
 
b

   
O B L I Q U E  P E

Why RISC
After Ten Years of Philosophical De

By John Wharton, Applications Research

“RISC: any computer announced after 1985”
– Steven Przybylski, a designer of the Stanford
MIPS, as quoted in Computer Architecture: A
Quantitative Approach (Hennessy and Patterson,
1990)

You can tell a value system is in trouble when its
most zealous defenders start arguing semantics in
order to prove they’d been right all along. So the “R” in
RISC didn’t really stand for “reduced,” as in decreased
in number, according to John Mashey’s recent View-
point column (µPR 3/25/92, p.21). What it now appears
to have meant was “restricted,” as in having a memory
architecture sufficiently restrictive so as not to require
trap handlers to fix two page faults at once. No doubt
that distinction would be important to me—if I had to
write my own trap handlers.

But at least now we now have absolute, objective,
incontrovertible proof that CISCs aren’t RISCs, and
that they’re not converging either. Fine—except that I
never heard any credible claims that they were. I was a
little surprised last year to hear one of the high priests
of RISC tell a microcomputer workshop that he never
felt the 386 architecture was all that complex to begin
with, but that’s beside the point. The real issue is
whether computer implementations will converge, and
the evidence is growing that they will. 

And we now have a set of formal rules we can apply
to CPU architectures to see which are among the most
pure—a veritable catechism of architectural orthodoxy.
To count as RISC it now seems an architecture must be
less than six years old, restrict the flexibility of its ad-
dressing modes, limit the number of memory references
per instruction, and define at least nine floating-point
registers separate and distinct from those for integers.
No doubt this would all matter, too, if philosophical pu-
rity were more important than results.

When the line defining RISC as “any architecture
marketed after 1985” first surfaced, most of us thought
it was meant as a joke. But now RISC proponents seri-
ously seem to be claiming that creation date is a meas-
ure of architectural style. Was the first computer to use
your instruction set introduced after 1986? If so, that’s
evidence your machine is RISC. Imagine! Guaranteed
immortality of your ideas, all at the stroke of a pen. It’s
too bad our founding fathers didn’t think to define “De-

M I C R O P R O C E S S O R  R E P O R T 	
1 4 	 	
R S P E C T I V E

Is Doomed
ate, Reductionist Arguments Falter

mocracy” as “any political system introduced after
1776.” Had they done so, Communism might never have
posed a threat to world order.

Shifting Ideological Tides
Several things bother me about Dr. Mashey’s View-

point. First are the small factual errors used to
strengthen its case, like the claim that one x86 instruc-
tion can safely modify the next. It can’t. The 8086 archi-
tecture has always required a branch instruction to
commit modified code to the instruction stream. No x86
processor ever built would execute code as the View-
point describes, so “software that uses this [immediate
modification] capability” does not exist.

My second complaint is that the comparison table
used to derive its architectural distinction rules omitted
CRISP, the 960, Clipper, and ARM—four CPUs that
would otherwise have disproven its case. CRISP, which
the Viewpoint elsewhere calls a “well-documented ...
RISC CPU,” fails to qualify as RISC on at least seven of
the eleven rules defined in the Viewpoint. The Intel 960
is a RISC architecture according to any conventional
criteria, but it fails at least six rules—by providing more
than the minimum RISC requirements. Since various
members of the 960 family are in turn faster, cheaper,
and sell in higher volume than any of the workstation
processors that were listed, students of computer archi-
tecture would do well not to ignore its existence. 

Third, the column focuses just on the philosophical
issues of whether RISC architectures are different from
CISC, not whether they’re better. By limiting its scope
as it does, the column diverts attention from the per-
formance issues that matter most to users. Sure, one
could build elaborate tables comparing color, shape,
texture, and hardness to prove apples aren’t oranges,
and that they’re not converging, either. None of that
would matter, though, if your goal is to bake better pie.

And fourth, I get the discomfiting feeling that the
criteria used to define RISC philosophy keep changing.
When RISC was introduced I seem to recall a lot of em-
phasis on such issues as fixed-length encodings, decou-
pled memory accesses, delayed branches, and so on.
These fundamental architectural differences were sup-
posed to imbue RISC CPUs with some significant, in-
herent performance advantages: they’d run faster, be
easier to design, move more quickly to new technolo-
gies, and allow more cost effective systems. 

What follows is not meant to be another RISC/CISC

	

A U G U S T  1 9 ,  1 9 9 2



   
debate. Established CISC architectures are clearly
crippled by design decisions that would never be made
today. The issue is RISC vs. Reality. Ten years of theo-
retical debate should be plenty; what matters is prac-
tice, not theory. Whatever inherent advantages RISC
may have should by now have been demonstrated,
eliminating any need for philosophical debate. It’s time
for a sanity check to see whether the absolute, objective,
incontrovertible arguments originally put forth on be-
half of RISC have been proven true. The evidence—as
measured by current CPU implementations and pro-
duction systems—strongly suggests otherwise. 

Canard 1: RISC Is Inherently Faster
The problem with CISC CPUs, the theory went, was

that complexity adversely affects a CPU’s maximum
clock rate and average cycles per instruction—two key
factors in the now-famous performance equation. But
practice suggests theory was wrong.

Theory: Complex microcoded control logic pre-
cludes single-cycle execution.

Practice: Microcode and hardwired control logic
are not incompatible. RISC devices like the 960 imple-
ment many single-cycle instructions, and escape to mi-
crocode only for non-trivial operations. The 486 and
68040 bypass microcode to do simple stuff in one cycle.

Theory: Complex instructions need complex
ALUs, which limit the clock speed. RISC thus omits
seldom-used operations like rotate and decimal add.

Practice: ALU complexity would limit clock rates
only if ALU logic was part of a critical timing path. Ap-
parently it’s not. In cranking up the R4000 clock, it was
the address translation and cache control logic, not the
ALU, that had to be superpipelined. The R4000 design-
ers found they could actually double the ALU width to
64 bits—and still finish operations in one cycle.

Theory: Complex instructions are slow to decode.
Practice: Possibly true, if all decoding is done at

once. But CISC CPUs can “crack” instructions in two
steps by introducing a new predecode pipeline stage. 

Theory: Memory accesses require multiple chip
crossings, consuming multiple CPU cycles. Data loads
should therefore be isolated from data usage.

Practice: On-chip caches accessed early in the ex-
ecution pipeline can return data to the ALU before it’s
needed. Several RISC vendors are now starting to brag
that their latest implementations can load cache data
and use it immediately. The 486 was actually the first
CPU to load data during one clock cycle and use it on the
next—comparable to a RISC with no load-delays, and
without requiring separate instructions. The 68040 can
load data, modify it, and store the result back to cache
during a single one-cycle instruction—three times
faster and more efficiently than standard RISCs.

Theory: Branches insert pipeline bubbles, which

	

A U G U S T  1 9 ,  1 9 9 2 	 	
delayed branches can conveniently exploit.
Practice: With on-chip cache and good pipeline

design, branches need not insert bubbles, as the i960CA
proved. Superscalar designs actually make delay slots
inefficient, since they keep at most one execution unit
busy after the branch. Newer RISCs like Alpha leave
delayed branches out. The Intel P5 uses a destination-
address cache in order to process correctly predicted
branches in a single cycle—with no delay slot.

Theory: Register windows reduce memory traffic.
Practice: Maybe so, maybe not. But the oversize

register files needed for windowing do cause trouble as
ports are added for superscalar implementations, and
may even delay execution if the register file lies in a
critical timing path. MIPS, the 88K, and essentially all
RISCs introduced post-SPARC have decided register
windowing isn’t worth the trouble.

Theory: Fixed-length instruction formats are
necessary for superscalar designs. With the right com-
bination of specialized execution units, RISC CPUs
could compute an operand address, access memory, and
perform a register operation, all at the same time.

Variable-length instruction formats (it’s said) pre-
clude superscalar execution. 386 instructions vary from
one to 15 bytes. In order to dispatch two x86 instruc-
tions with every possible alignment during every cycle,
decode logic would need be to replicated 16 times.

Practice: Never mind that individual 68040 in-
structions can already combine address calculations,
memory references, and register operations, and still
complete in a single cycle—the equivalent of an order-
three superscalar RISC. Never mind that they do so
without the convoluted control logic needed for parallel
decoding. Superscalar CISCs are still quite practical.

Decode logic need only handle the most common
combinations of instruction lengths to get much of the
benefit of parallel execution. Moreover, instructions can
be predecoded as each is fetched from main memory,
and then saved in cache in a RISCier format—expanded
and aligned, perhaps, with “tag” bits identifying the op-
erations to follow. The RISCy CRISP, i960CA, and
Swordfish CPUs have used such tricks for years. The
order-two superscalar P5 is believed to do so as well.

Theory: CPUs determine system performance.
Practice: High-end system throughput is largely

determined by such issues as the memory hierarchy
design, mass-storage latency, the video interface, and
network speed. Unless all elements of a system are
designed for balanced execution, speeding up just the
CPU may not affect system throughput.

Canard 2: RISC is Easier to Design
Then there’s the purported RISC design advan-

tages. Don’t simpler architectures inherently lead to a
simpler design?

	 M I C R O P R O C E S S O R  R E P O R T
1 5



Theory: RISC CPUs use fewer gates, which makes
them easier to design and faster to debug.

Practice: This claim was no doubt true back when
microprocessors contained just a CPU; a handful of
grad students could never have designed a 386 in one
semester. But these days the CPU is one small part of a
far more complex device. Both RISC and CISC micro-
processors now contain full floating-point units, on-chip
caches with messy coherency logic, complex bus inter-
faces with increasingly arcane protocols, and so forth.
This is where the bugs appear. Getting Load, Add, and
Branch to work is comparatively easy.

Theory: Uncommon instructions can be ignored. 
Practice: The AMD 29000 and SPARC architec-

tures omitted integer multiply and divide instructions
in favor of simpler “step” primitives; the i860 left out
even these. But time breeds wisdom; both the 29K and
SPARC instruction sets have now been augmented to
include integer multiply and divide. The i860 has not.

Theory: Since RISCs have faster design cycles,
they’ll be the first out the door with any new technology.

Practice: RISC’s track record with new technology
is not good. But suppose RISC did take a year less time
to design. If competing design teams began at the same
time, wouldn’t RISC enjoy a one year head start?

Maybe—but this isn’t the Olympics. Nobody fires a
starter’s pistol to make sure competing design teams
begin together. If you’re captive to an outside foundry it
may be wise (if not mandatory) to wait for a new process
to be proven before you stake your corporate future on
it, but large IC vendors are not subject to the uncertain-
ties of another company’s technology. 

Moore’s law—that transistor counts double every
two years—has proven quite dependable. Technologists
thus know well in advance when it will become practical
to manufacture CPUs containing 2 million transistors,
or 5, or 20. With foresight and sufficient resources,
there’s no reason design teams can’t begin years in ad-
vance to define the architectures and implementation
techniques for the CPUs of tomorrow. This is what the
P5 and P6 design teams apparently did. The ultimate
rate-limiting step is thus production technology itself,
and it has little to do with design time. 

Canard 3: RISC is More Cost-Effective
And then, of course, there’s the cost issue.
Theory: RISC CPUs use fewer transistors, opening

up chip area for system enhancements like cache.
Practice: Right—but growing die sizes open up

chip area on an ongoing basis, not as a one-shot deal. It’s
the ‘90s now, and transistor budgets are wide open.
Whatever edge RISC once had is now lost in the noise.

Theory: Code density doesn’t matter anymore.
Practice: Maybe not, if memory and cache are suf-

ficiently large. But while microprocessors already de-

 
M I C R O P R O C E S S O R  R E P O R T

 
	

 

1 6 	 	
vote more transistors to cache than any other single
function, cache is still the most critical resource. Pro-
grams for RISC architectures typically expand by 20%
to 90%, requiring proportionally more cache for a given
instruction hit rate. Complex instructions and variable-
length encoding would let smaller caches work as
though they were at least 20% larger—and being able to
trim a million-transistor cache by even 20% would
make up for a lot of decoder and controller complexity. 

Theory: Since RISC CPUs are smaller, they cost
less to build and sell for less money.

Practice: Simple, scalar RISC chips undoubtedly
are smaller than equivalent CISC devices. Just look at
the integer core in a die photo of the i860XP (see µPR,
6/12/91, p.7) Not the bottom half of the die—that’s
cache. And don’t look at the FPU logic and graphics sup-
port in the top right quadrant, or the bus control, pag-
ing, and TLB logic in the top left. Just check out the
integer core, that little block of the logic in the middle
that consumes less than 5% of the total chip area. Had
the i860 architects chosen not to cripple the part quite
as severely as they did, that tiny little block might have
been larger. On the other hand, the chip might then
have sold better, and a full 1.5 million transistors might
not then have been needed for cache arrays.

But price in today’s market isn’t determined by
what chips cost to build, or even the defrayed cost of
design and equipment. Price is determined by value.
Most system costs are fixed. A CPU that multiplies sys-
tem throughput will be worth quite a lot. The 486DX2
isn’t cheap, selling for many times what it costs to build,
but to those who buy it, it’s a bargain. If RISC CPUs sell
for less than some of their CISC cousins, it’s in part
because they have less value.

The Proof of the Pudding
But enough about theory. It’s time for dessert. Proof

of technological superiority should appear in the form of
faster/better/cheaper production systems. Here RISC
again fails to deliver on its initial promise. 

Do RISC clocks run faster than CISCs? Not always.
Intel had 100-MHz 486s running in the lab before 100-
MHz R4000s were working. The fastest R4000 system
made still has a 100-MHz internal clock, just 50% faster
than a mainstream PC retrofitted with a 486DX2-66. 

Can high-end RISCs significantly outperform a
486? On floating-point applications, yes—but FPU
throughput depends more on implementation complex-
ity than any underlying architecture. A 50-MHz 486 has
SPECint92 ratings that are actually better than a
SPARCstation 2, and comparable to mid-range work-
stations using the R4000 and HP Snakes. A 486DX2-66
delivers at least two-thirds the integer throughput of
the fastest systems from Sun, MIPS, HP, and IBM. Joy’s
law—that workstation throughput will double each

	

A U G U S T  1 9 ,  1 9 9 2



year—started falling off track in 1989. If anything, the
performance gap between RISCs and CISCs may be
closing; Intel says the P5 should match the performance
of an R4000. 

Do RISC designs always go as smoothly as their
proponents had expected? Apparently not. Super-
SPARC was at least a year or two late and still can’t
meet its speed goals. HyperSPARC is long overdue, and
SPARC Lightning was canceled outright. 

Does RISC always move quickly to new technology?
Hardly. The much-publicized ECL implementation of
SPARC never was used in a meaningful system; the
ECL R6000 was significantly delayed. Computer start-
up Prisma tried to build a gallium-arsenide version of
SPARC. They failed and the company went bust.

And what about price? RISC chips generally do cost
less than high-end 486s, but not because they cost less
to make, and 486 prices may soon start falling like a
rock. Not too surprisingly, first-tier system vendors
charge about the same amount for fully-equipped work-
stations with comparable features and performance,
whatever the CPU inside. If you’re willing to chance a
no-name clone, though, 486 systems can be assembled
at price points RISC can’t touch.

The Death of the RISC Chip Market
But what about the biggest promise of RISC, that

its inherent technological superiority would overcome
the head start of older architectures and soon displace
established merchant-market microprocessors? RISC
was once seen as the start of Intel’s downfall. While
RISC certainly does now dominate workstation mar-
kets once owned by the 68K, Motorola’s marketing and
production skills may deserve equal credit for this. In
terms of displacing other merchant-market micros in
computers, RISC has utterly failed.

The Intel 960 and AMD 29K each initially targeted
a range of applications including UNIX workstations,
but each was repositioned for embedded applications
before release.

Sun initially positioned SPARC as a merchant-mar-
ket processor and promoted the parts for open system
designs. So far, though, Solbourne and everyone else
who used SPARC to compete with Sun in an established
market has failed to make a dent. 

Motorola was the first major IC vendor to endorse
the RISC concept. The 88K has since been all but aban-
doned, but not before the confusion it stirred up helped
ensure the demise of the 68K. The Intel i860 raised re-
ductionism to a new low. No one bought it, though, and
the part was withdrawn from the workstation market.

The Precision Architecture is still essentially cap-
tive to HP. DEC has had trouble finding a second source
for Alpha. IBM abandoned the RT, and the original
RS/6000 architecture will be used only in proprietary

 
	

 
	

 

A U G U S T  1 9 ,  1 9 9 2 	 	
multi-chip systems. The success of PowerPC in the open
systems market can’t be gauged until working devices
exist.

The best and brightest hope for RISC, many
thought, lay with MIPS. The MIPS architecture gar-
nered early acceptance in systems built or planned by
DEC, SGI, Olivetti, Bull, Prime, Compaq, and Acer.
Alas, as one OEM after another backed away from the
part, its prospects of success grew more dim. And with
MIPS’ acquisition by SGI, the architecture may have
lost the neutrality system vendors demand of their sup-
pliers, and its potential for outside success is now slim.

In a way, the failure of these RISC processors to
break out of their early niches was inevitable. One of the
fundamental precepts of RISC is that CPU architecture
and implementation should not be decoupled, that in
order to deliver the absolute maximum throughput, an
architecture should map closely onto its intended im-
plementation. Thus it was deemed advantageous to
throw out any instructions and features that do not fit
cleanly into the intended execution pipeline.

But design techniques will keep changing as long as
technology continues to evolve. Whatever implementa-
tion techniques made the best use of yesterday’s tech-
nology will likely not be the best for tomorrow’s. RISC
architectures therefore guarantee their own obsoles-
cence. MIPS and SPARC begat POWER, which begat
Alpha, which will beget something new—DEC’s
promise of a 25-year future for Alpha notwithstanding.
None will dominate the open-systems market long
enough for the critical mass of software needed for long-
term success to develop.

At this point, then, if RISC survives, it will do so
only as a multiplicity of incompatible proprietary pro-
ducts maintained by independent system vendors. This
is a far cry from its promise. The future of RISC micro-
processors in the open systems market is dead.

Bad Reviews
It’s been ten years since RISC burst onto the scene.

While the 32-bit desktop market has grown from zero to
about 30 million units per year during that time, RISC
has so far managed to penetrate less than 2% of the
market. The i486DX2—introduced in just March of this
year—is already shipping at about twice the rate of all
workstation RISCs put together, with a cumulative
total equal to one third of all the RISC workstations
ever sold.

Film reviewers have a simple rule for sizing up new
movies: “If nothing happens in the first ten minutes,”
they say, “nothing’s going to happen.” It’s the same with
computers. If an architecture fails to take over the
mainstream computer market in its first ten years, it’s
not likely ever to do so. And an ideology with no future is
doomed. ♦

M I C R O P R O C E S S O R  R E P O R T
1 7


	Why RISC Is Doomed
	Shifting Ideological Tides
	Canard 1: RISC Is Inherently Faster
	Canard 2: RISC is Easier to Design
	Canard 3: RISC is More Cost-Effective
	The Proof of the Pudding
	The Death of the RISC Chip Market
	Bad Reviews


