MICROPROCESSOR REPORT

Intel Reveals Pentium Implementation Details
Architectural Enhancements Remain Shrouded by NDA

By Brian Case

Recently, Intel revealed many of Pentium’s microar-
chitectural details to the Microprocessor Report staff. The
company was, at last, very forthcoming about much of the
design, except for some details on architectural extensions
described below. This article gives an overview of the mi-
croarchitecture; for a guide to the complete spectrum of
our Pentium coverage, see: 061201.PDF, 061405.PDF,
070502.PDF, 070503.PDF.

Pentium Overview

Figure 1 shows a block diagram of the Pentium de-
sign. The most important enhancements over the 486 are
the separate instruction and data caches, the dual inte-
ger pipelines (the U-pipeline and the V-pipeline, as Intel
calls them), branch prediction using the branch target
buffer (BTB), the pipelined floating-point unit, and the
64-bit external data bus. Even-parity checking is imple-
mented for the data bus and the internal RAM arrays
(caches and TLBs).

As for new functions, there are only a few; nearly all
the enhancements in Pentium are included to improve
performance, and there are only a handful of new in-
structions. Pentium is the first high-performance micro-
processor to include a system management mode like
those found on power-miserly processors for notebooks
and other battery-based applications; Intel is holding to
its promise to include SMM on all new CPUs.

Pentium uses about 3 million transistors on a huge
294 mm? (456k mils?) die. As is evident from the die
photo in Figure 2, the caches plus TLBs use only about
30% of the die. At about 17 mm on a side, Pentium is one
of the largest microprocessors ever fabricated and prob-
ably pushes Intel’s production equipment to its limits.

The integer data path is in the middle, while the
floating-point data path is on the side opposite the data
cache. In contrast to other superscalar designs, such as
SuperSPARC, Pentium’s integer data path is actually
bigger than its FP data path. This is an indication of the
extra logic associated with complex instruction support.

Intel estimates about 30% of the transistors were
devoted to compatibility with the x86 architecture. Much
of this overhead is probably in the microcode ROM, in-
struction decode and control unit, and the adders in the
two address generators, but there are other effects of the
complex instruction set. For example, the higher fre-
quency of memory references in x86 programs compared
to RISC code led to the implementation of the dual-ac-

cess data cache.

Architecture Extensions

While Pentium incorporates several architectural
changes from the 486, there are only a few significant
ones. For Intel, it makes little sense to change the in-
struction set of the most successful general-purpose mi-
croprocessor architecture in existence. Rumors are ram-
pant, however, that one of Intel’s next-generation x86
family members—either P6 or P7—will have a second,
RISC-like instruction set.

Many of the architectural changes are either par-
tially or wholly described in Appendix H of the Pentium
Processor User’s Manual: Volume 3; this volume, by it-
self, is over 1000 pages long. Unfortunately, Appendix H
contains only a three-sentence explanation that the in-
formation is considered Intel confidential and propri-
etary and is provided in the Supplement to the Pentium
Processor User’s Manual only under appropriate non-dis-
closure.

The supplement is supplied only to selected operat-
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Figure 1. Pentium block diagram.
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Figure 2. Die photo of Pentium, which incorporates 3.1 million
transistors on a 16.7 mm x 17.6 mm die.

ing-system vendors and so was not made available to
Microprocessor Report. This policy allows Intel to keep
Pentium-specific details secret from its competitors. It
remains to be seen whether operating systems will come
in two versions—one for the 486, one for Pentium—or
whether a single version that checks processor type will
be delivered.

Only three new instructions have been added to the
user-mode instruction set: CMPXCHGS8B, CPUID, and
RDTSC. CMPSXCHG8B is an eight-byte version of the com-
pare-and-exchange instruction that was introduced on
the 486. When used with the LOCK prefix, this instruc-
tion can be used as a mutual-exclusion primitive in mul-
tiprocessor algorithms.

CPUID is a new instruction that allows a program to
directly learn the vendor, family, model, and stepping of
the microprocessor on which it is executing. This in-
struction will return a different piece of information de-
pending on the index value in the 32-bit EAX register.
With EAX set to zero, the instruction returns the string
“Genuinelntel” as three, four-character ASCII strings in
EBX, EDX, and ECX (here we see the influence of market-
ing). For Pentium, the only other EAX index valid for

Instruction

MOV CR4, r32
MOV r32,CR4

Description

Move to control register 4

Move from control register 4

RDMSR Read model-specific register

WRMSR Write mode-specific register

RSM Return from system-management mode

Table 1. The five new system-mode Pentium instructions.

CPUID is 1, and when run with EAX equal to 1, CPUID re-
turns the stepping, model, family, and feature flags in
EAX and EDX. Three of the feature flag bits tell whether
there is an on-chip FPU, whether the machine-check ex-
ception is implemented, and whether the CMPXCHGSB
instruction is implemented. The other six bits are de-
scribed only in the mysterious Appendix H.

The third new user-mode instruction is RDTSC, and
is described only in Appendix H.

Five new system instructions are implemented to
serve new Pentium features and are legal only in privi-
leged execution mode (see Table 1). The MOV instructions
access Pentium’s control register number 4, which is not
implemented in the 486. This control register imple-
ments six bits: MCE (enable machine-check exceptions),
PSE (documented in Appendix H), DE (enable debugging
extensions), TSD (documented in Appendix H), PVI (docu-
mented in Appendix H), and VME (documented in
Appendix H). The machine-check exception is used to re-
port parity errors, so trapping on parity errors can be
turned off by disabling this exception (but parity check-
ing on the bus is always enabled; this will be covered in
more detail next issue).

The RDMSR and WRMSR instructions are used to
read and write model-specific registers, respectively. The
forms of the MOV instruction that were used in the 486 to
access the test registers have been removed in Pentium.
A new set of test registers has been defined for the
caches, TLBs, and the BTB, and these “model-specific”
registers—documented in Appendix H—are accessed
with RDMSR and WRMSR.

The RSM instruction is used to return from system
management mode to the interrupted processor operat-
ing mode. System management mode is discussed in de-
tail below.

The 32-bit EFLAGS register has three new Pentium-
specific bits. The ID bit allows a program to determine if
the processor on which it is running supports the CPUID
instruction. If ID can be set and cleared under program
control, CPUID is supported. The VIP (virtual interrupt
pending) and VIF (virtual interrupt flag) bits support
changes to the way virtual-86 mode is implemented on
Pentium; unfortunately, information beyond that is con-
tained in Appendix H.

Three new extensions to the exception model are
implemented in Pentium. Exception #13, the general
protection fault, is triggered by trying to write a 1 into a
reserved bit in a special register. Exception #14, the
page-fault exception, is triggered on Pentium in the case
of a page fault or when a 1 is detected in any reserved bit
position in a page table entry, a page directory entry, or
the page directory pointer during address translation.
Exception #18, the machine check exception, is used to
report parity and other hardware errors.

Pentium extends the virtual address translation
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model of the 486. Only 4K pages are implemented by
486 address translation, but Pentium also implements
4M pages. The documentation for the 4M page-table
entries is contained in Appendix H, but it seems likely
that the page directory entry, which normally points to
a table of 1024 4K page table entries, is used alone to
describe a single, 4M page.

Pentium implements some extensions to the vir-
tual-86 processor mode, which allows a program writ-
ten for the 8086 to be run in a virtual machine envi-
ronment as a separate, protected task. The extensions,
such as the VIP and VIF bits in the EFLAGS register, are
documented only in Appendix H. These extensions are
rumored to dramatically speed interrupt handling in
virtual-86 mode.

System Management Mode

Pentium is the first high-performance micro-
processor to implement a system management mode
(SMM). Ordinarily, an SMM capability is provided in
processors for portable applications to implement
power-saving functions, such as powering down pe-
ripherals and then restarting them only when they are
accessed. Until now, Intel has implemented SMM only
in its 386SL and 486SL.

SMM is a unique processor operating mode be-
yond all other normal processor modes. This mode is
implemented in hardware with a separate SMM inter-
rupt request pin and a status pin that indicates the
processor is in SMM. This pin can be used externally
to enable a special SMM memory area. Just as inter-
rupts and traps allow an operating system to trans-
parently add functions to application software, SMM
allows software functions to be added to a system with-
out making changes to the operating system.

Pentium support for SMM consists of the SMI# in-
terrupt input pin, the SMIACT# status output pin, and
the RSM instruction. Triggering SMi# is the only way to
enter SMM.

When SMI# is triggered, Pentium automatically
saves its register state in an area of SMRAM (SMM
memory) and disables further interrupts. Interrupts
can be re-enabled in SMM, but only after taking special
care to set up correct interrupt vectors.

By default, SMM begins execution at 0x8000 in
the CS segment. The SMRAM address space is essen-
tially a real-address mode, flat, 4G linear address
space. The default operand and address sizes are set to
16 bits, but operand-size and address-size override pre-
fixes can be used to access data and code anywhere in
the 4G SMRAM space. When the SMM routine is fin-
ished, SMM is exited with the special RSM instruction.

Besides implementing procedures to save power,
SMM can be used to implement security options and
other features. While SMM may not be used by some

Superscalar Instruction Pairing Rules

Pentium can issue two integer instructions per clock
cycle so long as they satisfy the following constraints:

® Both instructions must be “simple.”

* There must be no read-after-write or write-after-
write register dependencies.

® Neither instruction may contain both a displacement
and an immediate value.

* Instructions with prefixes (other than jump-condi-
tional with 16/32-bit prefix) can occur only in the U-
pipeline.

For the purposes of these rules, simple instructions are:

* MOV register — register/memory/immediate

* MOV memory « register/immediate

e ALU-op register — register/memory/immediate

e ALU-op memory — register/immediate

* INC register/memory

* DEC register/memory

® PUSH register/memory

® POP register

® LEA register/memory

® JUMP/CALL/JcC near

®* NOP
These simple instructions are hardwired and execute in a
single clock cycle except for “ALU-op register — memory,”
which takes two clocks, and “ALU-op memory ~ regis-
ter/immediate,” which takes three. Another exception to
the pairing rules occurs for shifts: they can be executed
only in the U-pipeline, so they must be the first instruc-
tion in a pair.

Implicit register dependencies (usually based on the
condition codes) can also prevent dual-instruction issue.
For example, an ALU instruction that sets the carry flag
cannot be paired together with an ALU instruction that
reads the carry flag.

There are, however, two important exceptions which
allow dependent instructions to be paired. The first ex-
ception allows a compare and conditional branch that
tests the result of the compare to be paired, while the sec-
ond allows pairs of pushes or pops to be paired. Branch
prediction helps the compare/conditional-branch case,
and special hardware is included to resolve the depen-
dency on the stack pointer for pushes and pops.

In general, an integer and floating-point instruction
pair, or a pair of floating-point instructions, cannot be si-
multaneously issued. There is one exception: a simple
floating-point load, arithmetic, or compare can be paired
with an FXCH (floating-point exchange) instruction. The
FXCH must be the second instruction in the pair. If an in-
teger instruction immediately follows the FXCH, it will
stall for one or four clocks depending on the operands to
the pair of floating-point instructions. Simple floating-
point instructions are:

* FLD single/double, FLD ST(j),

e all forms of FADD, FSUB, FMUL, FDIV,

e all forms of FCOM, FUCOM, FTST, FABS, and FCHS.
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taneously, and the U pipe is slightly

| more powerful since it has a barrel
shifter.

The pipelines are similar to the
486’s: each pipeline begins with in-
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Flgure 3. Block diagram of the major Pentium integer pipeline resources.

of the first Pentium systems, its inclusion in Pentium
shows that Intel has made good on its commitment to in-
clude SMM as a part of its mainstream x86 processors. A
future 3.3V version of Pentium will raise the importance of
SMM.

Microarchitecture Overview

Superficially, Pentium’s microarchitecture looks
like a superscalar version of the 486. Even though
Pentium has two integer pipelines, the basic five-stage
pipeline structure is unchanged from the 486, as shown
in Figure 3. (Note that Figure 3 is a functional diagram,
not a timing diagram; thus, a multiplexer may be shown
where one is not actually present.) U is the “default”
pipeline when two instructions cannot be issued simul-

the 486’s single four-way cache.

Full coherency is maintained
between the on-chip caches and external memory with
hardware snooping. The instruction cache tags are
triple-ported: one port is for snooping operations while
the other two are used for the split fetch capability (de-
scribed below). This means the snooping hardware and
the processor can access the cache simultaneously with
no contention. The cache implements parity, one bit per
eight bytes of data and one bit per tag.

Of course, having a separate instruction cache im-
proves instruction fetch efficiency because data and in-
struction accesses do not compete for a single cache re-
source, but Pentium further improves instruction fetch-
ing by implementing a “split fetch” capability not present
in the 486. (Split fetching was first implemented in the
960CA..) Split fetching gives Pentium the ability to fetch
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a contiguous block of instruction bytes

32 bytes (one I-Cache line)

even if the block is split across two in-

16 bytes 16 bytes

struction-cache lines. As shown by the ,;

worst-case alignment scenario in Figure

X
4, this allows a minimum of 17 bytes to ol
be fetched from the cache because a fetch

can straddle the boundary between two
consecutive half-lines. According to

Intel’s measurements, the split fetch ca-
pability improves Pentium performance
by a few percent.

Pentium’s split fetching is an exam-
ple of an important technique for superscalar processors:
eliminating instruction-fetch alignment restrictions. In a
superscalar processor, the goal is to simultaneously issue
and execute the maximum allowable number of instruc-
tions as often as possible. Other superscalar processors
also implement some form of split fetching—although
different names are used—to make sure that instruction
fetching is not the limiting factor. All other existing su-
perscalar processors, however, are RISCs. The word-
alignment of RISC instructions results in less complex
logic to eliminate alignment restrictions. The split-fetch-
ing logic, which must take care of byte-aligned x86 in-
structions, is one place where Pentium pays a price for
the complex x86 architecture.

The instruction TLB is four-way set-associative, has
32 entries, and uses a pseudo-LRU replacement algo-
rithm; ITLB misses are handled in hardware. The dedi-
cated ITLB allows the I-cache to be physically tagged,
which reduces the frequency of I-cache flushes. The 486
also indexes its cache with physical addresses.

Instruction bytes that are fetched from the I-cache
are aligned, if necessary, and stored in one of the four
prefetch buffers. Each buffer is the length of one cache
line (32 bytes) for a total of 128 bytes. In contrast, the 486
has only 32 bytes of prefetch buffer.

Coupled with the dedicated instruction cache, the
prefetch buffers should virtually guarantee that Pen-
tium never waits for instruction bytes, except in the case
of cache misses and mis-predicted branches. In situa-
tions where the 486 would stall waiting to fill its prefetch
buffer, Pentium will continue executing.

First Decode Stage

The major function of the D1 stage is instruction de-
coding. Of course, Pentium is designed to decode in hard-
ware as many of the most frequently occurring instruc-
tions as possible. Even the rather complex—at least by
RISC standards—memory-to-register and register-to-
memory arithmetic operations do not require microcode
assistance for their processing. Instead, a single, internal
microword is generated by the D1 decoding logic that
triggers a simple hardware state machine in the EX
stage. Thus, while memory/register operations do not re-

Figure 4. The instruction cache allows “split fetching” across the boundary from one
cache line to the next. The worst-case situation, as shown, still delivers 17 bytes in
a single cache access.

quire microcode, they do still require sequencing and
multiple cycles.

For instructions that are complex enough to require
a microcode routine, the first microword is always gener-
ated by the D1 decoding logic. In contrast, the D1 decod-
ing logic in the 486 generates the first microcode ROM
address. Thus, Pentium achieves at least some speedup
over the 486 for microcoded instructions by directly gen-
erating the first microword.

For microcoded instructions, the first microword
proceeds to the D2 stage, where the microcode engine
takes over the Pentium execution resources. As shown in
Figure 3, microwords from the microcode ROM control
both integer pipelines; consequently, the pipelines oper-
ate independently only for pairs of instructions that use
hardwired control. Intel has, of course, written the mi-
crocode routines to take maximum advantage of the dual
pipelines.

This allows Pentium to reduce the number of cycles
needed for many of the complex x86 instructions. For ex-
ample, repeated string move instructions execute at one
clock per iteration, compared to three clocks on the 486.
The Pentium microcode actually contains an unrolled
loop that writes the element of the destination string in
the U pipeline in parallel with the reading of the next
source string element in the V pipeline.

Pentium microwords are 92 bits long, and the mi-
crocode ROM contains about 4K microwords. Since mi-
crocoded routines take over all the execution resources,
it is not possible for Pentium to pair microinstructions
with regular, x86 instructions. Thus, instruction fetch-
ing and dispatch are stalled during the execution of a
complex, microcoded instruction.

In Figure 3, the circle containing the equal sign be-
tween the two inputs to the decoder blocks represents
logic that detects resource conflicts. Situations such as
register dependencies that require serial execution are
detected here. When a conflict is detected, the instruction
at the head of the U pipeline gets priority.

Branch prediction, also a major function of the D1
stage, is covered below.
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EX-Stage Activity
Cycle — —
U Pipeline V Pipeline
n load -idle-
n+1 ALU -idle-
n+2 store load
n+3 -idle- ALU
n+4 -idle- store

Table 2. Execute-stage activity for two register-to-memory
instructions.

Second Decode Stage

The D2 stage is an artifact of the x86 architecture.
Since so many of the instructions specify a multi-compo-
nent address computation, it makes sense to have dedi-
cated resources and a separate pipeline stage in which to
perform the address addition.

Each of the two integer pipelines has a dedicated,
four-input address adder. Four inputs are needed be-
cause x86 operand addresses can consist of a segment de-
scriptor base, a base address from a general register, an
index from a general register (possibly scaled), and a dis-
placement from the instruction. The 486 address adder
has only three inputs; thus, some instructions that spend
only one cycle in D2 on Pentium will spend two cycles in
the D2 stage on the 486. (In Figure 3, the address adders
are drawn with only two inputs simply to save space.)

What is not shown in the D2 stage in Figure 3 is the
separate, four-input segment limit-check adder. Arch-
itecturally, x86 addressing requires that all segment ac-
cesses be checked against the limit stored in the segment
descriptor. This check requires a separate four-compo-
nent addition, and Pentium has yet two more four-input
adders to perform this check in parallel. As with the ad-
dress adders, the 486 limit-check adders have only three
inputs. While the need for this hardware probably has
little or no effect on the cycle time of the Pentium imple-
mentation, it certainly requires significant area and
power. This is another way that Pentium pays for the
complexity of the x86 architecture.

The other major function of the D2 stage is reading
operands from the register file for use by the ALUs in EX.

Execute Stage

The execute stage contains the ALUs and the data
cache. The U-pipe has a full ALU and a barrel shifter,
while the V-pipe has only a full ALU. Thus, all shift in-
structions must be processed in the U-pipe, and the logic
in the D1 stage that detects resource requirements takes
care of enforcing this rule.

The data cache is one of Pentium’s most interesting
features. Like the instruction cache, it is a two-way set-
associative, 8K cache with a 32-byte line size. A MESI co-
herency protocol is used to keep caches coherent in a
multiprocessor system. As mentioned earlier, the cache

tags are triple-ported to allow concurrent snooping and
dual access by the pipelines. The cache has a parity bit
for each tag and each byte of data.

As explained in 061201.PDF, this dual-access capa-
bility, which lets both pipelines access the data cache si-
multaneously, is implemented by interleaving the data
array into eight banks (four-byte granularity within a
32-byte cache line). As long as the data accesses from
each pipe are to separate banks, both accesses can be
processed simultaneously by the cache in a single cycle.
This capability is not provided by any other existing mi-
croprocessor. (The circle containing the equal sign be-
tween the two inputs to the cache and DTLB represents
the bank conflict detection logic.)

Since the cache stores physical tags, it is also neces-
sary that the data TLB be able to perform two address
translations simultaneously. This capability is provided
by the dual-ported, 64-entry, four-way set-associative
DTLB.

The DTLB stores translations for the standard 4K
pages of the 386 architecture. There is a separate eight-
entry, four-way set-associative DTLB for 4M pages that
is also dual ported. Large-page mapping is standard on
all high-end processors and is useful because mapping
graphics frame buffers and operating-system segments
can be done with only one 4M translation entry instead
of many 4K entries. This keeps frame-buffer references
from “polluting” the main TLB.

Most instruction dependencies are resolved in D1,
but there is one important case that is resolved in EX: two
register/memory operations. In this case, the two instruc-
tions are simultaneously issued into the U and V
pipelines, and they proceed concurrently to the EX stage.
Once there, however, Pentium forces serialized execution,
as shown in Table 2. All pairs of register/memory instruc-
tions are serialized in the EX stage to avoid the complexi-
ty of checking for dependencies. Even though the instruc-
tions are serialized, the overlap of the store of the first and
the load of the second at cycle n+2 saves one clock.

In general, the U and V pipes will be simultaneous-
ly executing separate instructions only if the instructions
they contain are independent. The exceptions are regis-
ter/memory operations (which get sequenced and serial-
ized in hardware as just described), stack operations
(any combination of push and pop), and compare/condi-
tional-branch.

The compare/conditional-branch situation is al-
lowed because branch prediction will likely provide the
branch target anyway. If branch prediction is correct, a
cycle is saved by pairing the compare and the condition-
al branch. Since most compare/conditional-branch pairs
that occur during program execution will be in loops, and
since most loops execute many times, branch prediction
should perform very well for this situation.

Note that if the U-pipe contains any kind of branch,
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the V-pipe will be idle.
Writeback Stage

The major function of the WB stage is to provide a
time slot for writing results of computations and loads
into the register file. This is shown conceptually in
Figure 3 with separate boxes in the WB stage, but actu-
ally there is, of course, only a single register file.

Branch Prediction

Pentium uses a BTB (branch target buffer) for its
branch-prediction algorithm. All taken branches are
buffered. As shown in Figure 3, the BTB is accessed in
stage D1 with the linear address (with the segment cal-
culations done but not translated by TLB) of the branch
instruction itself. The BTB stores a single predicted tar-
get for a branch. As shown in Figure 5, the BTB cache
stores 256 branch predictions with a four-way set-asso-
ciative organization. Note that this is different from the
branch target cache in the 29000, which stores the first
few instructions at the branch target. Pentium’s BTB
stores target addresses only.

Intel simulated several branch prediction algo-
rithms, finally settling on the method described in a
paper from the University of Wisconsin (J. Lee and A. J.
Smith, “Branch Prediction Strategies and Branch Target
Buffer Design,” IEEE Computer, January 1984, pp.
6-22.). This algorithm uses two bits to hold the predic-
tion state, with transitions between the four states oc-
curring as necessary when a branch is encountered.

Figure 6 shows the state-transition diagram. The
four states are ST (strongly taken), WT (weakly taken),
WNT (weakly not taken), and SNT (strongly not taken).
Each time there is a hit in the BTB (though not neces-
sarily a correct prediction), the state bits are updated.
When the state bits are either ST or WT, the next pre-
diction for the given branch will be “taken,” and WNT
and SNT mean the next prediction will be “not taken.”

The two middle states provide a degree of mispre-
diction hysteresis to avoid thrashing in certain cases.
The hysteresis is provided by the fact that it takes two
consecutive incorrect predictions to change the predic-
tion polarity. For example, a branch that has been cor-
rectly predicted as not-taken many times in a row will
continue to be predicted as not-taken even if the branch
is occasionally taken.

The BTB allocation policy is that an uncached
branch allocates an entry in the cache only if it is a taken
branch (i.e., no allocate on miss). As a result, the state
bits are always initialized to ST for a newly allocated
branch. Branches that cause a miss in the BTB are ini-
tially assumed (predicted) to be not-taken.

As an example of the prediction state transition op-
eration, if this newly allocated branch is not taken the
next time it is encountered, its state bits will make a

Update tag Update target on  Update history on
on allocate allocate or mispredict allocate or hit
24 32 2

64 entries Tag

Branch Target
per way

Hisotry Bits

Prediction

Physical
Target Address

Figure 5. Pentium branch target buffer (BTB) structure.

transition to WT. The next prediction will thus be
“taken,” but if this is also a misprediction, the prediction
state will make the transition to WNT. The next predic-
tion will be “not taken,” and so on.

Down the left side of Figure 3 is a (very simplified)
pipeline path that is used to verify branch prediction.
The predicted direction for the branch is carried along
with the branch instruction as it moves through the
pipeline. As soon as possible, the prediction and the ac-
tual direction taken are compared. For unconditional
branches in the V pipeline and all branches in the U
pipeline, the comparator (circle with equal sign) in the
EX stage does the check. For conditionals in V, the check
is made by the comparator in WB to allow resolution of a
possible paired “compare” in the U pipe.

When an incorrect prediction is discovered or when
the predicted target is wrong, the pipelines are flushed
and the correct target fetched. Thus, based on the stage
in which the misprediction is discovered, mispredicted
unconditionals and U-pipeline conditionals incur a
three-clock delay, while V-pipeline conditionals incur a
four-clock delay.

Intel has made some measurements of branch be-
havior on Pentium. For the programs in the SPEC89
suite, the percent of dynamic branches correctly predict-
ed is between 75% and 85%, including not-taken branch-
es that miss. The branch distribution between pipelines
appears to be balanced at about 50% for each pipeline on
code produced by both 486-optimized and Pentium-
optimized compilers.

Not Taken

Not Taken Not Taken

Taken

uaxel 10N

Taken Taken Taken

Figure 6. Prediction history bit state transition diagram.
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Processor FP Add FP Sub FP Mult FP Div
Pentium 3/1 3/1 3/2* 39/39
486 8-20/8-20 | 8-20/8-20 16/16 73173
R4000 4/3 4/3 8/4 36/36
Alpha 4/1 4/1 4/1 61/61
PowerPC 601 4/1 4/1 4/2 31/29

Table 3. Floating-point latencies/throughputs for some modern
microprocessors. Times are for double-precision operations
except for Pentium, which supports an 80-bit internal format.

*For pairs of back-to-back multiplies and adds, Pentium has a
throughput of one instead of two.

Fast Floating-Point

In any benchmark comparison of high-performance
processors, the 486 stands up reasonably well in integer
results but trails dramatically in floating point perfor-
mance. Preliminary benchmark figures from Intel indi-
cate that Pentium will compete on a more even footing
with other processors in both integer and floating point
performance (see 070401.PDF).

Pentium’s floating-point performance is vastly im-
proved over the 486 because the simple, serial floating-
point unit of the 486 is replaced with fully pipelined, par-
allel execution units. The FPU pipeline is eight stages,
where the first five are shared with the integer pipeline:

* PF (prefetch)

¢ D1 (instruction decode)

* D2 (address generation)

¢ EX (memory and register read, memory write if FP
store instruction)

* X1 (FP execute first stage, write operand to FP regis-
ter file if FP load)

* X2 (FP execute second stage)

* WF (rounding and write result to FP register file)

¢ ER (error reporting, update status word)

This pipeline structure is similar to that of other
high-performance processors. For example, the PowerPC
601 has a six-stage floating-point pipeline. As shown in
Table 3, Pentium has floating-point operation latency
and throughput that is comparable to other processors
for basic arithmetic operations.

As with most other high-performance processors,
Pentium allows concurrency between the floating-point
and integer units. Thus, the issue and execution of inte-
ger instructions can proceed in parallel with a long-la-
tency floating-point operation.

One area where Pentium may actually feel some
competition is in the Windows NT market (see
0704ED.PDF). From Table 3, it is tempting to conclude
that Pentium could approximately match the floating-
point performance of low-end implementations of its
Windows NT competitors (see benchmark results in
070401.PDF). Pentium is hampered, however, by its
stack-oriented floating-point register file architecture
and by the need to transfer floating-point condition codes

to the integer unit before a conditional branch can be ex-
ecuted.

For floating-point operands, Pentium maintains
backward compatibility with previous x86 FPUs: there is
a file of eight, 80-bit operand registers that are concep-
tually a stack and only marginally directly addressable.
Since most floating-point instructions implicitly use the
top of this register stack as one operand, there is a “top-
of-stack bottleneck.” To circumvent this, programs use
the FXCH (floating-point register exchange) instruction
to swap the top of stack with an operand deeper in the
register file.

Pentium’s designers added logic to allow super-
scalar issue and execution for a simple floating-point op-
eration followed by an FXCH (see sidebar above). This is
the only case of superscalar issue for floating-point in-
structions and is subject to the restriction that the first
instruction must be “simple” and the FXCH must be the
second instruction in the pair.

Even with the rapid execution of an FP-
operation/FXCH pair, Pentium will be hampered by the
small, eight-register file. In addition, an FP-oper-
ation/FXCH pair followed immediately by an integer in-
struction will incur a one-cycle penalty.

Another performance problem for Pentium is pre-
sented by branching on floating-point conditions. Most
microprocessor architectures allow the results of a float-
ing-point comparison to be tested directly, but the x86 ar-
chitecture requires that the floating-point condition codes
be transferred to the integer condition-code register,
where a normal integer conditional branch can test them.

To effect a floating-point conditional branch re-
quires four instructions:

1. An FP operation that sets the condition codes

2. FSTSW AX (move FP status word to AX register)

3. SAHF (transfer to upper half of EFLAGS)

4. Jcc (integer jump conditional)
This sequence takes nine clock cycles to execute on
Pentium because the floating-point condition codes are
updated late in the floating-point pipeline. Four of these
clocks can be recovered by inserting integer instructions
between instructions 1 and 2.

Although many floating-point loops iterate based on
an integer condition, such as a loop count equal to the
number of elements in an array, the need to transfer con-
dition codes from the FPU to the integer unit creates a
significant penalty for the case of loops with a floating-
point termination condition, and for if-then statements
with floating-point conditions.

In the final analysis, Pentium will bring a new level
of floating-point performance to the PC market. It will
not, however, out-perform its Windows NT competitors
because of the weaknesses of its floating-point architec-
ture and because the R4000 and Alpha processors will be
operating at much higher raw clock speeds.
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Conclusions

Pentium solidifies Intel’s position as the premier
supplier of advanced microprocessors for the PC mar-
ket. While it will be expensive and difficult to manu-
facture in volume at first, Pentium uses advanced
processor implementation techniques while maintain-
ing full compatibility with the installed base of x86 ap-
plication software. The superscalar integer unit, sepa-
rate caches, branch prediction, and pipelined floating-
point unit are all significant performance enhance-
ments to the 486. Pentium’s snooping-based MESI
cache-coherency protocol makes it appealing for multi-
processor implementations.

Like many of the current generation of high-end mi-
croprocessors, Pentium integrates a huge number of tran-
sistors. At three million, the only other processors in this
transistor-count league are SuperSPARC (3.1 million)
and the PowerPC 601 (2.8 million). Those processors,
however, have at least twice as much total cache and are
more aggressive in other ways. It appears that many of
Pentium’s “extra” transistors are spent on things like in-
ternal parity, the triple-ported cache tag arrays, dual-
ported TLBs, and adders for multi-component addressing
modes and segment limit checking.

Certainly, a significant amount of Pentium’s com-
plexity is the result of the complex x86 instruction set.

The four-input address adders, microcode ROM, extra
decode pipeline stage, and register/memory sequencing
logic in the execute stage are all extra complexity not
present in RISC processors.

While any x86 program will benefit from Pentium’s
performance features, the full performance potential will
be realized only for programs that are structured to take
maximum advantage of Pentium’s capabilities. Instruc-
tion sequences must be carefully selected to use the in-
structions that can be dual-issued and, as shown in the
floating-point conditional-branch example above, sched-
uled to fill all available execution slots.

Pentium is a significant microprocessor milestone.
It implements sophisticated caching, multiprocessor
support, and branch prediction. It is also the first super-
scalar CISC microprocessor and the first high-end mi-
croprocessor to implement a system-management mode.
The Pentium core will be around for many years to come
because Intel will be able to exploit it by offering an array
of microprocessors with varied cache sizes, bus widths,
and bus speeds. As for Pentium’s technological position
in the marketplace, some RISCs will be faster or cheap-
er or both, but with x86 compatibility, multiprocessor
support, and significant performance gains over the 486,
Pentium will satisfy most users’ needs.¢
Next issue, we’ll examine Pentium’s new bus structure
(see 070502.PDF).
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