

Microprocessor
Past, Present

After Three Generations, Micropro

By Allen Samuels, Weitek Corp.

Last issue, the first article of this series explained
the IEEE floating-point standard, which serves as the
basis for nearly all microprocessor floating-point units.
This article gives an overview of the four generations of
microprocessor FPU implementations; future articles
will delve into more implementation details.

The dramatic improvement in silicon processing
technology has allowed microprocessor floating-point
units (FPUs) to evolve greatly since their introduction
in the late ’70s. Advances in gate speed and architecture
have allowed over a hundred-fold increase in perform-
ance during the 1980s.

How do you measure the floating-point (FP) per-
formance of a microprocessor system? The computation
unit’s performance is relatively easy to characterize
(see below), but this is not the entire story. The compu-
tation unit must be fed constantly with data to crunch:
address, load, store and control operations frequently
outnumber floating-point operations by two or three to
one. (Actually, this is also true for many integer pro-
grams if you go to the trouble of separating pure compu-
tation from data movement and control operations. The
commonly quoted MFLOPS excludes data and control
management operations, however, whereas the com-
monly quoted MIPS includes them.) Also, FP programs
are notorious cache-busters, placing high demands on
the memory system. The moral of the story: a good FP
unit needs a good system to support it.

Two numbers measure floating-point performance:
latency and bandwidth. Latency is the length of time
before you can use the output (result) of an operation as
an input to a subsequent operation. Bandwidth is a
measure of the time between operation starts (or, in-
versely, the rate at which operations can be started),
and it takes into account the degree to which operations
can be overlapped. For example, a moderately fast FPU
might have an add latency (i.e., the time from when the
operation starts to when the result is available) of 4
clock cycles, but the issue rate could be every two cycles.
If one instruction depends on the result of the previous
instruction, then performance is limited by the latency.
If not, it is limited by the bandwidth.

Latency is not solely a property of the first instruc-
tion; it can be affected by the second instruction (the one

	

M A Y 6 , 1 9 9 2 	 	
Floating Point:
, and Future
cessor Floating-Point is Maturing

waiting for the results of the first) as well. Therefore, to
properly document latency, a matrix of first and second
instructions is required. One example is the i860 float-
ing-point unit, where the latency of a floating-point add
operation is three cycles unless it is used as the “src1”
input to a floating-point multiply, in which case the la-
tency is four. (Since floating-point multiplication is
commutative, and this restriction does not apply to the
“src2” input, simply reversing the operands in the sec-
ond instruction recovers the extra cycle.)

Bandwidth can also be highly instruction-depend-
ent. A look at the rules for overlapping operations for
the R4000 series shows very detailed cycle counts and
pipeline diagrams. Getting maximum performance re-
quires sophisticated software scheduling algorithms
that keep track of the states of the CPU’s functional
units.

High bandwidth is most useful for problems that
can be vectorized; i.e., each element can be computed
independently. In general, higher bandwidth (smaller
numbers of cycles between instructions) is good,
provided that it doesn’t cause an increase in latency.
Signal processing is an example of an application where
bandwidth is often more important than latency, since
there is a continuous data stream. Bandwidth beyond
the system’s ability to keep the pipeline fed is wasted.

Microprocessor FPUs for desktop computers have
gone through three distinct generations up to now: Pa-
leolithic, Neolithic, and modern, as the following sec-
tions describe.

Paleolithic
(8087, 80287, 80387, 68881, 32081)

The limited silicon technology of the late ’70s and
early ’80s, combined with the smaller market potential,
forced the first generation of microprocessor FPUs to
look very much like their associated integer units (IUs):
single chips with a small data path and gobs of mi-
crocode. Since pins on the CPU were at a premium, in-
structions and data were fetched by the CPU and re-
transmitted to the FPU over the main system bus via a
complicated and slow protocol. Once received, instruc-
tions were decoded and executed using a small (typi-
cally 16-bit-wide), heavily microcoded data path. This
lead to instruction latencies in the 10-100 cycle range in
an era when a 32-bit integer add required as few as two

	 M I C R O P R O C E S S O R R E P O R T
1 5

cycles. Due to the limited resources, no instruction over-
lap was allowed and, therefore, bandwidths were usu-
ally the same as latencies.

The dominance of the Whetstone benchmark is per-
haps the clearest example of how a benchmark affects
design decisions. Since Whetstone emphasizes trigono-
metric and transcendental functions, many FPU
designers opted to devote large amounts of microcode
space to these relatively unimportant operations—to
the detriment of the performance of more critical add
and multiply instructions.

As silicon technology advanced, CISC designers re-
vised their CPUs but tended to continue with first-gen-
eration type FPUs. This was due to the poor instruction
protocols, which could add as much as a dozen cycles
before a computation could be initiated, diluting float-
ing-point core performance. This is borne out by the
Cyrix FPU for the 80386. It has a computational core
that is as much as five times faster on add and multiply
instructions than the core used with the Intel 80387.
However, when used in the 80387 compatibility mode, it
is able to deliver only a modest 20-40% improvement on
the majority of benchmarks. (Interestingly, the per-
formance delta of the Cyrix part is greatest—almost
2×—for the Whetstone benchmark, primarily due to the
7-10× boost in speed for the transcendental and trigono-
metric instructions.)

Cyrix offers a faster memory-mapped interface as
an option, following the approach Weitek adopted for its
add-on coprocessor chips. While this results in systems
with substantially higher performance, the burden of
incompatible software has retarded widespread accep-
tance.

Neolithic
(Early RISC: Fujitsu/Cypress SPARC,

R2000/3000, RS/6000, PA-RISC)
The second generation of microprocessor FPUs

came with the first generation of RISC processors. The
early RISCs were all multiple-chip implementations
with off-chip primary caches. Most designers chose to
put the FPU and private register file on a separate chip,
virtually eliminating any protocol overhead by dedicat-
ing additional pins to the CPU/FPU interface. (One no-
table exception is Motorola’s 88000, which was one of
the first microprocessors to implement an on-chip float-
ing-point unit. Intergraph’s Clipper is another proces-
sor that had an on-chip FPU early in the game, but the
latest implementation has a separate FP chip.)

Other architectural changes in this generation of
microprocessors, such as instruction and data align-
ment restrictions, allow the FPU unit to communicate
directly with memory for loads, stores and instruction

M I C R O P R O C E S S O R R E P O R T

	

1 6 	 	
fetches, eliminating a costly passage through the IU as
required by many first-generation FPUs. (Ironically,
the original 8087 FPU used exactly this type of arrange-
ment. Its byte-wide bus and lack of virtual addressing
allowed the 8087 to track the CPU instruction pipeline
and to perform loads and stores directly to memory. The
286/287 and 386/387, with wider buses and sophisti-
cated memory management, forced its abandonment.)

For this microprocessor generation, system cycle
times were constrained by the use of an off-chip primary
cache. At the same time, transistor budgets increased,
and workstation users had the desire for fast floating-
point and the willingness to pay for it. The result was
some of the lowest FPU latencies (in clock cycles) ever
seen in computer systems; typical systems of this gen-
eration have latencies of three or four cycles. The most
extreme example is the RS/6000, with a two-cycle la-
tency; even more startling, this is for a fused multiply-
add, i.e., two cycles for two operations.

It was near the end of this generation that the domi-
nant workstation suppliers formed SPEC to create a
new series of system benchmarks. Naturally, they
hoped to show that their chips were way ahead of a
newly awakened and aggressive Intel. This was done by
heavily weighting the benchmark suite toward the long
suit of the current RISC machines: floating-point per-
formance. In other words, the tail now wagged the dog.
Comparisons of just the integer portions (SPECint)
show a much smaller differential between the RISCs
and the 486. (This situation is probably what has forced
Intel to divulge that the P5 will have much higher float-
ing-point performance.)

Modern
(i486, 68040, 88110, R4000,

SuperSPARC, Alpha)
As the march of technology continues, million-plus

transistor budgets have become all the rage. Most proc-
essors are becoming superscalar or superpipelined to
achieve higher performance levels. Both techniques
tend to push designers toward single-chip implementa-
tions. IC packaging is the culprit here. Superpipelined
systems, with their fast clock speeds, cannot afford the
inter-chip delays associated with standard IC packag-
ing. Superscalar systems have wide interfaces to in-
struction and data memories that require several hun-
dred pins, boosting costs for systems using processors
without on-chip caches.

Unlike the Neolithic CPUs, modern CPUs tend to
have high clock rates, typically made possible by their
on-chip caches, making it more difficult to pack all the
operations required for a floating-point calculation into
a small number of pipeline stages. At the same time, the

	

M A Y 6 , 1 9 9 2

brary, and development tools. IBM could match the gen-
erality of AT&T’s solution while beating AT&T’s price
and performance by releasing the DSP Manager and
real-time executive on TI’s TMS320C31. Instead, IBM
has chosen a less-general, lower-precision DSP core to
minimize cost and allow integration of serial ports for
peripherals. However, thanks to the Mwave DSP’s effi-
cient DMA, many signal processing cycles will be freed
from the task of handling real-time I/O.

Although real-time video processing is a key ingre-
dient of multimedia computing, it can be expensive. It is
unclear how the Mwave standard will handle any form
of real-time video in the future or how it will work with
the Intel DVI chips IBM has been using in its multime-
dia computers. Due to high costs, products based on
processors (e.g. iWARP) with the kind of power needed
for full-featured multimedia computing cannot be suc-
cessfully marketed to the masses at present. However,
Mwave’s dramatic improvement over currently dismal
multimedia standards for the PC, along with the poten-
tial to support future higher-precision DSPs, may re-
sult in Mwave forming a long-lasting foundation.♦

Mwave
Continue from page 11

	

	

FPUs must now share the same die with the CPU, so
there is pressure to keep the transistor count from in-
creasing greatly. The net result is longer latencies, and,
frequently, lower bandwidth. Often, due to decreased
basic cycle times, actual FPU latencies (measured in ns)
have held roughly constant, even though latencies in
clock cycles have increased. You can see these effects
when comparing the newly announced processors to
their ancestors. (At first glance, SuperSPARC appears
to be the exception, but this is illusory. Since it can exe-
cute two dependent integer operations in one cycle, at 40
MHz it can be considered as an 80-MHz non-supersca-
lar integer unit with a six-cycle latency and two-cycle
bandwidth FPU—a modest boost over the previous
four-cycle latency of the SPARCstation 2 at 40-MHz.

The limited transistor budget—and the recognition
of Whetstone’s misplaced emphasis—probably caused
Motorola to drop some of the transcendental and trigo-
nometric instructions from the native instruction set of
the 68040. (They are emulated via software traps to
maintain software compatibility.) The extra transistors
were used to speed up the basic floating-point perform-
ance, which is quite respectable. Intel couldn’t do that
in the i486 due to the primitive state of operating sys-
tems for the PC, resulting in a slow on-chip FPU with a
lot of microcode.

For a recent example of how a limited transistor
budget affects the FPU, compare SuperSPARC and
Alpha. Both are implemented in 0.8-micron triple-
metal processes with die sizes near the limit of the reti-
cle. (SuperSPARC is BiCMOS, and Alpha has a 0.5-mi-
cron effective gate length, but both processes provide
about the same number of potential transistor sites.)
The SuperSPARC designers clearly were concerned
about using inexpensive secondary cache technology, so
they devoted large amounts of chip area to the 36-Kbyte
primary cache, leaving enough space for only a 75-ns
latency FPU (three cycles at 40 MHz). The Alpha
designers rely on a high-speed secondary cache with a
smaller primary cache. This allows space for a much
faster 33-ns latency FPU (5 cycles at 150 MHz).

The Crystal Ball
The battle of the benchmarks will continue. The

RISC workstation vendors are moving to single-chip su-
perscalar and superpipelined CPUs with their limited
FPUs, while Intel is talking about a P5 (586) with much
better FPU performance than the 486.

As device geometries decrease, more and more
transistors will allow FPU latencies to continue to de-
crease relative to integer latencies. Larger transistor
budgets will permit latencies to decrease faster than
process-driven gate speeds. Soon the law of decreasing
returns will set in; Alpha is getting close to the limit for
M A Y 6 , 1 9 9 2 	 	
add and multiply, even though its divide performance
could be considerably improved. Within the next few
years, every desktop microprocessor will have an FPU
with a 3 to 5 cycle latency for add and multiply, with
radically shorter divide and square root times to be ex-
pected thereafter.

In the distant future (5+ years), when the silicon
and compiler technologies have advanced to the point
where high-performance machines issue three or four
instructions every cycle and transistor budgets are
dramatically increased, you will see single-chip proces-
sors with very fast, dual FPUs. (This trend is visible
today in multichip, application-specific processors).

Since their introduction, microprocessor floating-
point units have seen tremendous evolution in architec-
ture and implementation. The painfully slow separate
coprocessor chips of the early days have been replaced
by dedicated, high-performance, floating-point data
paths integrated on to the CPU die. The push for high
integration, with the CPU, FPU, and cache all on the
same chip, has limited the growth in FPU transistor
budgets, but future generations will see another spurt
of FPU performance increases. ♦

M I C R O P R O C E S S O R R E P O R T
1 7

	Microprocessor Floating Point: Past, Present, and Future
	Paleolithic
	Neolithic
	Modern
	The Crystal Ball

