VLIW: The Wave of the Future?

Processor Design Style Could Be Faster, Cheaper Than RISC

by Linley Gwennap

After years of obscurity, VLIW (very long instruc-
tion word) architectures have recently become a hot
topic. Hewlett-Packard has announced plans (see
0717MSB.PDF) to deploy a VLIW microprocessor as early
as 1997. Intel and IBM are also said to be developing
such designs, and other companies are investigating this
idea. As RISC and CISC microprocessors reach their
limits, VLIW could be the road to better performance—
or just a cul-de-sac.

In a sense, VLIW is a natural successor to RISC. It
moves complexity from the hardware to the compiler, al-
lowing simpler, faster processors. The CISC-to-RISC
transition eliminated the decoding and execution of long,
complex instructions in hardware. The objective of VLIW
is to eliminate the complicated instruction scheduling
and parallel dispatch that occurs in most modern micro-
processors. In theory, a VLIW processor should be faster
and less expensive than a comparable RISC chip. The
downside of VLIW is the need for a powerful compiler
and a new method of software distribution. Both VLIW
and future superscalar processors could be limited by a
lack of instruction-level parallelism in typical programs.

Limitations of CISC and RISC

Figure 1 shows a set of operations as they might be
presented to a typical CISC, RISC, or VLIW processor.
(For this discussion, an operation is a simple task such
as load, branch, or add.) A CISC instruction can contain
one or more operations and is encoded as one or more
bytes; the number of operations, however, is generally
less than the number of bytes. The complex, variable-
length instructions keep code size small, as memory was
expensive in the 1970s when most CISC architectures

(a) CISC instructions (b) RISC instructions

[CITTTTT] LOAD; ADD [TTT] LoAD
1] FP MULT [CITTT] ADD
LI STORE LI TT] FPMULT
] COMPARE [T T 1] STORE
CTT] BRANCH [T T[] COMPARE
[T [[BRANCH

(c) VLIW instruction
LTI T I T T I I T I T T P T T I T I T I T
LOAD STORE ADD COMPARE NOP FP MULT BRANCH

Figure 1. While CISC instructions have variable lengths, RISC
instructions are fixed in length. VLIW instructions encode many
operations in a single, long instruction word.

were designed. These original CISC chips executed one
operation every several cycles.

In the 1980s, processor designs took advantage of
falling memory prices by implementing fixed-length in-
structions (generally 32 bits wide) that each encode a sin-
gle operation. These RISC chips rely on the compiler to
generate regular, easy-to-decode instructions, simplify-
ing the hardware decode unit. RISC processors typically
execute one operation per cycle, simplifying the imple-
mentation of pipelining and increasing their clock rate.

Over the past few years, several superscalar micro-
processors have appeared. These chips fetch and decode
two or more instructions at a time. Before issuing these
instructions for simultaneous execution, however, a su-
perscalar processor must first check for potential prob-
lems. These include data dependencies, instruction de-
pendencies (branches), and resource conflicts.

Data dependencies occur when one instruction re-
quires the results of a previous instruction; in this case,
the two instructions must be issued on separate cycles to
generate the correct result. Conditional branches pre-
vent the CPU from knowing which instruction path
should be executed; this information is not available
until the condition is resolved. Resource conflicts occur
when two instructions require the same piece of hard-
ware, such as a particular register or an integer adder.

IBM’s Power2 (see 071301.PDF) and other modern
processors use multiported register files and duplicated
function units to reduce the number of resource conflicts.
Cyrix’s M1 (see 071401.PDF) and other forthcoming
processors will implement branch prediction, speculative
execution, and register renaming to resolve conditional
branches and reduce data dependencies. By 1995, these
techniques will be widely used in processors capable of
decoding and executing four to six instructions per cycle.

As the maximum number of instructions to be is-
sued per cycle increases, the number of interactions that
must be checked increases geometrically, since each in-
struction must be compared to every other instruction
that could potentially be issued that cycle. This creates
very complex hardware designs, particularly in the de-
code logic, which can increase the cycle time (at 71 MHz,
Power2 is significantly slower than many simpler RISC
processors) or increase the pipeline depth (Pentium re-
quires two stages to decode instructions); in either case,
performance is reduced. Furthermore, this complex logic
consumes a large area on the die and is the source of
many bugs during the development process.

Due to these factors, many experts wonder whether

VLIW: The Wave of the Future? Vol. 8, No. 2, February 14, 1994

© 1994 MicroDesign Resources

MICROPROCESSOR REPORT

current architectures will be able to go beyond 4-6 in-
structions per cycle (see 071604.PDF). If this is indeed a
limit, performance of these architectures may increase at
a much slower rate after 1995, relying mainly on im-
provements in circuit technology.

The Advantages of VLIW

Many modern compilers are designed to arrange in-
structions so they can be executed most efficiently by a
superscalar target processor. The processor, however,
must correctly execute code generated by older compilers
for scalar processors and thus must check the instruc-
tions again and arrange them for execution. Current in-
struction sets have few or no provisions to pass schedul-
ing information (such as dependencies and branch
frequency) from the compiler to the processor.

A VLIW design eliminates the need for complex
instruction-scheduling logic on the chip by moving sched-
uling entirely into the compiler. Each VLIW instruction
consists of a number of independent operations that can
be safely executed by the CPU in a single cycle. A VLIW
compiler must have intimate knowledge of the number
and type of function units in the target processor, as well
as the latencies of these units and any other unusual
hardware features (interleaved memory, for example).
The compiler then groups operations to be executed on
each cycle.

Figure 2 shows how a typical VLIW instruction pre-
sents a number of operations as a single, very long in-
struction (hence the name). These operations can flow di-
rectly to the various function units with a minimum of
decoding. A NOP is sent to unused units; a pure VLIW
processor has no interlocks. For cycles in which no pro-
cessing takes place, a very wide NOP must be issued; this
could happen while waiting for memory, for example.

Eliminating the hardware instruction scheduler
and simplifying decode and execution will result in a
smaller design than a comparable RISC or CISC proces-
sor. Moving functions such as branch prediction and reg-
ister renaming into the compiler further simplifies the
hardware. The cycle time of this simpler design should
also improve. These differences will increase as super-
scalar processors become even more complex.

While VLIW hardware becomes simpler, the com-
piler becomes more challenging. Modern compilers are
already aware of the intricacies of processor designs and
perform extensive instruction scheduling; a VLIW com-
piler takes this work a step further. Even for today’s rel-
atively simple superscalar CPUs, the compiler can do a
better job of scheduling instructions than the hardware
dispatcher; this gap could grow as processors implement
more function units. With VLIW, users should be able to
trade a longer compile time for speedier program execu-
tion, an attractive proposition for most.

LOAD STORE ADD COMPARE FPADD FP MULT BRANCH
(T I I T T T I I I I T T T IETTTd

MEM MEM INT INT FP FP Branch
#1 #2 ALU ALU ALU MULT Unit

A A A A A A A

v A4 v A4 v A4 v

MULTIPORTED REGISTER FILE

Figure 2. A very long instruction word contains multiple operations,
each of which can be routed directly to a single function unit.

VLIW Evolved from Mainframes

VLIW is hardly new; like most computer architec-
ture techniques, it was first pioneered in mainframes,
appeared later in minicomputers, and ultimately ended
up in microprocessors. According to VLIW guru Josh
Fisher, a similar technique called horizontal microcode
was considered by computer pioneer Alan Turing in 1946
and detailed by Maurice Wilkes in 1951. Contrasting the
single wide VLIW instruction in Figure 1 with the pre-
sentation of operations to a RISC or CISC machine
shows the derivation of the term horizontal.

During the 1970s, a number of companies built
special-purpose computers using horizontal microcode.
The development of fast writable memory led some ven-
dors, notably Floating Point Systems, to implement a
writable control store and hence a programmable VLIW
machine. Because of their specialized designs, however,
these systems proved unsuited for general applications.

In the 1980s, a few small companies attempted to
deliver general-purpose VLIW systems to the minisuper-
computer market. Most notable were Multiflow, Cy-
drome, and Culler. These companies were able to com-
plete entire system designs and ship a number of units,
but all were ultimately unsuccessful. (Fisher was the
principal technologist at Multiflow, and Bob Rau led the
Cydrome effort; both are now at HP.)

These vendors may have had the right idea at the
wrong time. The Multiflow Trace and Cydrome Cydra 5
were constructed from multiple gate arrays, as the
designs were too complex for then-current VLSI imple-
mentations. The multichip designs hampered communi-
cation and reduced cycle time. Neither system imple-
mented a data cache due to technology limitations. As a
result, the Multiflow machine delivered about the same
performance on general-purpose integer code as the
MIPS R2000, a contemporary RISC microprocessor. On
scientific code, it was able to exploit the higher levels of
parallelism to achieve more than twice the performance
of the R2000, but comparably priced vector processors
delivered similar results.

2 VLIW: The Wave of the Future?

Vol. 8, No. 2, February 14, 1994

© 1994 MicroDesign Resources

MICROPROCESSOR REPORT

v
Instr .
32K Instruction Cache
TLB
PC
A A A A A A A A
PC Unit Integer Unit Memory Unit FP Unit
| |
Branch INT Address FP
Adder ALU Adder ALU
vy A A
. . . FP Regs
Integer Register File (64 x 64 bits) et (32 x 6g4)
(13 read ports, 5 write ports) (6 rd, 4 wr)
14 T T ﬂ Instr
s o Refill
Data System
16K Dual-Ported Data Cache TLB > el Interface
4

Figure 3. A hypothetical VLIW microprocessor with eight function
units could be built with current VLSI technology.

The Multiflow and Cydrome Processors

The Multiflow machine came in three flavors: the
basic system used a 256-bit instruction word, while
larger versions used a 512-bit or 1024-bit width. The
wider designs were simply combinations of the basic sys-
tem, dubbed the Trace 7/300.

The 7/300 contained two integer ALUs, two floating-
point ALUs, and a branch unit. The integer units were
fast enough to execute two operations per 130-ns cycle,
however, so the system could perform a total of four in-
teger operations per cycle, two of which could be loads or
stores. The 256-bit instruction was thus divided into
seven 32-bit operations; the remaining 32 bits were used
to encode immediate values.

Each 32-bit operation used a three-operand RISC-
like encoding; all loads and stores were explicitly en-
coded as separate operations. The 7/300 contained a total
of 64 (32-bit) integer registers and 32 (64-bit) floating-
point registers. Due to the physical implementation,
these registers were divided among the function units,
but all units could access all registers (with time delays
for remote accesses).

Because of the wide instructions and explicit NOPs,
programs could be quite large. To conserve space on disk
and in main memory, code was stored in a compressed
format with NOPs removed. The processor automatically
expanded the instructions as they were loaded into the
8K instruction cache. As an additional space saver, a sin-
gle instruction could encode a multicycle NOP.

The memory system allowed up to 512M of main
memory with up to 64-way interleaving. The Trace had
no data cache, so all memory references went directly to

main memory. The compiler was required to observe all
latencies, take into account the interleaving, and sched-
ule the eight memory buses. Conflicting memory refer-
ences on a single bus or memory card caused an unde-
fined program error.

To increase utilization of the function units, the
compiler could speculatively execute operations that fol-
lowed conditional branches. This speculative execution
required minimal support from the hardware, consisting
mainly of a set of speculative load opcodes that handled
exceptions differently. The Trace compiler also per-
formed branch prediction, loop unrolling, and a variety of
other techniques to locate and issue independent opera-
tions in parallel.

Many of the compiler tactics developed by Multiflow
are quite applicable to standard superscalar processors
as well; as noted previously, compilers for these CPUs do
a significant amount of instruction scheduling. Nearly
every high-performance processor vendor has licensed
the Trace compiler technology, including HP, Intel, Dig-
ital, Silicon Graphics, and Fujitsu.

Cydrome’s VLIW processor was similar to the 7/300
with its 256-bit instructions that each contained seven
operations. Unlike the regular operation coding of the
Trace machine, the Cydrome operations used a varying
number of bits as needed. For example, a memory access
with displacement had a 44-bit encoding, while a simple
integer operation required 39 bits. This format was
called MultiOp.

To conserve space, Cydrome also implemented a
second instruction format called UniOp. In this mode, a
256-bit instruction contained six 40-bit operations that
were each issued on separate cycles. A simple decoder
routed the operation to the correct function unit while is-
suing NOPs to the other units. The instruction stream
could arbitrarily mix MultiOp and UniOp forms. The
compiler typically generated MultiOp instructions for
inner loops where parallelism was high, while the UniOp
format was used for the rest of the code.

VLIW Microprocessors, Past and Future

By the late 1980s, IC manufacturing improvements
made it possible to implement a VLIW processor on a sin-
gle chip. Intel’s 1860 (see MPR 3/1/89, p. 1) was arguably
the first such device. It executes a pair of 32-bit instruc-
tions on each cycle; unlike true superscalar code, these
instructions must be paired and aligned for the chip’s
two function units (integer and FP). Philips built a more
aggressive VLIW microprocessor called LIFE (see MPR
8/8/90, p. 6) that incorporated six function units, but the
design was not commercially successful.

Figure 3 shows a hypothetical VLIW processor that
can execute up to eight instructions per cycle: three inte-
ger math, two floating-point math, two load/stores, and
one branch. It has 64 integer registers and 32 floating-

3 VLIW: The Wave of the Future?

Vol. 8, No. 2, February 14, 1994

© 1994 MicroDesign Resources

MICROPROCESSOR REPORT

point registers, all 64 bits wide. The instructions are 256
bits wide, with each operation using a 32-bit RISC-like
encoding. (This would require stealing a few bits to ad-
dress the extra integer registers.) The data cache is fully
dual-ported and 16K in size; the instruction cache size is
32K (1K instructions).

This processor could be built easily using current IC
processes. As a demonstration, consider connecting two
R4600 processors: the resulting chip is about 150 mm? in
a 0.65-micron process, still relatively small compared to
Pentium or SuperSparc. The new processor fits all the
above parameters except for the third integer unit. Also,
the register files would have to expand significantly to
handle the extra read and write ports. These additional
features could probably be inserted by removing the
extra RISC control logic not needed by a VLIW design. If
not, the die size could grow a bit.

The cycle time of this hypothetical processor would
be limited only by the speed of the function units. As
demonstrated by the R4400 and Alpha processors, it is
possible to build ALUs that cycle at 150-200 MHz in
manufacturable microprocessors. The new CPU should
easily match the instructions-per-cycle of IBM’s Power2
(which has fewer function units); at that rate, the 150-
MHz VLIW chip, with a comparable memory system,
should exceed 200 SPECint92 and 300 SPEC{p92.

VLIW Breaks Binary Compatibility

So why hasn’t anyone built this processor? For one
thing, it involves designing an architecture from the
ground up. Like any new architecture, a VLIW design
would be incompatible with existing binaries, which has
been a formidable barrier to its adoption. The RISC-like
operation encodings make it appear that a VLIW proces-
sor could be designed to execute existing RISC instruc-
tions in a mode similar to Cydrome’s UniOp, but the
RISC binaries would need some additional encodings to
differentiate them from VLIW instructions. Further-
more, using an existing instruction set as the basis for a
VLIW design would restrict the ability to add features,
such as extra integer registers, that will be needed in
these future processors.

Another difficulty with a VLIW design is that the
compiler cannot know what data will be used when a pro-
gram is executed. As a result, certain instruction group-
ings cannot be guaranteed to be safe, and a pure VLIW
system would have to schedule for the worst case. A com-
promise solution is to implement simple scoreboarding in
hardware to detect such conflicts; this allows the com-
piler to schedule instructions more aggressively while
taking a performance hit in rare situations.

The biggest problem with VLIW, one that Multiflow
and Cydrome were encountering just as they ran out of
cash, is that each successive VLIW machine is generally
not compatible with binaries for the previous design. If

programs written for the 386 would not run on the 486,
the 486 would be much less successful than it is today.
Similarly, VLIW machines will find it difficult to succeed
until the binary compatibility problem can be solved.

The best idea so far is to distribute software in an in-
termediate format instead of in binary form. When a pro-
gram is loaded onto a system, an installer would trans-
form the intermediate code into a binary targeted for the
specific processor in that system. The trick is to define a
distribution format that does not reveal the source code
but contains enough information to generate the neces-
sary binaries.

This concept is similar to the architecture-neutral
distribution format (ANDF) proposed by OSF, but would
be much simpler to implement. Multiple generations of
VLIW processors could share the same operation encod-
ings, so the installer would simple rearrange the opera-
tions based on the number and latencies of the function
units in the target processor.

A true ANDF would allow programs to be installed
on current RISC or CISC systems and then reinstalled
on future VLIW processors. Alternatively, future VLIW
systems could retain compatibility with existing proces-
sors via software emulation or binary translation.

The Fundamental Issue of ILP

As shown by the example, it is possible that a VLIW
processor built today could outperform contemporary
microprocessors by a significant margin. That 50-100%
gap may not be enough to incite vendors to move to a
new, unproven technology. As hardware instruction
scheduling becomes more complex, however, the gap be-
tween traditional implementations and VLIW designs
could grow, leading to a changeover at some point.

One counterargument is that the limits of instruc-
tion-level parallelism (ILP) will nullify the benefits of
building processors with eight or more execution units.
For these processors, the instruction scheduler (be it in
hardware or software) must find enough data-indepen-
dent instructions to take advantage of the large number
of function units. Some studies show that, even with in-
finite function units, ILP peaks at three to five opera-
tions per cycle for typical (nonscientific) code. If this is
true, there is no point in building CPUs, VLIW or not,
with more function units—the future may instead lie in
multiple independent CPUs on a chip.

The biggest problem is that most programs en-
counter a branch every six instructions or so. To improve
ILP, the scheduler must use accurate branch prediction
and speculative execution to look beyond the next
branch. Loop unrolling and trace analysis assist in this
process. These techniques are in practice today; Fisher is
optimistic that future compiler writers will develop new
techniques to further increase ILP. If he’s right, there
could be a bright future for VLIW microprocessors. ¢

4 VLIW: The Wave of the Future?

Vol. 8, No. 2, February 14, 1994

© 1994 MicroDesign Resources

	VLIW: The Wave of the Future?
	Limitations of CISC and RISC
	Figure 1. While CISC instructions have variable lengths, RISC …
	The Advantages of VLIW
	Figure 2. A very long instruction word contains …
	VLIW Evolved from Mainframes
	Figure 3. A hypothetical VLIW microprocessor …
	The Multiflow and Cydrome Processors
	VLIW Microprocessors, Past and Future
	VLIW Breaks Binary Compatibility
	The Fundamental Issue of ILP

