
Object Orientation: W
By Brian Case

While Microprocessor Report generally sticks to
hardware topics, some software issues are of such im-
portance to the success of future operating systems that
they can have significant impact on the microprocessor
market. The software buzzword of the ’90’s is surely
“object-oriented,” yet it is poorly understood outside the
software development community (and, perhaps, even
within much of that community). Here, in the interest of
adding some signal to all the noise, is our modest attempt
to clarify just what OOP is and why it might matter, in
a way that is understandable even to us hardware types.

There are several pieces of evidence to suggest that
the shift to “object orientedness” is a significant change
in the software community. NeXT claims that it has the
object-oriented technology that will solve software woes
and further that it is significantly ahead of everyone
else. (There appears to be some basis for these claims as
NeXT is gaining significant inroads in the market for
“mission-critical” in-house application development at
large corporations.) Apple and IBM have teamed to de-
velop and market an object-oriented OS. Object-ori-
ented development tools have sparked new life into the
compiler, debugger, and environment markets. Finally,
it seems impossible to have a discussion, formal or in-
formal, about computer programming without broach-
ing the subject of object-orientation.

Since the adjectival phrase “object oriented” has
achieved buzzword status in the grand tradition of
“user friendly,” a few questions are in order: Just what
is object-orientation? What software problems does it
really address? Has object-oriented programming been
overhyped? Can it affect the microprocessor industry?

Object Orientation
The most talked-about application of object ori-

ented design is in object-oriented programming (OOP),
but user-interfaces and data bases may also be object-
oriented. Object-oriented characteristics are easily
identifiable in all three areas, but we will focus primar-
ily on OOP.

The key concept in the object-oriented paradigm is
the object itself. In an object-oriented programming
language, an object is an encapsulation of both data and
code. The term encapsulation means that the internal
structure and representation of the data and code are
protected. The encapsulation provides a well-defined
interface to the outside world, and access to the inter-
nals is available only through that interface.

A benefit of encapsulating data and code together is
abstraction. Formally, abstraction is the representation

M I C R O P R O C E S S O R R E P O R T

	

1 2 	 	
hat Does it All Mean?
of ideas or concepts without attention to details. Ab-
straction results from the fact that the well-defined and
strict interface of an object hides internal details from
the outside world. Note that OOP does not have a lock
on this concept; good programmers always try to use
abstractions. A routine named “sort” in any language is
an attempt to hide details, but unlike OOP languages,
conventional programming languages generally do not
have mechanisms for enforcing and building upon ab-
stractions.

An object is a “real” thing that is cast from a mold
provided by a class definition; think of a cookie as an
object and a cookie-cutter as a class definition. An OOP
program might have one class definition called “Em-
ployee Record,” but there can be many Employee Re-
cord objects actually occupying memory at program run
time. Thus, a class definition is much like a “struct”
record definition in C except that a class definition en-
capsulates code and protects the data and code from
unauthorized outside access.

OOP programs organize class definitions into a
class hierarchy. Conceptually anyway, the class called
“Object” is at the top of the hierarchy, and all other
classes are descendants of Object. Classes are organ-
ized into a hierarchy to provide the powerful object-ori-
ented property of inheritance. Inheritance allows a de-
scendant class—called the subclass—to use all the data
and code definitions of the parent class without the
bother of redefining them or explicitly including them.
Subclasses are said to inherit all the data and code of
parent classes. When such wholesale inheritance is in-
appropriate, a subclass can override inherited attrib-
utes. Inheritance and overriding are the basis of one of
the most compelling benefits of OOP: dramatic im-
provements in programmer productivity through con-
trolled reuse of existing data structures and code.

To request some action or service from an object,
one object sends another object a message. A message is
much like a procedure call in a traditional language.
The message invokes a method (like a procedure) inside
the target object. The important difference between
sending a message and making a procedure call is that
message-to-object binding is dynamic (done at run
time) while procedure-call-to-procedure binding is
static (done at compile time). This means that different
objects can respond to the same message in unique
ways. The ability to send the same message, for exam-
ple “print,” to different objects and get different results
is known as polymorphism in OOP parlance.

Every programmer is familiar with polymorphism.
The ability to use the “+” operator with both integer and
floating-point variables is polymorphism. Program-

	

A P R I L 1 5 , 1 9 9 2

#define HOURLY 1
#define YEARLY 2
#define COMMISSIONED 3

struct EmpRec
{
 char *name;
 int EmpTypeFlag;

 float Hourly;
 float Yearly;
 float Sales;
 float CommRate;
};

float WeekPay (er)
struct EmpRec *er;
{
 switch (er->EmpTypeFlag)
 {
 case HOURLY:
 return er->Hourly * 40;
 case YEARLY:
 return er->Yearly / 52;
 case COMMISSIONED:
 return er->Hourly * 40 +
 er->Sales * CommRate;
 }
}

	

M I C R O P R O C E S S O R R E P O R T
mers would stage a revolt if languages required them to
code “i+” for integer addition and “fp+” for floating-
point, but they take for granted that they will have to
conjure up distinct names for similar functions they de-
fine, such as “sort_list” and “sort_records.”

Encapsulation, abstraction, inheritance, and poly-
morphism are the four essential properties of object ori-
entation [Pinson & Wiener]. At this point, an example
from the domain of user-interfaces may help to clarify
some of the concepts.

A User-Interface Example
The Macintosh “finder” (the program that presents

the file-browser function to the user) has an object-ori-
ented user-interface. File and file-folder icons (directo-
ries) represent objects. Their icons are encapsulations
that abstract away internal details, and they can re-
ceive messages.

When an icon is selected (either by pointing and
clicking on it or, under System 7, by typing its name),
several actions can be performed on it. Choosing an ac-
tion can be thought of as sending a message to the ob-
ject. For example, a selected icon can be “opened” by
selecting “Open” from the file menu. Depending on
what kind of object is selected—a file or folder—appro-
priate action is taken. Opening a file starts the applica-
tion that created it; opening a folder creates a window in
which the contents of the folder are displayed—differ-
ent action, same message. This is an example of poly-
morphism: the same command is sent to two different
objects and two different behaviors are invoked.

OOP vs. Procedural Programming
Most popular programming languages use proce-

dural programming (LISP, however, uses functional
programming) where the central elements are the pro-
cedure and the data structure. To implement some ac-
tion, data is passed to a procedure via arguments in the
procedure call.

In OOP languages, the central element is, of course,
the object. To implement some action, a message is sent
to an object and some objects are optionally sent along
with the message. The striking difference is that in
OOP, a message is essentially sent to the data while in
procedural programming, data are sent to the proce-
dure. When an object is sent along with a message, note
that data and code (methods in the object’s class) are
being “sent” at the same time (no movement of code
actually occurs).

This difference alters the way programmers ap-
proach programming problems. In procedural lan-
guages, a programmer writes a procedure to perform a
needed function and defines a data structure to go along
with the procedure. To implement a slightly different
operation, either code and data structure must be modi-

	

A P R I L 1 5 , 1 9 9 2 	 	
fied or new code and data structure written.
For example, to keep track of hourly and salaried

employees and compute their weekly pay, you could
write in C the macro definitions, data structure, and
procedure as shown in Figure 1 in non-italic type. To
accommodate commissioned salespeople, modifications
to the data structure and code are required; one possi-
bility is shown in the code in italic type in Figure 1.

Under the OOP discipline, a programmer first
thinks of the abstract data types—not just language
data types like character, integer, or floating-point—
and the “things” (objects) that make sense for the appli-
cation and the ways these data types and things must
be manipulated. The programmer writes a class de-
scription that defines the data type and the methods
that implement the operations on the data type.

Using a fictitious C-like OOP notation, Figure 2
shows a possible class hierarchy for our employee prob-
lem. The general class Employee is a subclass of Object
and defines a place to hold the employee name and a
method for gaining access to the name (presumably we
would want to add a method to set the name too). The
class HourlyEmp is a subclass of Employee and defines
data to hold the hourly wage and a method WeekPay to
return the weekly pay for this employee. YearlyEmp is
similarly defined.

CommissionedEmp is more interesting. It is a sub-
class of HourlyEmp since we must pay our salesperson
something even during slow weeks. Thus, Commis-
sionedEmp need only define Sales and CommRate be-
cause it inherits the data HourlyWage and the method
WeekPay() from HourlyEmp. Further, Commis-
sionedEmp overrides WeekPay() with its own version.
To access the inherited WeekPay(), the local WeekPay()
simply uses a keyword such as “inherited”.

With our object-oriented approach, the main pro-

Figure 1. A traditional C approach to handling a record.
1 3

class Employee:Object
{
 data
 char *name;
 method
 char *EmpName ()
 {
 return name;
 }
};

class HourlyEmp:Employee
{
 data
 float HourlyWage;
 method
 float WeekPay ()
 {
 return HourlyWage * 40;
 }
};

class YearlyEmp:Employee
{
 data
 float YearlyWage;
 method
 float WeekPay ()
 {
 return YearlyWage / 52;
 }
};

class CommissionedEmp:HourlyEmp
{
 data
 float Sales;
 float CommRate;
 method
 float WeekPay ()
 {
 return inherited:WeekPay() +
 Sales * CommRate;
 }
};

M I C R O P R O C E S S O R R E P O R T

	

gram that iterates through the employee ranks and
prints out the weekly pay checks need only send the
polymorphic message “WeekPay()” to each employee ob-
ject. Depending on the type of employee object, a differ-
ent and appropriate WeekPay() method is invoked.

Notice that the OOP program has no need for the
EmpTypeFlag that the C program used to distinguish
between different uses of the EmpRec structure.

Pure vs. Hybrid Object Orientation
In Smalltalk V, a version of the classic object-ori-

ented language available for microcomputers, the
statement “3 + 5” causes the object “3” to receive the
message “+” with an argument object “5.” “3” is an in-
stantiation of the class “smallinteger,” and as such, “3”
knows how (has a method) to add other integers to itself.
The “+” method checks its argument (the object “5” in
this case) to see if it is also of class smallinteger. If so, it
returns an object that contains the sum of the two smal-
linteger objects. If not, the “+” method tries sending the
foreign object a “+” message hoping that the foreign ob-
ject knows how to add a smallinteger to itself. Thus, it is
possible to say “3 + ‘hello world’ ” and something useful
will happen if there is a “+” method in the class for
string objects that knows how to add a smallinteger
(perhaps it could try to convert the string to an integer
first). This powerful error checking and recovery prop-
erty is not available in traditional languages.

Figure 2. An object-oriented approach to the same problem.
1 4 	
Since it is desirable to perform other operations on
integers, smallinteger also defines methods for subtrac-
tion, multiplication, division, equal-to, less-than-or-
equal, bitwise OR, etc. In short, all the code that imple-
ments operations on fixed-length, machine-supported
integers is contained in the class smallinteger.

In Smalltalk, it is possible to change the behavior of
the “+” operation on integers by editing the code that
implements the method. In a language like Smalltalk,
messages are sent to “built-in” methods and to user-de-
fined methods in exactly the same way. In hybrid OOP
languages, such as C++, native language functionality
is still present in the familiar infix “3 + 5” notation while
user-defined functionality must use the “proce-
dure_name (arg1, arg2, arg3)” notation. The purer OOP
languages are much more extensible than hybrid lan-
guages, but hybrid languages exploit the popularity
and installed base of procedural-language program-
ming expertise. Control structures and messages in
Smalltalk look weird to many programmers.

Benefits Of OOP To Programmers
When writing a program with a traditional lan-

guage, a programmer must decide how to organize the
code and data structures that constitute the program. A
routine that initializes a data structure, for example,
could logically be placed in any one of several locations.
It could be grouped together in a file with all the other
routines that initialize data structures or it could be
placed in the same file that contains other operations on
the data structure. This may sound like a trivial prob-
lem, but it is not. Properly organizing code and data
declarations is very important in large programming
projects because improper organization can make cor-
recting and extending the program difficult, especially
if it must be done by a someone other than the original
author.

Thus, a positive side-effect of OOP is program or-
ganization. There is simply no question about where to
place or find the code that initializes a data structure:
the code must be placed in the class declaration along
with the data structure itself.

One of the most common reasons to edit program
source code is to augment or extend the program. En-
capsulation and inheritance properties of OOP lan-
guages provide controlled ways to make extensions to
existing code without actually changing the existing
code itself. Subclassing an existing class allows a pro-
grammer to build new functionality on top of existing
code without changing anything about the existing
code. The new subclass can define new methods and
messages, new data structures, and can call the meth-
ods in its parent class to access the existing functional-
ity; the new subclass can even use the same message
names as those in its parent class. New code in other

	

	 A P R I L 1 5 , 1 9 9 2

classes can create instances of the new subclass and
send these objects messages to access the updated func-
tionality while old code that creates instances of the old
class will operate undisturbed.

Software Foundries: A “Class” Act
When creating a program using non-OOP develop-

ment tools, it is possible to call a library function to
perform a floating-point operation, open a file, print a
formatted string, create a window on a bitmapped dis-
play, etc. To create an application that actually does
something with the data contained in a file or puts
something useful in the window on the screen, the im-
portant code must be written from scratch.

One possible benefit of OOP is that it might reduce
the amount of wheel re-invention that occurs in the soft-
ware development process. Software developers can
create class hierarchies that implement large hunks of
functionality common to many applications and then
sell them as canned building blocks. If these class hier-
archies are written properly, they can be integrated into
larger applications with relative ease.

Indeed, nearly every OOP system as delivered
comes with an extensive class hierarchy. Smalltalk es-
sentially is the class hierarchy; all the “native” func-
tionality is provided in the source code. ThinkC for the
Macintosh comes with a large class hierarchy that im-
plements the Macintosh user-interface elements.
Prograph comes with a Macintosh user-interface hier-
archy, a built-in application builder, class hierarchies
for spreadsheet primitives and database primitives. In
essence, spreadsheet functionality can be included in a
new application by including the appropriate class hier-
archy and then creating a spreadsheet object.

NeXTstep comes with an extensive set of Objective-
C class hierarchies and a best-of-breed interface builder
(IB) application. Like other interface builders, the
NeXT IB lets the user point-click-and-drag interface
items to build the user-interface. The strict object-ori-
ented nature of the IB lets third parties extend the pal-
ette of interface items by building new user-interface
objects that can be installed in the IB. In addition to
putting a button and a scrolling list into a window for an
application, a developer might, using a third-party ob-
ject palette, be able to point-click-and-drag a spread-
sheet grid into the window. In the application code, the
developer “simply” sends messages to the spreadsheet
object to cause it to place numbers in the grid cells, per-
form computations on the cell contents, and print the
grid. With another add-on class hierarchy, the spread-
sheet object could be given the ability to display a pie
chart of the data.

Encapsulation, inheritance, and polymorphism of
OOP should allow code to be written once and then used
seamlessly in many different situations.

	

A P R I L 1 5 , 1 9 9 2 	 	
Problems
Of course, OOP does not solve all programming

problems and even creates a few of its own. One of the
hardest OOP problems is creating a rational class hier-
archy. Deciding what should be declared at high levels
in the hierarchy and what should be declared at low
levels is an art. An improperly designed hierarchy can
result in a very bad program.

Creating subclasses and overriding methods give
OOP some of its appeal, but it is possible to overuse
these techniques. Excessive subclassing creates an un-
recognizable class hierarchy and can render the origi-
nal class structure irrelevant. Just as with procedural
programming languages, at some point it becomes
necessary to start over with a clean slate. For example,
the user-interface class hierarchy provided with
ThinkC was extensively rewritten between versions 4.0
and 5.0. In Figure 2, if we want to change HourlyEmp
but not CommissionedEmp, we must either subclass
HourlyEmp or make changes to both classes. One
choice creates extra code that must be maintained in
the future while the other choice creates extra work.

There are some problems for which OOP is a perfect
match, but there are also problems for which OOP offers
no concrete benefit. OOP is very well suited for organiz-
ing access to the functionality of window-oriented user
interfaces, but OOP is often inappropriate for scientific
code. Note, however, that OOP is still appropriate for
encapsulating scientific code as object-oriented build-
ing blocks.

Another problem with OOP is efficiency. To reap all
the benefits of OOP, a certain amount of dynamic bind-
ing of messages to methods must be implemented. Dy-
namic binding implies a level of indirection in the “pro-
cedure-call” mechanism, which, of course, reduces the
speed of the mechanism. Note, however, that most com-
piled OOP languages will perform static binding when-
ever possible. Also, decomposing programming prob-
lems using OOP methodologies may make
programming better, but it may hide the most efficient
coding of the problem from both the programmer and
the compiler. In some situations, the loss of execution
speed is intolerable, but for the majority of applications,
the benefits of OOP will more than compensate. On the
other hand, OOP will sometimes lead to a better overall
solution because programmers focus on the choice of
algorithm at the high level.

Conclusions
There is still much more to object-orientation than

can be covered here. For example, it is possible for ob-
jects to have persistent existences on networks of het-
erogeneous computers and have them communicate

Continued on page 19

	 M I C R O P R O C E S S O R R E P O R T
1 5

The three possible results of the normal compare
operation give rise to the six common programming lan-
guage compare predicates: >, >=, <, <=, ==, and != (In C
notation). The four possible results of the IEEE com-
pare operation combined with the optional trapping on
NaNs requires 26 different predicates to cover all of the
useful combinations!

Exceptions are a problem area. The standard is
very explicit about exception handling; a great deal of
useful functionality must be supported by every imple-
mentation. However, since there are no required or re-
commended language bindings, each compiler and op-
erating system vendor has a separate incompatible
interface. This lack of compatibility causes program-
mers to avoid using the exception mechanism.

Summary
The IEEE standard has done an admirable job of

draining the floating-point swamp. Scientific program-
mers can now write code and expect that the results will
be essentially the same on a wide range of machines.

However, the working programmer tends to use
only those features in the standard that are directly
accessible in his or her favorite programming language.
This has created an unfortunate situation. Microproc-
essor designers spend a great deal of time, energy,
nanoseconds, and transistors to conform to the stand-
ard. (Trust me, some of the features are very difficult to
implement efficiently.) Working programmers avoid
these features, however, because every system they use
accesses them differently.

Despite its omissions, the standard provides binary
encodings, predictable answers, mathematically useful
rounding, consistent error handling, and a sufficiently
rich set of primitives to allow numerical programmers
to concentrate on the problem being solved and not on
tracking down errors introduced by some quirk in the
latest version of some box. ♦

	

	

through a standardized object “Esperanto.” There is, in
fact, an effort underway to standardize the way objects
communicate. With object communication occurring at
a high level, programs can be broken up into user-inter-
face objects that run on desktop computers and scien-
tific, vectorizable objects that run on multiprocessor su-
percomputers. Heterogeneous computer networks
could become advantageous instead of bothersome.
And, of course, the network could be inside the com-
puter, enabling desktop multiprocessors with x86,
RISC, and vector processors to “transparently” exploit
the benefits of each processor.

OOP
Continued from page 15
A P R I L 1 5 , 1 9 9 2 	 	
OOP holds great promise for accelerating the appli-
cation development process. While it is unlikely that
OOP will allow non-programmers to suddenly be able to
develop sophisticated applications, it will make it possi-
ble for more people to become programmers. If applica-
tion developers wish it, OOP should allow the creation
of applications that are end-user customizable, at least
to a certain extent. An example is the NeXT IB’s ability
to accept third-party user-interface objects.

Will object-oriented systems cause a mass migra-
tion to a new operating system? The answer to this
question is “perhaps,” but it is likely to have a familiar
name like “ObjectDOS,” “WinObj,” or “Macintobject”
because it is possible to layer many of the important
features of object-orientation on top of existing systems.
Operating systems designed from the ground up to in-
corporate and support object-orientation—such as the
one Taligent is building—will no doubt have compelling
advantages, but the success of the PC clone over the
Macintosh proves that technical advantages are not al-
ways enough to sway market demand.

Will the move to object-orientation unseat the x86
family as the dominant force in desktop microproces-
sors? The answer to this is “almost definitely no.” Cer-
tainly Microsoft will continue to support the x86, NeXT
has already ported NeXTstep to the 486, Sun is porting
its software to the 486 and will no doubt continue to do
so as more and more object-orientation is incorporated,
and Taligent will make its product available on a vari-
ety of platforms including x86-based computers.

There is one other way object-orientation could af-
fect microprocessors. As some university and industry
experiments have proven, it is possible to use special
hardware to accelerate some of the dynamic aspects of
object-oriented systems, but since traditional architec-
tures are fully capable of supporting OOP systems, it
seems unlikely that microprocessors will shift away
from conventional organizations anytime soon. ♦
To Learn More

A wealth of information and tools is available to those inter-
ested in learning more about object-orientation. A good book
is Object Orientation: Concepts, Languages, Databases, User
Interfaces by Khoshafian & Abnous, published by J. Wiley.
Rambaugh, et. al have a book on the general topic of object-
oriented design called Object-oriented Modeling and Design
(Prentice Hall). Pinson & Wiener’s book Objective-C, publish-
ed by Addison-Wesley, describes the original NeXT program-
ming language. Borland and Microsoft have OOP systems for
PCs, ThinkC and Prograph are OOP systems available for the
Macintosh, and Smalltalk V is available for both. The glossy
document The NeXTstep Advantage from NeXT serves as a
general introduction to the NeXT OOP system. Finally, there
is Object Magazine (SIGS Publications) for those who need an
up-to-date, monthly dose of object-orientation. Actually, there
is a wide variety of magazines, including technical journals,
that deal with OOP. Even RISC cannot make such a bold
claim.

M I C R O P R O C E S S O R R E P O R T
1 9

	Object Orientation: What Does it All Mean?
	Object Orientation
	A User-Interface Example
	OOP vs. Procedural Programming
	Figure 1. A traditional C approach to handling a record.
	Figure 2. An object-oriented approach to the same problem.
	Pure vs. Hybrid Object Orientation
	Benefits Of OOP To Programmers
	Software Foundries: A “Class” Act
	Problems
	Conclusions
	To Learn More

