
operating systems. The release of Chicago, which is ex-
pected to ship tens of millions of copies in 1995, will spur
ISVs to thread their applications. As full MP operating
systems become more popular, they will further encour-
age application vendors to make this effort.

The other piece of the puzzle is the availability of
MP hardware. Intel is acting to ensure the widespread
availability of low-cost MP systems within the next few
years (see 080603.PDF). This may not be a coincidence:
Intel’s CISC architecture constrains its ability to create
highly superscalar x86 processors, and the advantage of
software compatibility may lead that company down the
path to multiple processors on a chip.

A Plethora of Design Options
Looking out to 1997, we expect transistor budgets

for high-end microprocessors to reach 10 million or more,
giving chip designers several options. The current path
leads to a 12-way superscalar processor (three times the
complexity of a PowerPC 604) with 128K of cache on
chip. This would be a very difficult design to get to mar-
ket, and it may not achieve much better performance
than a processor with an eight-issue design.

Another option would be to build an eight-issue pro-
cessor and expand the on-chip cache from 128K to 256K.
For many applications, however, such an increase would
not significantly increase the cache hit rate.

VLIW is a third option. By eliminating the dispatch
complexity, a 10-million-transistor VLIW chip might
hold 16 or more function units and 128K of cache. If com-
piler technology advances enough to keep this vast num-
ber of function units busy, the VLIW chip could outper-
form the superscalar designs.

The same transistor budget could be devoted to
three 604-like processors, each with 16K of cache, plus a
shared interface with a 64K second-level cache. This
chip would have lower uniprocessor performance than
the others, but by 1997 a large base of multithreaded ap-
plications should exist. For these programs, the MP chip
should deliver similar or better performance than the su-
perscalar chip, depending on the degree of threading in
each program. The MP chip would also be much easier to
design, reaching the market sooner than the others.

Once a base of MP operating systems and multi-
threaded software exists, MP chips become feasible.
Even if compiler technology can expose enough ILP for
highly superscalar and VLIW processors, MP chips could
be good midrange options. Without these magic compil-
ers, MP chips could be a desirable solution for many mar-
kets. Given the three-year microprocessor design cycle,
the time is right to begin exploring these options. ♦
y 9, 1994 © 1994 MicroDesign Resources

	Microprocessors Head Toward MP on a Chip
	Figure 1. A chip with two processors that share the same system …
	The Cookie-Cutter Approach
	Figure 2. In this shared-cache design …
	One CPU, Multiple Program Counters
	Figure 3. A more complex design fetches instructions …
	Easier to Design Than Complex CPUs
	Combining Different Processors
	Software Must Be Rewritten
	Is the World Ready for Multiprocessing?
	A Plethora of Design Options

	The Limits of Parallelism

