
M I C R O P R O C E S S O R R E P O R T
by Brian Case

Over the past couple of years, a surprising number
of superscalar microprocessors have been announced,
and nearly as many have actually been shipped. Most
superscalar implementations are high-end microproces-
sors aimed at the workstation market, but the large and
growing number of these high-performance implementa-
tions implies that superscalar techniques are becoming
widely understood and will be used in all classes of mi-
croprocessors in the future.

Superscalar techniques were first explored in the
late 1960s for the IBM 360/91. For microprocessors, su-
perscalar designs were discussed in earnest in the mid-
1980s when single-pipeline, one-instruction-per-cycle
RISC implementations were the state-of-the-art. Ag-
gressive implementations with duplicate execution re-
sources-such as two integer ALUs-were proposed, and
these were given the most attention because they
seemed to offer the biggest performance boost and were
clearly different from single-pipeline machines. As it
turns out, many designers have taken a more conserva-
tive approach: instead of duplicating resources, many
superscalar implementations simply dispatch multiple
instructions into existing processor resources. As an al-
ternative, superpipelining-as in the R4000-offers perfor-
mance improvement without the necessity of multiple
instruction dispatch.

Due to the ingenuity of processor designers, the cur-
rent crop of superscalar designs covers a broad spec-
trum, and some interesting tradeoffs have been made,
such as degree of superscalar dispatch vs. clock rate. The
following sections cover basic superscalar design issues,
the superscalar design space, and each major super-
scalar processor. Finally, possible future directions are
discussed.

Design Issues
The designer of a superscalar processor faces a set

of issues not relevant to simpler organizations. With
each issue comes a range of implementation choices and
corresponding opportunities for tradeoffs. Refer to Table
1 for a comparison of how the current important super-
scalar processors dealt with each issue.

The most fundamental characteristic is the maxi-
mum number of instructions allowed to be issued and ex-
ecuted in one cycle. To issue an instruction is to fetch it
from instruction storage (usually cache) and send it to an
appropriate execution unit. To execute an instruction is

Superscalar Scoreca
Two Design Styles Tradeoff
Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, October 7,
to perform the operation specified by the operation code.
The issue and execution rates in simple superscalar ma-
chines are usually equal, but queues (or reservation sta-
tions) in execution units can buffer issued instructions,
resulting in a potential instantaneous execution rate
greater than the issue rate. Since the average execution
rate cannot exceed the issue rate, the degree of a super-
scalar design is usually equated to its issue rate; a pro-
cessor that can issue two instructions per cycle is called
a degree-two superscalar design (or sometimes a “two-
scalar” processor).

The ability to issue multiple instructions per cycle
implies the ability to fetch multiple instructions per
cycle from an instruction cache. Fetching an item from
any storage-instruction or data-is always easier when
the item is aligned on a boundary equal to its size. Su-
perscalar RISCs benefit from the architectural charac-
teristic of fixed-size, 32-bit instructions; as a result, su-
perscalar RISCs have simpler fetch and dispatch logic
than comparable superscalar CISCs.

For a superscalar RISC processor fetching two 32-
bit instructions in a cycle, it is easiest to require the pair
to be aligned on a 64-bit boundary. For software (compil-
ers, assemblers, and linkers) on the other hand, it is eas-
iest if instruction streams can be generated without re-
gard to alignment. These conflicting considerations raise
a design issue for superscalar versions of processors that
have large installed software bases. Since existing pro-
grams were generated by development tools that did not
take into account any alignment preferences of super-
scalar processors, it is important for these implementa-
tions to accommodate arbitrary instruction alignment as
much as possible.

Building a superscalar implementation is difficult
in part because instructions have interdependencies. For
example, a conditional branch might depend on the out-
come of a compare instruction, the compare instruction
might depend on the result of an add, and the add might
depend on a load. It is unfortunate but true that such a
group of four instructions must be executed serially. In-
struction dependencies create a fundamental limit on
available parallelism, and thus a limit to the effective-
ness of superscalar processor organizations (see µPR
9/19/90, p. 8).

Two superscalar issue techniques are possible. The
first issues instructions to queues in execution units. De-
pendency checking is performed in each execution unit
queue to make sure that instructions are executed in the
correct order. The second technique performs depen-

rd: Who’s On First?
 Clock Rate vs. Complexity
 1992 © 1992 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

In
te

l
96

0C
F

H
P

P
A

-R
IS

C
 7

10
0

IB
M

R
IO

S
 R

S
/6

00
0

IB
M

R
S

C

In
te

l
96

0M
M

Characteristic

Processor

1 2/1 1Integer Issue Rate 1+

1 2/1 1FP Issue Rate No FPU

2 4 2Maximum Issue Rate 3 (2 sus.)

0 0 0Memory Units 1

No Yes Yes YBranch Unit Yes

Dependent Int. Ops.? No

No No NoSpeculative Issue Some

Speculative Execution No

78 59 15.9 70SPECint92 –

142 125 22.9 12SPECfp92 –

96 MHz 62.5 MHz 33 MHzClock Speed –

887 580 220System Benchmarked –

2 5 3Group Size 4

2

1

3 (2 sus.)

1

Yes

No

Some

No

–

–

–

–

4

Yes Yes Yes YSimul. Int. & FP Disp? – Yes

No No No

No No No

150
dency checking in the primary instruction issue unit. This
technique has the advantage of simpler execution units
but the disadvantage of more restricted issue capability.

The second technique is used in most current su-
perscalar processors where the main fetch-and-issue
unit performs dependency checking, and most execution
units are essentially simple, bare pipelines. Four of the
processors covered here go further: hyperSPARC and
SuperSPARC have queues in their floating-point units,
the RIOS chip set has queues in both its integer and
floating-point units, and the 88110 has a sophisticated
queue in its load/store unit.

The fetch-and-issue logic in all these processors con-
siders the next group of instructions, where the group is
a window into the instruction stream. For most proces-
sors, the group size is the same as the maximum number
of instructions that can be issued at once, while for oth-
ers-the 960 series, RIOS, and RSC-the group size is one
instruction larger than the maximum issue rate. In any
case, the dependency checking logic selects as many in-
structions as possible from the group and issues them.

Most of the superscalar machines discussed here can
only issue instructions in program order. Program-order
issue logic that considers a group of, say, three instruc-
tions will never issue instruction three unless instructions
one and two are also issuable in the same cycle.

It is possible and profitable, however, to design a
machine that can issue instructions out of order. The 960
series, 88110, RIOS, and RSC each have some out-of-
order issue capability. The 88110 goes further to allow
out of-order-execution. It is important to note that out-of-
order issue and out-of-order execution are not the same.

Since instruction dependencies can limit the effec-
tiveness of a superscalar design, it is worth asking what

n/a n/a n/a
$1

150
1

Price/Speed/Quantity
$180.90
33 MHz

1K

n/a
40 MHz

Table 1. Key attributes of major superscalar processors (*SPEC89; †19
2 Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, Octobe
can be done to counter-
act them. To a certain
extent, compilers can
be written to minimize
instruction dependen-
cies, but, again, for
processors with large
installed software
bases, such a compiler
can help only new or re-
compiled applications.
This realization led the
designers of Super-
SPARC to implement a
novel cascaded integer
ALU structure that can
accept and execute two
dependent integer
arithmetic instructions
in the same cycle.

Another hardware
technique that combats the anti-parallel effects of de-
pendencies is speculative execution. Speculative execu-
tion usually revolves around predicting conditional
branches: the branch is predicted and the instructions in
the predicted direction are speculatively issued. The 960
series, SuperSPARC, and 88110 implement some degree
of speculative issue. It is possible to only speculatively
issue or to speculatively issue and execute. True specula-
tive execution requires some sort of recovery mechanism-
as with the 88110 register-file history buffer-to “undo” ex-
ecution effects in the event of an incorrect speculation.

It is possible to devise and implement many hard-
ware techniques to extract the maximum parallelism
from an instruction stream, but there is a fundamental
tradeoff at work: at some point, the complex logic length-
ens the basic machine cycle or pipeline so much that
more performance is lost than is gained. In recognition of
the “complexity is not free” maxim, some superscalar
processors emphasize high clock rate over sophisticated
issue capabilities.

Superscalar Processor Organization
The hardware for a simple RISC or RISC-like pro-

cessor contains a single pipeline, and it is not really or-
ganized into units because all instructions flow through
the pipeline in virtually the same way. At each pipe
stage, an instruction has private access to the logic con-
tained in that stage. In contrast, the hardware for a su-
perscalar processor is functionally partitioned into units
that are capable of executing subsets of the processor’s
instruction set, and each unit is pipelined.

Figure 1 shows a simple block diagram comparison.
The simple RISC pipeline allocates processor logic to
stages in the single pipeline in a logical sequence. The

D
E

C
A

lp
ha

 2
10

64

C
yp

re
ss

hy
pe

rS
P

A
R

C

T
I

S
up

er
S

P
A

R
C

M
ot

or
ol

a
88

11
0

In
te

l
P

5

1 1 2 2 2

1 2/1 1 3 1+

2 2 3 2 2

1 1 1 1 2

es Yes Yes Yes Yes

Yes No No

No No Some Yes No

No Yes

 est. 62 52.6 60 est.

0 est. 64 64.7 60 est.

559
 MHz
K

$700†

55 MHz
10K

$400†

33 MHz
10K

n/a

66 MHz 40 MHz

– SS10/41 – –

2 2 3 2 2

es Yes Yes Yes No

No No

No No

–

No

50 MHz 66 MHz

51*

74*

$495
40 MHz
Samples

 MHz

93 pricing).
r 7, 1992 © 1992 MicroDesign Resources

Fetch

Decode

Execute

Memory

WriteBack

cache

 Read

r ALU

cache

 Write

Fetch

Depend. Chk.

Execute

Memory

WriteBack

Execute

Memory

WriteBack

Decode/Read

Simple Organization SuperScalar Organization

Addr. Mode

TLB & D-cache

WriteBack

Fetch/Branch Unit
superscalar pipelines reflect the same functions
and sequence, but the functions are grouped into
distinct sub-pipelines or units. In Figure 1, the su-
perscalar machine has a fetch unit, two integer
units, and a load/store unit. The fetch unit is re-
sponsible for executing branches, since branches di-
rectly affect the fetch function. The fetch unit also
performs all dependency checking before issuing in-
structions to the simple execution units.

Figure 1 is just an example; many grossly or
subtly different organizations are possible. Units
may be very specialized, such as separate integer
and load/store units, or more general, such as an in-
teger unit that also takes care of loads and stores. The
register-read function can be in either the fetch unit or
the execution units. Each execution unit can be tightly
coupled to the fetch unit pipeline, or execution units can
have queues or reservation stations to buffer the flow of
instructions.

Levels Of Superscalar Aggressiveness
The aggressiveness of a superscalar design depends

not only on its degree-the maximum number of instruc-
tions it can issue in a cycle-but also on the generality of
its multi-issue capabilities.

The maximum number of instructions that can be
issued in a cycle depends on the number of independent
execution units available and the ability of the issue
logic to detect instruction sequences that can use all the
available units. It is common to have an issue rate less
than the number of independent execution units because
parallelism available in the instruction stream is limited
and because of the desire to keep issue logic simple and
fast.

The simplest superscalar organization is the result
of partitioning the hardware found in any generic,
pipelined processor. A simple partitioning creates a fetch
unit capable of executing branches, an integer unit for
integer ALU instructions, a load/store unit to execute
memory reference instructions, and an FP unit for float-
ing-point instructions. This organization essentially as-
signs disjoint subsets of the processor’s instruction set to
separate execution units. The advantage of this organi-
zation is that its implementation can easily build on an
existing processor design; little extra logic is required to
create autonomous execution units. The largest amount
of design effort is spent creating the issue logic.

Note that the simplicity of this partitioning ap-
proach is affected by the instruction set. RISC instruc-
tion sets tend to have instruction subsets that do not
have overlapping semantics; for example, integer ALU
instructions do not perform memory references. CISC in-
struction sets are not as clean. At least one RISC, the
IBM POWER architecture, was designed explicitly to fa-
cilitate this partitioning approach.

M I C R O P R O C E S S O R R E P O R T

I-

Reg. File

Intege

TLB & D-

Reg. File

Figure 1
3 Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, Octobe
A more complex design duplicates one or more of
the execution units. The most natural unit to duplicate is
the integer unit because integer computation dominates
most applications. While a superscalar organization cre-
ated by the simple partitioning described above can si-
multaneously issue instructions only from disjoint in-
struction subsets, a superscalar processor with
duplicated execution units can simultaneously issue two
instructions from the same subset.

One problem with duplicated execution units is that
dependencies can prohibit simultaneous execution of de-
pendent instructions even when the required units are
available. For some types of execution units, it may be pos-
sible to cascade duplicate execution resources within a
single unit. As done in the SuperSPARC integer unit, this
creates a single unit capable of executing two instructions
from the same subset regardless of dependency.

Considering these options and the possible subtle
variations, it is important to realize that the quality of a
superscalar design is determined both by its degree and
its issue restrictions. A certain processor may be able to
issue four instructions per cycle, but if it has severe issue
restrictions, it may actually exhibit lower performance
on real applications than a degree-two processor with
more general instruction-issue rules.

Partitioned Organizations
Most current superscalar microprocessors reflect

the conservative design approach of partitioning tradi-
tional resources into independent execution units. Tak-
ing this approach allows the designers to reap super-
scalar performance benefits while leaving time to focus
on other goals, such as reaching the highest clock rate
possible.

Intel’s 960CA was the first superscalar micropro-
cessor announced; the 960CF is an updated version that
improves performance with a larger instruction cache. It
essentially uses the partitioning approach, but because
of the architecture, it achieves some of the benefits of du-
plicated resources. It has an issue/branch unit, a full in-
teger unit, and a separate load/store unit. Since some ad-
dress-calculation instructions perform simple integer

Integer Unit Integer Unit Load/Store Unit

. RISC Pipeline vs. Superscalar pipeline organization.
r 7, 1992 © 1992 MicroDesign Resources

arithmetic and are executed in the load/store unit, it is
possible to dual-issue and execute two integer instruc-
tions so long as care is taken to encode the simplest inte-
ger operation using the addressing mode equivalent.
This capability, however, is not fully symmetric, since
many integer operations cannot be coded using address-
calculation instructions.

It is debatable whether or not IBM’s first super-
scalar processor-the RIOS chip set used in the RS/6000
workstations-is a true microprocessor, since it uses sev-
eral chips. The RSC and PowerPC 601 are newer, single-
chip versions that unquestionably qualify as micro-
processors. The RSC is a scaled-down RIOS
implementation, and the 601 is a higher clock-rate ver-
sion of RSC that implements the architecture and bus
changes defined by the IBM/Apple/Motorola consortium.
(The 601 will be unveiled at the Microprocessor Forum.)

The POWER and PowerPC architectures were de-
signed to take advantage of the partitioning approach to
superscalar implementation. The result is an instruction
set that cleanly divides into subsets that use only the re-
sources of a particular unit. The major instruction sub-
sets are branch, condition-code, integer, and floating-
point. As a result, RIOS was able to implement a
degree-four instruction issue unit while others are lim-
ited to two- or three-issue. The integer and floating-point
units have queues that allow two instructions to be is-
sued to the same unit in a single cycle even though only
one instruction can be executed per cycle.

When conditions allow four instructions to be is-
sued to the separate execution units, five traditional op-
erations can be started in a single cycle. While this is im-
pressive, SPEC benchmark results show only average
integer performance, which suggests that opportunities
to issue three or four instructions per cycle are rare.

The RSC implements only a degree-two instruction
issue unit. It may have been necessary to reduce the
issue unit to squeeze the entire processor on a single
chip, but the designers probably also realized that a de-
gree-two issue unit would be a better match to the RSC’s
small 8K combined instruction/data cache.

HP has taken a conservative approach with its PA-
RISC 7100 design. This chip is the result of simply inte-
grating the integer and floating-point units on a single
chip and permitting an integer and a floating-point in-
struction to be issued simultaneously. There are no sep-
arate branch or memory-reference units, and all non-FP
instructions are in the same instruction class for the pur-
poses of instruction issue.

The hyperSPARC from Cypress/Ross is another in-
cremental design that builds on an existing processor de-
sign. The chip has five execution units: branch/instruc-
tion issue, integer, load/store, floating-point add, and
floating-point multiply. The issue unit can dispatch two
instructions per cycle, including the case of two floating-

M I C R O P R O C E S S O R R E P O R T
4 Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, Octob
point instructions. While this would seem to give hyper-
SPARC an advantage in floating-point performance,
floating-point instructions are first buffered in a queue
in the floating-point unit. The queue can receive two in-
structions from the main issue unit in one cycle, but
floating-point instructions are then re-issued to either
the add or multiply unit from the queue at a maximum
rate of only one per cycle.

DEC’s first entry into the merchant microprocessor
market-the 21064 “Alpha”-is also a straightforward par-
titioned design. This degree-two superscalar implemen-
tation has four execution units-branch/instruction issue,
integer, load/store, and floating-point-and is considered
superpipelined as well because integer shift operations
require two cycles to execute. Independent shift opera-
tions can be issued every cycle, but dependent shifts
incur a one-cycle dependency stall.

Among the chips in this group, the 960 and RIOS
have the most aggressive raw capabilities. The 7100 is
distinguished for its relative lack of independent units
(no separate branch or load/store capability). Ultimately,
the relative performance of the processors in this group is
determined more by clock rate than superscalar capabili-
ties. In this regard, the 21064 and 7100 have the edge.

Duplicated Unit Organizations
The currently available superscalar microprocessors

with significant duplicated resources are the 960MM,
88110, and the SuperSPARC, but the industry waits on
the edge of its seat in anticipation of the P5 from Intel.

The 960MM is an updated version of the 960CF
that adds separate, full-fledged integer and floating-
point units. The new integer unit gives the 960MM the
ability to issue any two independent integer ALU in-
structions in the same cycle. Although the floating-point
unit has separate add and multiply pipelines, a maxi-
mum of one floating-point instruction can be dispatched
each cycle.

The 88110 has the most extensive partitioned and
duplicated resource organization of any superscalar
microprocessor. It offers a branch/instruction-issue unit,
a load/store unit, two integer units, a bit-field (shift)
unit, two graphics units, and three independent floating-
point units (add, multiply, and divide). The degree-two
issue unit can simultaneously dispatch two instructions
to any two execution units with only minimal exceptions.

In addition to its impressive issue symmetry, the
88110 permits speculative instruction issue and execu-
tion after a predicted branch. A register file history
buffer keeps track of registers so that they can be re-
stored to their pre-branch values if the branch is later
discovered to have been mis-predicted. Speculative exe-
cution allows the 88110 to extract the most performance
from its two-issue capability.

While the 88110 has exceptionally symmetric issue
er 7, 1992 © 1992 MicroDesign Resources

rules, the three-issue SuperSPARC one-ups the 88110 in
maximum issue rate and dependent integer operations.
SuperSPARC has a single integer unit with three ALUs
arranged as a tree; this cascaded arrangement permits
SuperSPARC to simultaneously issue two integer ALU
instructions (but not shifts) regardless of dependency
(see Figure 2). The 88110 designers expected to rely on
compilers to minimize dependencies in pairs of integer
operations, which is a legitimate strategy for a processor
without a large software base. SuperSPARC, on the
other hand must provide significantly improved perfor-
mance for a large installed base of software that was
compiled without regard for minimizing dependencies.

The designers of Intel’s P5 faced a problem that the
designers of superscalar RISCs did not have to confront:
how to deal with complex, non-RISC instructions.
Clearly, many of the multi-cycle x86 instructions would
not benefit much from multiple issue, but the instruc-
tions that perform simple operations in conjunction with
memory references are candidates for consideration.

The two-issue P5 creates two integer execution
units by duplicating the last three stages of the five-
stage 486 pipeline, similar to the superscalar arrange-
ment shown in Figure 1. This arrangement is also simi-
lar to the 88110 in that it does not allow simultaneous
dispatch of dependent operations. The issue logic will
dispatch two instructions into these units only if the in-
structions are simple and independent. Simple, in this
case, includes instructions that perform not only pure
register-to-register operations but also register-to-mem-
ory and memory-to-register operations.

Even though these two 486-like execution units will
require more than one cycle to execute an ALU opera-
tion/memory reference combination, the ability to dual
issue them is important since they are frequent in x86
programs. The P5 permits two memory references to
proceed in parallel because of its dual-access on-chip
data cache (see 061201.PDF).

The one significant difference between the P5 and
other superscalar processors is its apparent inability to
dispatch a floating-point instruction along with instruc-
tions from other classes. The P5 can, however, dual dis-
patch the special case of a floating-point operation to-
gether with a floating-point exchange instruction, which
helps mitigate the impact of its stack architecture for
floating-point operands.

Conclusions & Futures
It seems that the relatively conservative, parti-

tioned approach to superscalar implementation has a
clock-rate advantage over the more aggressive dupli-
cated-resource approach: the highest clock-rate designs
are the 21064, 7100, and hyperSPARC (assuming Cy-
press/Ross achieves its 80 MHz goal). The more complex
SuperSPARC and 88110 are specified for clock rates no

M I C R O P R O C E S S O R R E P O R T
5 Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, Octobe
higher than 50 MHz,
and SuperSPARC is
struggling to achieve
even that. At 66 MHz,
the P5 will be no
clock-rate slouch, but
it will fall short of the
standards set by DEC
and HP.

The clock-rate
vs. complexity trade-
off is one of the most
important issues in
superscalar design.
While adverse in-
struction dependencies and alignment can reduce the ef-
fectiveness of a superscalar implementation, they will
not reduce the performance of a simple pipeline operat-
ing at a high frequency. Thus, it is crucially important to
make sure that performance gained from superscalar ca-
pabilities could not have been gained more easily from
clock-rate improvement (except when high clock rates
might be inadvisable).

In reality, the clock-rate comparison is only par-
tially fair. It is true that a more complex design, such as
used in SuperSPARC and the 88110, leaves less time
for performance tuning the hardware, but it is also the
case that clock rate was a major focus during the design
of the 21064 and 7100 chips. The designers at DEC were
willing to make process concessions to achieve a record-
setting clock rate that may not be feasible in other fabri-
cation environments. Also, rumor has it that Super-
SPARC’s clock-rate problems are more the result of a
goof in the design of the cache than of an overly complex
superscalar design.

Another issue is the semantic richness of the in-
struction set. The 7100 cannot dispatch two integer op-
erations per cycle, but many composite PA-RISC in-
structions achieve “superscalar-like” effectiveness. The
P5 has a potential advantage in being able to dual-issue
integer operations combined with memory references,
but the current pipeline organization will require two or
more cycles for these instructions.

It is interesting to speculate on how these micro-
processors will evolve into more aggressive implementa-
tions. The most obvious option for the simpler, parti-
tioned designs is the implementation of duplicate integer
units. It is likely that next-generation PA-RISC,
PowerPC, and Alpha processors will have two integer
units because the performance benefit is large enough to
justify the cost. Going beyond two integer units is ques-
tionable except in certain application areas or with sig-
nificant help from compilers because of instruction de-
pendencies. It is probably better to spend effort
designing a dependency-tolerant integer unit, as in

ALU2

ALUC

ALU0

SHIFT

REGISTER FILE

mux

To load-
store unit

Figure 2. SuperSPARC uses a novel
cascaded ALU configuration.
r 7, 1992 © 1992 MicroDesign Resources

SuperSPARC, or to add specialized execution units, as
the 88110 has done for graphics operations.

The preliminary P5 disclosures have indicated an-
other future direction: multi-access caches. The two P5
integer units have independent, simultaneous access to
the single data cache as long as the accesses are to dif-
ferent cache banks. This allows the P5 to execute two
memory operations simultaneously, a capability only ap-
proximated by the out-of-order execution of the
load/store unit in the 88110.

In the future, the bank-conflict restriction could be
lifted by implementing a true dual-ported data cache.
Such a cache will be necessary to allow multiple issue
and execution of memory references in RISCs. On-chip
cache hierarchy design is increasingly important be-
cause cache access time is a key clock-rate limiter.

Floating-point is another area that can be improved
on most of these processors. The 88110 can dual issue
and execute different types of floating-point instructions,
but the other superscalar processors cannot (hyper-
SPARC and RIOS can dual issue to floating-point queue
but not from the queue to the floating-point units). While
all of these processors would benefit from duplicated
floating-point units, the IBM and HP architectures
stand to gain less because their composite multiply-and-
add operations yield a degree of superscalar-like effec-

M I C R O P R O C E S S O R R E P O R T
6 Superscalar Scorecard: Who’s On First? Vol. 6, No. 13, Octobe
tiveness. The MIPS-architecture “TFP” microprocessor
under development at Silicon Graphics is rumored to
have duplicated floating-point units.

Another future direction that has already been set
is the trend toward 64-bit architectures. MIPS and
Alpha are available in 64-bit implementations, and
PowerPC and SPARC version 9 will result in 64-bit mi-
croprocessors in the future. It is interesting to note that
neither of the microprocessors with 64-bit ALUs have
duplicate integer units, presumably because of the im-
plementation cost.

The P5 is distinguished as the only superscalar
CISC microprocessor anywhere near first shipment, but
Motorola promises that the 68060 will be the second su-
perscalar CISC. Another contender would have been a
superscalar version of the 32000 family, but National
chose to abandon the 32000 architecture when it de-
signed its superscalar Swordfish processor (see µPR
2/20/91, p. 1).

The future directions for superscalar microproces-
sor designers seem clear: those who have high clock rate
designs will add more superscalar capabilities and those
who have high-degree superscalar implementations will
be working for higher clock rates. As always, on-chip
cache sizes will increase in order to keep the high-per-
formance processor cores busy. ♦
r 7, 1992 © 1992 MicroDesign Resources

	Superscalar Scorecard: Who’s On First?
	Design Issues
	Table 1. Key attributes of major superscalar processors...
	Superscalar Processor Organization
	Levels Of Superscalar Aggressiveness
	Figure 1. RISC Pipeline vs. Superscalar pipeline organization.
	Partitioned Organizations
	Duplicated Unit Organizations
	Conclusions & Futures
	Figure 2. SuperSPARC uses a novel cascaded . . .

