

Microcode Engine Offer
IMS’s 3250 Emulat

By Mark Thorson

International Meta Systems will soon announce its
3250, a microcoded processor for binary emulation of
Intel’s 486, Motorola’s 68040, and the venerable 6502.
(IMS has also talked about emulation of RISC proces-
sors, but this is not part of the plan for the 3250.) User-
defined microcode will also be supported, allowing sys-
tem designers to achieve differentiation by moving
performance-critical routines into microcode. IMS of-

M I C R O P R O C E S S O R R E P O R T 	
Instruction Register (IR)

Phase II Decoder

Opcode DecoderB Register

ALU/shifter

X Register Condition Mask

Interrupt Logic External Bus LogicChannel Logic

Link Stack
(8 x 32)

Phase II Dispatch

A Bus Literals B Bus Literals

Register File
(8) 32-bit General

(16) 32-bit Emulator
(16) 16-bit Memory
(16) 32-bit Memory

Control Signals

32 32

32 32

A Register

Phase I

Phase II

Phase III

Phase IV

Instruction Address Instruction Bus

Memory
Data Bus

External Data Bus

3216

Multiplexed Address,
RAS, CAS, etc.

Transfer
Logic

12

16

16

32 32 32 3232

Test and
Skip Logic

32

32

32

External
Interrupts

16

12 20

32

32

Figure 1. Block diagram of the IMS 3250P.

1 2 	 	
s Enhanced Emulation
es 486, 68040, 6502

fered earlier versions of this architecture as board-level
products for the PC/AT and Macintosh II, and sold
about 500 systems, mostly for running a microcoded
Smalltalk interpreter. IMS was founded in 1985 by ex-
ecutives from The Aerospace Corporation. It went pub-
lic in 1989, and now has six full-time employees. Cur-
rently, their silicon foundry is S-MOS (part of Seiko
Epson).

Although microcoding is a common implementation
technique used internally in many CPU designs, RISC
architectures have largely eliminated microcode in
high-end CPUs. Even Intel’s 80x86 family, which tradi-
tionally has used extensive microcode, is expected to
use a RISC-like microarchitecture in future implemen-
tations.

Microcode has always seemed to offer the possibil-
ity of application acceleration through custom mi-
crocode. It’s often said that programs spend 95% of the
time executing 5% of the code, and microcode held the
promise of implementing that 5% (or whatever) directly
in the on-chip control signals of the native machine.

In practice, this potential has seldom been realized.
Very few processor implementations have ever allowed
user-defined microcode, and in the few that did—such
as DEC’s VAX 11/780—the capability usually went un-
used. This is the result of the difficulty of writing mi-
crocode, the lack of software development tools, and the
inefficiency of on-the-fly microcode reloading.

The strategy being pursued by IMS is to use the
flexibility of microcode to emulate popular instruction
sets, and to support custom microcode for system differ-
entiation and performance enhancement. No microcode
reloading for individual application support will be
provided; instead, custom microcode will accelerate the
standard system functions. For the present, IMS is fo-
cusing on pen-based applications, in which the 3250 can
be used to accelerate the user interface and handwrit-
ing recognition software. Other potential applications
cited by IMS include DSP for modems, compression/de-
compression algorithms for file I/O, and support for
graphics routines such as BitBLT and drawing com-
mands for Windows.

Architecture
Figure 1 shows a block diagram of the IMS CPU. It

is a 4-stage pipeline, as indicated by the division lines.
Initially, IMS plans to have two versions of the 3250.
The first version, called the 3250P, will be a gate-array
implementation with external microcode. This is in-

	

M A Y 6 , 1 9 9 2

T A LOp B Literal

01519232731 16202428

T A LOp B Address

01519232731 16202428

ROp

1112

T A 1111 Address

01519232731 16202428

subop

1112

ROp

T A LOp Address

01519232731 16202428

subop

1112

0000B

78

	

	

M I C R O P R O C E S S O R R E P O R T
tended as a microcode development vehicle that will be
sold as a board-level product for the PC/AT and Macin-
tosh II. The second version will be a standard-cell im-
plementation with an on-chip 16K × 32 microcode ROM.
The CPU itself (not including ROM) is about 50K gates.

A limited ability to correct errors in the microcode
ROM is provided in the form of patch registers. Eight
15-bit patch address registers and eight 32-bit patch
data registers allow replacement of up to eight microin-
struction words.

The figure shows the 3250P architecture, with its
ports for an external microcode memory and an exter-
nal host bus interface. These are deleted in the ROM-
based version, which communicates with both its
DRAM and expansion bus through the block marked
“Channel Logic.” This block includes an MMU with a
32-entry TLB. The MMU handles base and extent
checking in hardware, as well as 486-compatible privi-
lege-level checking; microcode is responsible for reload-
ing the TLB on a TLB miss. The TLB has tags for the
complete 32-bit virtual address but provides only 24
bits of physical address, limiting the physical address
space to 16 Mbytes.

The register file contains eight general-purpose 32-
bit registers, sixteen 32-bit emulator registers for use as
the general registers of the emulated instruction set
architecture, and 32 “memory” registers (sixteen 16-bit
and sixteen 32-bit) for the internal registers of the emu-
lated machine.

Microsubroutine call and return is implemented
using the link stack, which is an 8-level stack for hold-
ing return addresses. It is 32 bits wide, even though
addresses are 16 bits, so that it can also be used as an
argument stack.

Power management is available through a clock-
scaling mechanism, which allows software to slow or
stop the clock to 98% of the chip (about 2% of the chip
requires a constant-frequency clock). No specifications
for active or standby power are available at this time.
The clock-rate target for the initial version is 40 MHz.

Instruction Set
The instruction formats are shown in Figure 2. It is

based on a three-operand assignment of the form T := A
LOp B, in which T is the destination operand, A and B
are source operands, and LOp is an operator. T and A
must be registers; B can be a register or a 16-bit literal.
When B is a register, the right-hand side of the format
can be a separate instruction with its own ROp operator
and 12-bit address operand. The right-hand side in-
structions are mostly conditional branches, data move-
ment instructions between the CPU and DRAM or
other external devices, and assignment operations in-
volving registers outside of the general-purpose and
emulator register sets (e.g., the “memory” registers).
M A Y 6 , 1 9 9 2 	
One LOp encoding, 1111 (binary), takes over the B
field as an extension to the opcode. This format is used
for unary operators. Similarly, an ROp encoding, 0000
(binary), extends the selection of right-hand side in-
structions by taking four bits from the address operand.

The left-hand side instructions include a complete
set of arithmetic and logical operators, with a particu-
larly rich selection of rotate, shift, sign-extension, and
fill operators. All operations are basic ALU functions
that can be performed in a single cycle; no multiplica-
tion or floating-point arithmetic is provided. There is,
however, an instruction designed to accelerate floating-
point emulation. The count-leading-repetitions instruc-
tion returns the number of leading bits that have the
same state as bit 31; this instruction is useful in normal-
izing a floating-point result.

Emulation Support
The 3250 has some unusual features for faster emu-

lation of foreign instruction sets. Specifically, these in-
structions support emulation of the target machine’s
condition code register and acceleration of the instruc-
tion decode mechanism.

Condition codes are a major problem for rehosting
binary instruction code. For example, the 80x86 family
includes parity and half-carry (i.e., carry out of the low
four bits of the ALU) flags in its condition codes register.
These flags are rarely needed for their intended func-
tions, but they must be synthesized any time software
reads the condition codes register. Worse yet, some soft-
ware uses the fast condition code testing available for
these obscure flags to implement performance-sensi-
tive state machines.

A right-hand side instruction, the alternate regis-
ters instruction, redirects the left-hand side instruction
from the general-purpose register set to the emulator
register set. It also selects an alternate condition codes
register that has the same format as the emulated ma-
chine. Control bits in a system configuration register
select whether the emulated machine has the condition
code format of the 486 or the 68040. The native condi-
tion codes of the 3250 continue to be updated, even

Figure 2. IMS 3250 instruction formats.
	 1 3

Price & Availability

General availability of the 3250P is planned for third
quarter as part of a development system. No pricing is
available on the development system alone; it will be
provided as part of a technology licensing agreement. In
quantities of 10,000, the ROM-based 3250 is expected to
cost about $45.

IMS, 23842 Hawthorne Blvd., Torrance, CA 90505;
310/375-4700; fax 310/378-7643.

M I C R O P R O C E S S O R R E P O R T

	

	

while operations are performed on emulation registers.
Instruction decoding is simplified by the decode and

dispatch instruction. In both the 486 and 68040 the op-
code fields are not always contiguous. The decode and
dispatch microinstruction reads a high-level instruc-
tion from the application’s code space, extracts the op-
code bits, compacts and right-justifies the opcode bits,
then does a multiway branch. The decode and dispatch
instruction is a right-hand side instruction that in-
cludes three separate fields for directing the T, A, and B
operands of the left-hand side instruction to either the
general-purpose or emulation register sets.

There are separate flavors of the decode and dis-
patch instruction, depending on whether the system is
configured for 486 or 68040 emulation. In addition,
within each emulation mode, there are two flavors of
the instruction called DD0 and DD1. The DD0 instruc-
tion resets the instruction fetch mechanism, while DD1
continues the instruction decode from where DD0 left
off. The DD0 instruction is intended to initiate the in-
terpretation of the next emulated instruction, so it typi-
cally appears on the right-hand side of the last microin-
struction in the interpretation of the previous emulated
instruction.

If the emulated instruction is a 486 instruction, it
may have a scaled-index byte or a mod-R/M byte (i.e., a
general-addressing mode specifier). In this case, the
DD0 instruction will interpret the s-i-b or mod-R/M
byte so that argument prefetching can occur, and the
DD1 instruction will interpret the core instruction.

Memory Controller
The memory controller supports two channels: a

read-only channel for reading instructions from the ap-
plication code space and a read/write channel for access
to operands. The channels do their own address genera-
tion, allowing single-cycle access to consecutive ad-
dresses after the channel is set up. External data is
byte-addressable in 8-, 16-, 32-, or 64-bit words, but it is
made available to the CPU in a form that is right-justi-
fied and zero-extended to 32 bits. Channel operations
such as prefetching can proceed in parallel with the
CPU.

A channel is set up by programming the channel
registers. There are base and extent registers for imple-
menting bounds checking, and an address register for
autoincrement or autodecrement addressing. A para-
meter register allows programming the address step
size and data width, and a status register reports de-
tails about the previous channel transfer (used chiefly
to support the 486’s debugging features).

The channel logic includes a DRAM controller that
supports up to 16 Mbytes of DRAM. On-chip drivers for
the RAS, CAS, write enable, and multiplexed address
signals minimize external package count.
1 4 	 	
Conclusion
IMS expects the 40-MHz version of the 3250 to be

roughly equivalent to a 386DX running at 33 MHz on
the execution of 80x86-family binary code, which seems
optimistic. They expect 10–20× improvement on func-
tions moved into microcode.

The 3250’s likely real-world level of performance on
x86 code is adequate for laptops and portables, but it is
slow by the current standards of the desktop market.
IMS is considering a high-end cache-based version of
their architecture, but competing with future Intel (and
Intel-compatible) CPUs on execution of 80x86 code is
not likely to be a winning strategy. By the time they
could bring a high-end chip on-line, the next generation
of 80x86-compatible chips will be available, raising the
goal that must be reached to be competitive.

IMS is addressing a niche where emulated perform-
ance at the low-end of the 386 range is acceptable, and
fast native performance in the execution of compute-in-
tensive proprietary features is desirable. This strategy
is attractive because it could enable hardware vendors
to differentiate their products with proprietary mi-
crocode, and differentiation is sorely needed in the in-
tensely competitive PC-compatible market. Another po-
tential market is in systems that could run both DOS
and Macintosh applications, assuming that one of the
“clean room” Mac toolbox suppliers succeeds in getting
its product to market.

While the IMS approach is innovative, competing
with the spectrum of x86 and RISC microprocessors is a
daunting challenge. IMS lacks the resources to compete
head-on in the microprocessor market. Its chance for
success lies in finding one or two well-heeled system
makers that might fund the continued development so
they can gain access to some unique technology in an
increasingly commodity-like marketplace. IMS might
also find customers among semiconductor suppliers
seeking 386-compatible CPU core technology. In any
case, prospective users are likely to wait for IMS’
promised demonstration of 386 protected-mode opera-
tion, planned for September.♦
M A Y 6 , 1 9 9 2

	Microcode Engine Offers Enhanced Emulation
	Figure 1. Block diagram of the IMS 3250P.
	Architecture
	Instruction Set
	Figure 2. IMS 3250 instruction formats.
	Emulation Support
	Memory Controller
	Conclusion

	Price & Availability

