Chapter 3

The Ké 3D Microarchitecture

n this chapter, we will explore three main aspects of the microarchi-
tecture of the K6 3D in more detail: its scheduler, its operation
commit unit, and its register renaming scheme. As specific

microarchitectural concepts are introduced, pseudo-RTL code is given for
typical chunks of logic that could be used to implement these concepts.

RoAD MAP OF CHAPTER 3

Section Audience

All sections in this chapter

fessors and Students

Practitioners, University Pro-

Chapter Summary All

In Chapter 2 we showed that the scheduler:

1.
2.
3.

is tightly coupled to the execution units.

is tightly coupled to the OCU.

maintains information concerning Ops in multiple execution
pipelines.

issues Ops to the execution units for execution.

provides the Op information to the execution units at the times re-
quired.

does register and status flag dependency checking.
forwards results as required for the execution of dependent Ops.

holds the results from completed Ops until the results are commit-
ted or aborted.

deletes Op information as required.

THE SCHEDULER: AN
EXPANDED DESCRIPTION

183

184 chapter 3: The K6 3D Microarchitecture

It might be useful at this point for
you to review the scheduler dia-
gram given in Figure 2.9 on page
130 and the three diagrams
related to the decoder, i.e. Figure
2.6 on page 115, Figure 2.8 on
page 127, and Figure 2.10 on
page 139.

In accomplishing this the scheduler can initiate, among other things:
1. four Opissues, to Load Unit, Store Unit, Register Unit X, and Reg-
ister Unit Y.

2. nineregister operand “fetches”: two each for Load Unit, Registrant
X, and Register Unit Y and three for the Store Unit, including im-
mediate values for Register Unit X and Register Unit Y.

two displacement “fetches,” for Load Unit and Store Unit.
outputs to nine register operand buses.

one status operand fetch, for Register Unit X.

BRCOND Op resolution and mispredicted branch handling.

LdOp and StOp ordering and relative age determination for pipe-
line Stage 2 LdOps and StOps.

N o g AW

We will now examine how all of this is done.

LOADING THE SCHEDULER

As OpQuads are loaded into the scheduler, they pass through the OpQuad
Expansion Logic discussed in the “Decoder and Scheduler OpQuads” sec-
tion in Chapter 2 and shown in Figure 2.8 on page 127. The OpQuad
Expansion Logic expands the decoder OpQuads into scheduler OpQuads.
Decoder OpQuads are 152 bits wide and scheduler OpQuads are 578 bits
wide. Different types of processing occur during the expansion of decoder
OpQuads:

=

a few Op fields are simply passed through unchanged.

2. some Op fields are modified based on the values contained in oth-
er fields.

3. some Op fields are replaced by physically different fields.

4. new fields are derived from existing ones.

As explained in the section titled “Execution Pipelines” beginning on page
158 and as shown in Figure 2.8 (cited above), Figure 2.6 on page 115 and
Figure 2.10 on page 139, OpQuad Templates, fetched from the OpQuad
ROM, are translated into decoder OpQuads in the environment substitu-
tion logic preceding the OpQuad Expansion Logic.

Whatever its source, the scheduler OpQuad formed by the OpQuad
Expansion Logic is loaded into the scheduler whenever Row 0 (the top
row) of the scheduler’s buffer is empty or contains an OpQuad that is
shifting to Row 1. If no scheduler OpQuad is available when the OpQuad
in the top row shifts down, an invalid OpQuad is loaded into Row 0.

The Scheduler: An Expanded Description 1 85

In Figure 2.9 on page 130, the scheduler’s centralized buffer’” is repre- scheduler entry
sented as consisting of six rows, each row having four entries—one entry

for each Op in the scheduler OpQuad stored in that row. Each of these

entries includes:

1. anumber of static and dynamic fields, i.e., values stored in storage
elements.

2. various portions of logic dedicated to specific scheduler func-
tions—e.g., the issue selection logic, the operand selection logic, the
load/store ordering logic, and the self-modifying code support logic.

The entries in Rows 3, 4, and 5 in Figure 2.9 also contain status flag- static and dynamic fields
dependent RegOp synchronization logic, branch resolution logic, and sta-
tus flag fetch logic. All twenty-four Op entries are otherwise essentially
identical.
Most of each entry’s storage elements contain values of static fields.
These fields are initialized when the Op is loaded into the scheduler and
maintain their value until the Op is retired. Their contents can never
change from their initial values. Other storage elements for an entry con-
tain values of dynamic fields which can be reloaded with new values before
the Op is retired.
Finally, other storage elements store values for fields, referred to as OpQuad fields
OpQuad fields that are associated with a scheduler OpQuad taken as a
whole. Most OpQuad fields are static; however, some OpQuad fields are
dynamic.

DEFINITION

Static Fields and Dynamic Fields

Some fields in an Op entry in the scheduler’s buffer retain the same value
throughout execution of the Op and are called static fields. Other fields
can be changed as the Op proceeds through the scheduler and are called
dynamic fields.

When taken on an OpQuad basis, the scheduler’s storage elements
can be thought of as forming a shift register that is six rows deep. Each
clock cycle, an OpQuad that is not held up in a row shifts down to the next
row if the next row is empty or contains an OpQuad that is also shifting
downward. The OpQuad in the bottom row shifts out of the scheduler if
all operations associated with the bottom row have been committed or
aborted.

22 Instruction windows, reservation stations, and centralized buffers were intro-
duced in the section titled “Superscalar Design” beginning on page 74.

186 Chapter 3: The K6 3D Microarchitecture

Historical Comment and Suggested Readings

Early Environment Substitution Techniques

Designers of some early microprogrammable machines recognized that a number of microcode sequences
used to emulate instruction set architectures were quite similar, differing, for example, only in the specific
registers manipulated. To take advantage of this situation, the specific registers used in the microcode
sequence were specified in auxiliary registers whose values were “merged” with the microcode sequence as
it was being executed. Such implementations seem to be precursors to both OpQuad Template environ-
ment substitution and to the use of dynamic fields. See, for example, “Scheme-79—Lisp on a Chip,” by
Gerald Jay Sussman, Jack Holloway, Guy Lewis Steel, Jr., and Alan Bell, in Computer, July 1981, pp. 10-21.

The entries in the scheduler’s buffer store information regarding the Ops
that are awaiting execution, being executed, or have completed execution.
How and when the information in the storage elements is modified is cen-
tral to the operation of the scheduler. For example, the value of the State
Field of an entry changes as an Op proceeds through the scheduler to indi-
cate if the Op has been issued, is in a specific stage of execution, or has
been completed.

Notation

OpQuad (without a modifier)

From now on the term “OpQuad” will be used without the modifier
“decoder” or “scheduler,” unless either is needed for clarity. It should be
clear from the context if it refers to a decoder OpQuad or a scheduler
OpQuad. In the current section, we are discussing scheduler OpQuads.

The scheduler issues Ops, provides Op information to the execution units
at a specific time when required, holds the results from completed Ops
until the results are committed or aborted, and forwards the results for the
execution of other Ops as required. Each scheduler entry holds the register
and status flags results from its associated Op. Each dynamic field storage
element must be able to be loaded both from the appropriate preceding
storage element and from a relevant data source. Further, the loading of
data into a storage element and the shifting of the present or new data into
a different storage element must be able to happen simultaneously (during
the same cycle) and independently (from a control perspective).

The Scheduler: An Expanded Description 1 87

DesicN NoTE

Scheduler Entries Hold Register and Status Flags Results

Each scheduler entry holds the register and status flags results produced,
if any, by the execution of its associated Op. This is a key element of the
K6’s implicit register renaming scheme discussed later in this chapter.

SHIFTING OPFIELDS FROM Row 10 Row

Figure 3.1 on page 187 shows portions of the scheduler’s buffer that
represent parts of an entry in Row 3 and its connection to Rows 2 and 4.
Figure 3.1 shows a storage element for one of that entry’s static fields while
Figure 3.2 on page 191 shows a storage element for one of its dynamic
fields. Both storage elements are edge-triggered flip-flops. Row 3 contains
identical storage elements for every bit of each dynamic and static field for
all four entries in Row 3 (i.e., the four Ops in Row 3). What this figure rep-
resents then is one of the four Ops (and the same Op) in each of the three
rows. The other rows in the buffer are similar or identical to Row 3 and are
connected in series with Row 3.

Let’s look into this example in more detail. In Figure 3.1, flip-flops A,
B, and C store one bit of the same static field in Rows 2, 3, and 4. This bit
value shifts from flip-flop A to flip-flop B to flip-flop C as the OpQuad
shifts from Row 2 to Row 3 to Row 4. The global control logic generates
signals LdEntry[i], one for each row to control whether shifts to the corre-

sponding rows occur or not. Thus, the LdEntry[i] signals can be thought LdEntryi] signals
of as the OpQuad shift control signals.
——OpField[1]—= ——OpField[2] —=> ——OpField[3]—=
CLK%> A CLK%> B —CLK%> C
—LdEdtry[2]=>{ Enable —LdEntry[3]—=>{ Enable —LdEntry[4]=>{ Enable
Row 2 Row 3 Row 4

Figure 3.1 ExampLE OF ONE BIT OF A STATIC FIELD

The rows are shifted at the rising edge of the clock signal CLK. For
example, a signal LdEntry[3] either enables or disables flip-flop B, and a

188 Chapter 3: The K6 3D Microarchitecture

signal LdEntry[4] either enables or disables flip-flop C. When an OpQuad
is held up in Row 4, signal LdEntry[4] is deasserted so that flip-flop C
retains its value. The independence of signals LdEntry][i] allows filling of
empty OpQuad entries above a held-up OpQuad. For example, even
though an OpQuad is held up in Row 4, signal LdEntry[3] can be asserted
so that a value OpField[2] from Row 2 shifts into Row 3 at the rising edge
of clock signal CLK. Empty rows may result if the decoder is unable to
provide an OpQuad every cycle—due to a branch target cache miss, for
example. Empty rows are created only as a result of the decoder being
unable to provide an OpQuad and by an abort cycle. Empty rows are never
created by shifting lower OpQuads down while holding higher non-empty
OpQuads in place since, in such cases, all the rows below the row being
held will also be held from shifting.

NoOTATION

OpQuady, OpQY, and OpX

We will, from time to time, use the following notation to refer to
scheduler OpQuads: OpQuadY, where Y=0to5. For example,
OpQuadl identifies the OpQuad in Rowl of the scheduler, OpQuad2
the OpQuad in Row 2, etc. Additionally, we will use the following nota-
tion to refer to scheduler Op entries: OpX, where X = 0 to 23. For exam-
ple, X =0 identifies the youngest Op in the scheduler and X =23
identifies the oldest Op in the scheduler. Thus OpQuad4, for example,
contains Opl6, Opl7, Opl8, and Opl9. Moreover, the notation
OpQuadY may be abbreviated OpQY in some contexts.

Pseupo-RTL DESCRIPTIONS

As was mentioned in Chapter 1 and reinforced in Chapter 2, in order to
assist you in understanding exactly how the microarchitecture realizes
some of its functions (as well as to encourage you to simulate various
chunks of logic), we give pseudo-RTL descriptions of the operation of
portions of circuitry implementing specific functions. We believe the
pseudo-RTL descriptions are intuitive. The first such example will be an
RTL description for the operation of the circuitry implementing the shift-
ing of data from one static field storage element to another, as shown in
Figure 3.1. Such descriptions played a very important part in the overall
design and simulation of the microprocessor as described in Chapter 1.
First, a word about notation.

The Scheduler: An Expanded Description

189

Notation

Pseudo-RTL Descriptions

A pseudo-RTL description may use signals described in other pseudo-RTL
descriptions without further explanation or reference to the other descrip-

tions since such references should be reasonably obvious from the context.
Signals given in the descriptions are asserted or active high unless
expressly indicated otherwise. The following notation is used in the pseudo-

RTL descriptions in this text:

Signals connected via a “P”, “ “, and “&” are combined as a logical AND such

as could be implemented by an AND gate. Signals connected via a “+” are com-
bined as a logical OR such as could be implemented by an OR gate. Signals
connected via a “*" are combined as a logical exclusive OR such as could be
implemented by an XOR gate. “~" indicates the complement or inverse of a
signal such as would be provided by an inverter.

Either if (a) X =b else x =c or if x = (a) ?b:c indicate a multiplexer
with an output signal x equal to signal b if signal a is asserted and an out-

put signal x equal to ¢ otherwise. If “else x = ¢” is omitted, the signal x

is unaffected if signal a is low (i.e., signal a forces signal x to a value

if and only if a is asserted, otherwise signal x maintains its value as

determined thus far, by preceding assignments to x. Another notation which

represents a multiplexer is:

X = switch (A) case Al: x1
case A2: x2

case An: an

where output signal x has values x1 or x2 or ... xn depending on the value of
a multi-bit select signal A.

The notation “xxOp.yyy” refers to an input signal to the Op decoder indicat-
ing a value from a field yyy defined for an Op of type xxOp. For example,
“RegOp.Srcl” refers to bits in an operation at the same position as the Srcl
field of a RegOp.

Most signals described change each clock cycle. The notation “@clk:” indi-
cates a signal is latched into a register at an edge-of-signal clock for use
in a subsequent clock cycle.

Finally, it should be clear that the logic described by the pseudo RTL-
descriptions can be implemented in a variety of ways.

190 chapter 3: The K6 3D Microarchitecture

Suggested Readings

Digital and Integrated Circuit Design

For readers who have little or no background in electronic circuits, we recommend reading a copy of the
small but very well done introduction to the subject by Niklaus Wirth, Digital Circuit Design for Computer
Science Students, An Introductory Textbook, Springer-Verlag, 1995. Wirth, as many of the readers know,
designed a number of popular programming languages, among them Pascal and Modula. In this book he
uses an easy-to-understand hardware description language called Lola.

For electronic, electrical, and computer engineers who would like an introduction to the myriad of
tools and techniques used in the design, manufacture, and test of integrated circuits, we recommend Peter
R. Shepherd’s book, Integrated Circuit Design, Fabrication and Test, McGraw-Hill, 1996.

STATIC FIELD STORAGE ELEMENT SHIFTING OPERATION

The following pseudo-RTL description defines the operation of circuitry
for the shifting of data from one static field storage element to another, as
shown in Figure 3.1.

Pseupo-RTL DescRIPTION

Shifting Data from One Static Field Storage Element to Another

@clk: if (LdEnNtry[i]) /I OpQuad shift control
OpField[i] = OpField[i-1]; // conditionally shift in preceding
/I OpField Value

DyNAMIC FIELD STORAGE ELEMENT OPERATION

Dynamic fields, shown in Figure 3.2, are more complicated to handle than
static fields because new data from outside the buffer may be inserted into
a dynamic field while the OpQuad is being shifted or re-circulated.

Two independent events are happening here, so let’s expand on them
to clarify this last statement:

1. the value of a dynamic field may or may not take on a new value.

2. the OpQuad may or may not shift to the next row.

The Scheduler: An Expanded Description 1 9]

OpField[3]
—NewOpField[2]
— o
% % NextOpField[3]=>| D ——OpField|3]
= =
NewValue—=>f CLK%>
LoadNewValue[3] LdEnltrY[3]

NewOpField[3] ————— 8 8 =

Row 3
Figure 3.2 ExampLe OF ONE BiT OF A DYNAMIC FIELD

In the example discussed here and shown in Figure 3.2, the dynamic field
is called OpField and its value is stored in flip-flop D. A chunk of logic
outside the scheduler generates the NewValue?® and LoadNewValue[3]
signals. If a NewValue has been generated, the LoadNewValue[3] signal
selects it as the output of the MUX 1 multiplexer, otherwise the old value
of OpField[3] is selected as the output. Obviously, selecting the old value
is equivalent to saying that the dynamic field did not change. The output
of the MUX 1 multiplexer is called NewOpField[3]. The NewOpField[3]
output could have been called Potentially_Changed_Dynamic_OpField|3]
to reflect more precisely what we just explained, but that would have been
too unwieldy a name to be used in the figure.

The MUX 2 multiplexer selects whether or not the OpQuad shifts. If
OpQuad[2] can shift from Row[2] to Row[3] and become OpQuad [3],
then the LdEntry[3] signal selects the NewOpField[2] value from
OpQuad|2] as the output of the MUX 2 multiplexer and the shift occurs at
the rising edge of the clock signal CLK. Otherwise, the NewOpField[3]
value is selected as the output and no shift occurs. The output of the
MUX 2 multiplexer in Figure 3.2 is called NextOpField[3]. It could have
been called Potentially_Shifted_OpQuad, to reflect more precisely what we
just explained. The LdEntry[3] signal will be discussed shortly. First, it will

23 The signal NewValue can be a signal common to all twenty-four Op entries or
may be specific to each Op.

192 Chapter 3: The K6 3D Microarchitecture

be useful to summarize the actions that occur when a valid OpQuad either
shifts or does not shift:

1. theshift occurs: This means that OpQuad[2] shifts from Row([2] to
Row[3] and OpQuad[3] shifts from Row[3] to Row[4]. By defini-
tion, all of the static and dynamic fields of OpQuad [3] take on the
values of those same fields from OpQuad|[2]. And, all of the static
and dynamic fields of OpQuad[4] take on the values of those same
fields from OpQuad[3]. Note that the value of the dynamic field
OpField[3] of OpQuad[3] is sent to Row 4, via the output of the

MUX 1 multiplexer.?*

2. the shift does not occur: This means that OpQuad[2] stays in
Row([2] only if it is valid; if it is invalid, it will be replaced with
whatever is in OpQuad[1]. OpQuad[3] stays in Row([3]. This in
turn means that the output of the MUX?2 multiplexer is
NewOpField[3] from OpQuad[3] and not NewOpField[2] from
OpQuad|2].

In summary, MUX 1 is used to conditionally choose the NextOpField
value and MUX 2 is used to conditionally advance the OpQuad through
the buffer. The following pseudo-RTL description defines the operation of
the circuitry implementing the operations associated with dynamic fields.
It should be reasonably obvious how one could have written the following
description, given Figure 3.2. However, the figure represents only one
implementation strategy to realize the description.

Pseupo-RTL DESCRIPTION

Dynamic Field Operation

if (LoadNewValueli]) /' logic to conditionally
NewOpField[i] = NewValueli]; /I select a value for the
else /I dynamic field

NewOpField[i] = OpField[i];

if (LAEntry[i]) /' logic to conditionally
NextOpField[i] = NewOpField[i-1]; // advance the OpQuads
else

NextOpField[i] = NewOpField][i];

@clk: OpField[i] = NextOpField[i] // simple flip-flop

24 The output of the MUX 1 multiplexer in Row([3] is an input to the MUX 2
multiplexer in Row[4].

The Scheduler: An Expanded Description 1 93

Let’s summarize what we have learned so far. The scheduler can be viewed
as a shift register in which OpQuads are loaded into the top, gradually
shift downward from row to row, and eventually unloaded from the bot-
tom. However, the scheduler is not quite exactly controlled as a true shift
register since each scheduler row has its own independent shift control sig-
nal, LdEntry[i]. We will now examine these signals in more detail.

Simulators on CD-ROM

One way to test your understanding of the above con-
cepts is to simulate the chunk of logic described by
the previous two pseudo-RTL descruptions. To
encourage you to do this, we have provided three sim-
ulators on the CD-ROM. Each has an extensive refer-
ence manual with it.

THE LDENTRY SIGNALS: SHIFTING THE OPQUADS

The LdEntry[i] signals determine if the OpQuad in Row[i-1] shifts into
Row(i]. In general, OpQuads always shift down whenever there is space
below. That is, as long as there is at least one empty row below a given
OpQuad, or the bottom row of the scheduler is being unloaded, then the
OpQuad can shift down to the next row, the OpQuad above can shift
down into the given OpQuad’s row from above, and so on. However, situ-
ations can exist that prevent OpQuads from shifting. The situations that
can hold up OpQuads basically fall into five categories:

1. OpQuads containing Ops that are dependent on status flags as part
of their processing, i.e., BRCOND Ops and cc-dependent RegOps.

2. OpQuads that contain nonabortable RegOps.

3. OpQuads that are being considered for commitment by the OCU
and contain one or more Ops that have not yet completed
execution.

4. OpQuads containing multiple StOps in an OpQuad.>

5. OpQuads above the bottom row of the scheduler that cannot shift.

We will examine each of these categories separately:

1. IstCategory: It was pointed out in the section titled “The Schedul-
er” beginning on page 128 that “... some Ops (such as the evalua-
tion of conditional branches and RegOps that depend on status

25 More than one StOp in an OpQuad does not guarantee a hold up since, as we
will see later, the OCU can look ahead into the second OpQuad row from the
bottom to get a “head start” on committing StOps.

194 Cchopter 3: The K6 3D Microarchitecture

flags) are executed when the Ops reach a particular row of the buff-
er.” Conditional branches, for example, are held in Row[3] until
they are resolved and only then are they allowed to advance. If the
branch is resolved as correctly predicted, processing proceeds nor-
mally. However, if the branch is resolved as mispredicted in
Row([3], an appropriate restart signal is asserted that causes the up-
per portion of the machine to be flushed and then restarted to
begin fetching instructions from the not-predicted path. The
flushing of the upper portion is done as part of the resolution of
the branch versus as part of the abort cycle since the abort cycle will
be initiated later when the OpQuad reaches the bottom of the
scheduler. If Ops are generated before the lower portion of the ma-
chine can accept them, then these Ops are held until they can be
loaded into the scheduler. The BrAbort signal is asserted when the
OpQuad containing a mispredicted branch reaches the bottom
row of the scheduler. CC-dependent RegOps are also held in
Row([3] until the necessary status flag operand value(s) are
successfully obtained, and only then are they allowed to advance or
shift down into lower rows.

2. 2nd Category: There are four nonabortable RegOps, WRDR,
WRDL, WRxxx, and WRDLP. Nonabortable RegOps that cannot
yet proceed into the Execution Stage of the RegOp pipeline are
held when they reach Row[4] until they can execute.

3. 3rd Category: Because of the out-of-order execution nature of the
processor, or due simply to execution latencies and serial dependen-
cies between Ops, an Op might reach the bottom row of the sched-
uler before the other Ops associated with the OpQuad have
completed execution. It must wait there while the other Ops are still
executing.

4. 4th Category: Consider a situation in which there are four StOps,
two in each of two consecutive OpQuads. The first StOp will com-
mit from OpQuad4, the second from OpQuads5 (the first OpQuad
retires without delay), the third and fourth from OpQuad5 and
thus shifting of the second OpQuad out of the scheduler is delayed
for one cycle.

5. 5th Category: There can be instances when OpQuads cannot shift
because all rows below contain valid OpQuads and they are not
able to shift. Conversely, an OpQuad is generally able to shift if
there is an invalid OpQuad immediately below it or if all of the
OpQuads below it are able to shift down.

The pseudo-RTL description that follows summarizes the equations
determining which OpQuad can advance at the next clock cycle boundary.
The code reflects the five categories discussed above as constraints on the

The Scheduler: An Expanded Description 1 95

LdEntry signals that advance the OpQuads. While it may be apparent to
some readers, what might not be obvious to others that there is the poten-
tial for some “deadlock” situations to occur. For example, you do not want
to hold OpQuad[4] or OpQuad[5] if a branch has been detected as
mispredicted or it will never reach the bottom row of the scheduler to ini-
tiate the abort cycle.

A few words about the notation for signals in the description are in
order. The LdEntry[i], SC_MisPred, BrAbort, and trap pending flag have
all been introduced in the preceding paragraph. The Q4PendLdStAbort
signal indicates that there is a LdOp or a $tOp in OpQuad4 which has a
pending exception waiting to be recognized by the OCU (once it gets into
OpQuad|5]) and then cause an abort cycle. The OpQV[i],i= 0 to 5, sig-
nals represent the state of valid bit of OpQuad[i]. The OpQRetire signal
originates from the OCU and, if asserted, indicates when a valid OpQuad
in the bottom scheduler can be retired. The HoldOpQ45 signal, if
asserted, holds up both OpQuad[4] and OpQuad[5]. HoldOpQ3 and
HoldOpQ4A correspond to BRCOND resolution and cc-dependent
RegOps, both of these situations are in Categoryl above. The
HoldOpQ4B signals correspond to Category 2 above. Both Category 3
and Category 4 are handled via the OpRetire signal. Category 5 is handled
via the OpV/[i] signals.

The scheduler generates signals that indicate whether it will be able to
accept a new OpQuad at the end of the current cycle. This is shown in the
following pseudo-RTL description.

Pseupo-RTL DESCRIPTION

Advancing OpQuads in the Scheduler

HoldOpQ45 = (HoldOpQ3 | HoldOpQ4A | HoldOpQ4B) &
~(SC_MisPred | Q4PendLdStAbort | “trap pending”)

LdEntry[5] = (OpQRetire | ~OpQV[5]) & ~HoldOpQ45

LdEntry[4] = (OpQRetire | ~OpQV[5] | ~OpQV[4]) & ~HoldOpQ45
LdEntry[3] = LdEntry[4] | ~OpQV/[3]

LdEntry[2] = LdEntry[4] | ~OpQV/[3] | ~OpQV/[2]

LdEntry[1] = LdEntry[4] | ~OpQV[3] | ~OpQV[2] | ~OpQV[1]

LdEntry[O] = LdEntry[4] | ~OpQV[3] | ~OpQV[2] | ~OpQVI[1] |
~OpQVI0] | BrAbort

196 chapter 3: The K6 3D Microarchitecture

The signal “~LdEntry[0]” indicates that OpQuad[0] is full and not shift-
ing and thus the scheduler does not have enough room to accept a new
OpQuad. The signal “SC_MisPred & ~BrAbort” indicates that there is a
pending mispredicted branch and while the upper portion of the proces-
sor has been restarted and may have a new OpQuad ready, that the sched-
uler cannot accept it until the abort cycle is started.

Pseupo-RTL DESCRIPTION

SchedFull

SchedEmpty = ~(OpQV[0] | OpQV[1] | OpQV[2] | OpQV[3] | OpQV[4] |OpQVI[5])

LdEntry[0] | SC_MisPred & ~BrAbort

SchedFull and SchedEmpty Signals

We will now look at the static, dynamic, and OpQuad fields in more detail.

StaTic AND DYNAMIC FIELDS

The static and dynamic fields in an entry are shown in Table 3.1 and Table
3.2 respectively. These fields are related to but not identical to the fields of
the associated decoder OpQuad Op formats shown in Table 2.22, “Decoder
OpQuad LdOp and StOp Format,” Table 2.30, “Decoder OpQuad RegOp
Format,” Table 2.38, “Decoder OpQuad SpecOp Format,” and Table 2.42,
“Decoder OpQuad LIMM Op Format.” Indeed, if we return to the follow-
ing diagram given in Chapter 2, we see that the relationship between these
fields is established by the OpQuad expansion logic:

Chapter 2,
This Section

Numerous Pseudo-
RTL Descriptions in
Chapter 3

/

| Decoder OpQuads OpQuad . Scheduler OpQuads
M Expansion Logic

The eleven static fields require a total of 45 bits per Op entry. The sixteen
dynamic fields require a total of 65 bits per Op entry.

The Scheduler: An Expanded Description 1 97

Table 3.1 StATIC FIELDS PER OP ENTRY

Field Identifier Bits/Entry
Type[2:0] 3
Imm
Src1Reg[4:0]
Src2Reg[4:0]
DestReg[4:0]
SrcStReg([4:0]
Src1BM[1:0]
Src2BM|[1:0]
Src12BM[2]
SrcStBM[2:0]
Oplnfo[12:0]

W = | NN G| L | Ul =

—
w

Table 3.2 DvyNAMIC FIELDS PER OP ENTRY

FIELD IDENTIFIER Bits/ENTRY
State[3:0] 4
ExecX 1
DestBM[2:0] 3
DestVal[31:0] 32
StatMod[3:0]
StatVal[7:0]
OprndMatch LUsrcl
OprndMatch LUsrc2
OprndMatch SUsrcl
OprndMatch SUsrc2
OprndMatch SUsrcSt
OprndMatch RUXsrcl
OprndMatch RUXsrc2
OprndMatch RUYsrcl
OprndMatch RUYsrc2
DBN[3:0]

— = = =] =] 0| W

[—

[e el Bl

198 Chapter 3: The K6 3D Microarchitecture

Additionally, the OpQuad fields, which are also stored in the buffer on a per
OpQuad basis, are shown in Table 3.3. The thirteen OpQuad fields require a
total of 138 bits.

Table 3.3 OPQUAD FIELDS PER OPQUAD

Field Identifier Static/Dynamic Bits/OpQuad
Emcode static 1
Eret static 1
FaultPC[31:0] static 32
BPTInfo[14:0] static 15
RASPtr([2:0] static 3
LimViol dynamic 1
OpQV dynamic 1
OpQFpOp static 1
ILen0[2:0] static 3
SmclstAddr static 20
SmclstPg static 20
SMC2ndAddr static 20
Smc2ndPg static 20

Thus, a scheduler OpQuad requires a total of 45*4 + 65*4 + 180 = 578 bits.

The initial values of the static and dynamic fields depend on the corre-
sponding Op loaded into that entry. As mentioned earlier, the OpQuad
Expansion Logic modifies some fields from the Op based on other fields,
derives new fields from existing ones, replaces some fields with physically
different fields, and passes a few fields through unchanged. The OpQuad
fields are generated from information corresponding to the OpQuad as a
whole.

AN OP ENTRY’S STATIC FIELDS IN MORE DETAIL

Each scheduler entry contains the following eleven static fields:
1. Type[2:0]

Imm

SrclReg[4:0]

Src2Reg[4:0]

SrcStReg[4:0]

DestReg[4:0]

I o

The Scheduler: An Expanded Description 1 99

7. SrclBM[1:0]

8. Src2BM[1:0]

9. Srcl2BM|[2]
10. SrcStBM|[2:0]
11. Oplnfo[12:0]

In the following discussion, all signals are actively high. Before proceeding, we
make an additional comment about notation.

Notation

Decoder OpQuad Field Notation

There are many references to various decoder OpQuad fields in the pseudo-RTL description. We believe the
notation identifying them, such as:

1. RegOp.Srcl (the Srcl field of the RegOp)

2. LdStOp.Data (the Op Data field of the LdOp or StOp)

3. SpecOp.Dest (the Op Dest field of the SpecOp)

4. LdOp.Type[1] (bit 1 of the Type field of the LdOp)

is quite intuitive if the reader examines the decoder OpQuad Op formats cited above.

Static Field Type(2:0)

The static field Type[2:0] specifies the type of Op for the entry, particularly for
issue selection purposes. Possible types include: a SpecOp; a LdOp; a StOp
which references memory or generates a faultable address; a RegOp execut-
able only by RUX; and a RegOp executable by either RUX or RUY. Floating-
point operations (FpOps) are a type of SpecOp executed by the floating-point
unit. This can be summarized in the following table:

Table 3.4 Op TypPe SPECIFIED BY THE TYPE FIELD

Type(2:0) Type of Op

000 a SpecOp—mnot issued to an execution unit

010 a LdOp—issued to the Load Unit

10x applies to all StOps

100 a StOp that does not reference memory—issued to the Store Unit

a StOp that references memory or at least can result in a
memory fault—issued to the Store Unit

110 a RegOp that can only be executed by RUX—issued to RUX

101

a RegOp that can be executed by RUX or RUY—issued to either

11 RUX or to RUY

200 chapter 3 The K6 3D Microarchitecture

The pseudo-RTL description that follows defines the chunk of circuitry in
the OpQuad Expansion Logic that generates a value for the static field
Type. In the equations in the description, fields in the scheduler OpQuad
appear on the left-hand side of the equations and fields from the decoder
OpQuad appear on the right-hand side. For example, in the description
below the equation Type[2] = LdStOp.Type[3] means that bit three of the
Type field of the decoder LdStOp is assigned to bit two of the static field
Type of the scheduler Op entry. “RUYD” is a signal from a special register
bit that inhibits use of the second register unit RUY for silicon debugging
purposes; see Table 2.11 on page 88.

Pseupo-RTL DESCRIPTION

Static Field Type

switch(Opld)

case RegOp:
Type[2:1] = 2'b11
Type[0] = ~(RegOp.R1 | RUYD)

case LdStOp:
Type[2] = LdStOp.Type[3]
Type[l] = ~LdStOp.Type[3]
Type[0] = LdStOp.Type[3] & ~(LdStOp.Type[2] &

LdStOp.Type[1])

default:

Type[2:0] = 3'b000

Static Field Imm

For RegOps, the static field Imm indicates that the Src2 operand is an
immediate value (being temporarily held in the DestVal field of the Op
entry) instead of a register. For LdStOps, the static field Imm is not used.

Pseupo-RTL DESCRIPTION

Static Field Imm

Imm = RegOp.l // don't care if not RegOp

Static Fields Src 1Reg(4.0), Src2Reg(4:0), & SrcStReg(4:0)

Some Ops can have up to two input values (obtained from registers).
StOps, which actually write to memory, have a third input value, the data
to be stored.

The Scheduler: An Expanded Description

201

Articles on CD-ROM

Chapter 3 of the AMD application note, AMD-K6 3D
Processor Code Optimization, gives several examples of
[REFORT) address register operands, data register operands, and

store data register operands. This application note is
on the CD-ROM.

Fields Src1Reg[4:0], Src2Reg[4:0], and SrcStReg[4:0] hold register num-
bers identifying the registers which an Op uses. Src1Reg[4:0] holds the
register number of the first source operand Srcl, Src2Reg[4:0] the register
number of the second source operand Src2, and SrcStReg[4:0] the register
number of the store data operand in the case of StOps. The following three
pseudo-RTL descriptions define the circuitry in the OpQuad Expansion
Logic that generates values for the static fields Src1Reg, Src2Reg, and Src-
StReg:

Pseupo-RTL DESCRIPTIONS

Static Fields Src1Reg, Src2Reg, and SrcStReg

// Field Src1Reg
if (Opld = RegOp)
Src1Reg[4:0] = RegOp.Srcl
SrclReg[2] &= ~(LdStOp.DSz=1B) // do byte register conversion
else
Src1Reg[4:0] = {1'b0,LdStOp.Base} // don't care if not RegOp or LdStOp

// Field Src2Reg
if (Opld = RegOp)

Src2Reg[4:0] = RegOp.Src2

Src2Req[2] &= ~(LdStOp.DSz=1B) // do byte register conversion
else

Src2Reg = {1'b0,LdStOp.Index} // don't care if not RegOp or LdStOp

// Field SrcStReg

SrcStReg[4:0] = LdStOp.Data

SrcStReg[2] &= ~(LdStOp.DSz=1B & LdStOp.DataReg=t0)
// don't care if not StOp

Static Field DestReg(4.0)

Static Field DestReg[4:0] holds a register number identifying the destina-
tion register of the Op. The following pseudo-RTL description defines the

202

Chapter 3: The K6 3D Microarchitecture

circuitry in the OpQuad Expansion Logic that generates a value for the
static field DestReg:

Pseupo-RTL DESCRIPTION

if (Opld = LIMMOp)
DestReg[4:0] = {1'b0,LIMMOp.Dest}

elseif ((Opld = LdStOp) & (LdStOp.Type = STUPD))
DestReg[4:0] = {1'b0,LdStOp.Base}

else

DestReg[4:0] = LdStOp.Data
DestReg[2] &= ~(LdStOp.DSz=1B) // do byte register conversion
/[don't care if non-STUPD StOp

Static Field DestReg[4:0]

Static Fields Src 1BM(1:0), Src2BM(1.0), & Src12BM(2)

The x86 instruction can operate on individual bytes and 16-bit words as
well as 32-bit double words and, correspondingly, can modify just parts of
32-bit registers. The K6 3D’s microarchitecture reflects this ability. Static
fields Src1BM[1:0], Src2BM|[1:0], and Src12BM[2] specify the sizes and
locations of the operands. The “BM” is used as an abbreviation for the
phrase “byte marks” and these three fields indicate which bytes of operand
registers Srcl and Src2 must be “valid” for execution of the Op that will
use values from these registers—i.e., which fields in the source registers
must have correct, up-to-date values in them so the Op can proceed.

Src12BM functions as both Src1BM|[2] and Src2BM[2]. A “0” in
Src12BM means that the high-order 16-bits of neither source register will
be used. A “1” in Src12BM[2] specifies that the high-order 16-bits of both
source registers will be used. That is, a “1” for a BM indicates that the cor-
responding register part will be used as it is presumed to be “valid.” The
Src!BM and Src2BM fields indicate if the byte positioned at bit [15:8] in
the Src register or the byte positioned at bits [7:0] will be used if they con-
tain a valid value. The byte positioned at [15:8] is specified by a “1” and
the byte positioned at [7:0] is specified by a “0.” Thus, bits 2, 1, and 0 of
the SrcBM fields correspond to bits [31:16], [15:8], and [7:0] respectively.
The following pseudo-RTL description defines the OpQuad Expansion
Logic circuitry that generates values for the Src1BM[1:0], Src2BM[1:0],
and Src12BM|2] fields.

The Scheduler: An Expanded Description 203

Pseupo-RTL DESCRIPTIONS

Static Fields Src1BM, Src2BM, and Src12BM

if (Opld = RegOp)
Src1BM[0] = ~(RegOp.DSz = 1B) | ~RegOp.Srcl[2]
Src1BM[1] = ~(RegOp.DSz = 1B) | RegOp.Srcl[2]
Src2BM[0] = ~(RegOp.DSz = 1B) | ~RegOp.Src2[2] | RegOp.|
Src2BM[1] = ~(RegOp.DSz = 1B) | RegOp.Src2[2] & ~RegOp.I
if (RegOp.Type = 6'b10001x)
Src2BM[1] = Src1BM[1] = 1'b0 // if ZEXT,SEXT
Src12BM[2] = (RegOp.DSz = 4B)
if (RegOp.Type = 6'010001x) | (RegOp.Type = 6'0111x00))
Src12BM[2] = 1'b0 // if ZEXT,SEXT,CHKS

else/l else LdStOp or don't care
Src1BM[1:0] = Src2BM[1:0] = 2'b11
Src12BM[2] = (LdStOp.ASz = 4B) // don't-care if LIMM

if (LdStOp.Type = 4'bx0xx) { // STxxx Ops
SrcStBM[0] = ~(LdStOp.DSz=1B) | ~LdStOp.Data[2]

SrcStBM[1] = ~(LdStOp.DSz=1B) | LdStOp.Data[2]
SrcStBM[2] = (LdStOp.DSz=4B)
} else

SrcStBM[2..0] = 3'b000// CDA,CIA,LEA Ops
// don't care if not StOp

Static Field SrcStBM(2:0)

Static Field SrcStBM[2:0] indicates which bytes of the store data operand
are required for completion of a StOp. The bit correspondence is the same
as for Src1BM or Src2BM. The following pseudo-RTL description defines
the circuitry in the OpQuad Expansion Logic that generates a value for the
static field SrcStBM:

Pseupo-RTL DESCRIPTION

Static Field SrcStBM

if (LdStOp.Type = 4'bx0xx) // STxxx Ops
SrcStBM[0] = ~(LdStOp.DSz = 1B) | ~LdStOp.Data[2]

SrcStBM[1] = ~(LdStOp.DSz = 1B) | LdStOp.Data[2]
SrcStBM[2] = (LdStOp.DSz = 4B)
else

SrcStBM[2:0] = 3'b000// CDA,CIA,LEA Ops
/[don'’t care if not StOp

204 chapter 3: The K6 3D Microarchitecture

Static Field Oplinfo(12:0)

The static field OpInfo[12:0] holds additional information about the Op
for either the execution units or the OCU depending on whether the oper-
ation is executable or not. Oplnfo is the union of three possible field defi-
nitions, depending on whether the Op is a RegOp, a LdStOp, or a SpecOp:

1. fora RegOp, field OpInfo contains a concatenation of the follow-
ing bits from the Op template: six bits from the Op Type field; four
bits from the Op Ext field; the Op R1 field; and two bits indicating
an effective data size DataSz for the operation.

Table 3.5 OvrINFO DATA FOR A REGOP

Op Template Description

Type[5:0] copy of the original Op Type field

Ext[3:0] copy of the original Op Ext field

R1 copy of the original Op R1 field

effective data size of the Op (one, two, or

DataSz[1:0] four bytes)

2. foraLdStOp, field Oplnfo contains a concatenation of the follow-
ing bits from the Op template: four bits from the Op Type field;
two bits from the Op ISF field; four bits from the Op Seg tield; two
bits indicating the effective data size DataSz for the operation; and
a bit AddrSz indicating a 16-bit or a 32-bit effective address size
for the address calculation.

Table 3.6 OvprINFO DATA FOR A LDSTOP

Op template Description

Type[3:0] copy of the original Op Type field
ISF[1:0] copy of the original Op ISF field

Seg(3:0] copy of the original Op Seg field

DataSz[1:0] | effective data size for the memory transfer

AddrSz effective address size for the address
calculation

3. fora SpecOp, the Oplnfo field contains a concatenation of the fol-
lowing bits from the Op template: four bits from the Op Type field
and five bits from the Op CC field.

The Scheduler: An Expanded Description

205

Table 3.7 OvrINFO DATA FOR A SPecOP

Op template Description

Type[3:0] copy of the original Op Type field
CC[4:0] copy of the original Op CC field

The following pseudo-RTL description defines the OpQuad Expansion
Logic circuitry that generates a value for the OpInfo Static field:

Pseupo-RTL DescRrIPTION

Static Field Oplnfo

Oplinfo[12] = Op[35]
/I prevent LIMM from looking like various exception Ops

Oplnfo[11:8] = (Opld = LIMMOp) ? 4'b1111 : Op[34:31]
Oplinfo[7:0] = {Op[30:25],0p[23:22]}

AN OpP ENTRY’S DYNAMIC FIELDS IN MORE DETAIL

The entry’s dynamic fields are initialized by the operation decoder but can
then change during execution of Ops. Typically, each entry contains logic
for changing the values in dynamic fields as required. Each scheduler entry
contains the following eight dynamic fields:
1. State[3:0].
Execl.
DestBM|[2:0].
DestVal[31:0].
StatMod|[3:0].
StatVal[7:0].
OprndMatch_XXsrcY.
8. DBN([3:0].

No ok~

These fields are discussed in the following paragraphs:

Dynamic Field State(3.:0)

The dynamic field State[3:0] indicates an operation’s execution state with
respect to the execution unit pipelines. In Figure 2.16 on page 165 and Fig-
ure 2.19 on page 168, the stages S2, S1, and SO are alternate signal names
for State[3:0]. The State[3:0] bits are updated as the Op is successfully

206 chapter 3: The K6 3D Microarchitecture

issued or advances out of a pipeline stage. The updating can be viewed as
shifting a field of ones across four bits.

Table 3.8 INTERPRETATIONS OF THE STATE FIELD

S3 $2 S1 SO Indicates the Op is
0 0 0 0 unissued / not yet issued
0 0 0 1 in operand fetch stage
0 0 1 1 in execution stage 1
0 1 1 1 in execution stage 2
1 1 1 1 completed

Most Ops enter the scheduler with field State set to 0000 (unissued). The
dynamic field State changes after the operation issues to an execution
pipeline. Upon completion of the execution pipeline, State is set to 1111
(completed) while the Op awaits to be committed or retired. The state
field of every scheduler entry is set to 1111 during abort cycles. Some Ops
(e.g., load constant LDK or load 32-bit immediate LIMM) have an initial
state field value of 1111 and thus are already completed when loaded into
the scheduler. The following pseudo-RTL description defines the circuitry
in the OpQuad Expansion Logic that initializes dynamic field State and
the circuitry in the scheduler entries that modify field State during execu-
tion of the associated operation. Note that “OPQV” in the pseudo-RTL
descriptions for the dynamic fields is the OpQuad Valid bit associated with
the incoming decoder OpQuad and not the OpQV field of a scheduler
OpQuad. The OpQuad Expansion Logic initializes field State[3:0] either
as 0000 (unissued) or 1111 (completed) according to the Opld field. Sig-
nal SC_Abort is asserted to abort execution of Ops currently in the sched-
uler. The signal “Issue Op[i] to XXX” are generated during the Op issue
selection scan process; see the section titled “Issue Selection Logic” begin-
ning on page 228.

The Scheduler: An Expanded Description 207

Pseupo-RTL DESCRIPTION

Dynamic Field State

State[3:0] = (~OpQV |
(Opld = SpecOp) &
((SpecOp.Type = LDKxx) | (SpecOp.Type = LDxHA)) |
(Opld = LIMMOp)) ? 4'b1111 : 4'b0000

Field State (signals S0, S1, S2, and S3) changes during operation execution
as follows.

if (SOEnbl) SO = ~BumpEntry | SC_Abort

if (S1Enbl) S1 = SO & ~BumpEntry | SC_Abort
if (S2Enbl) S2 = S1 | SC_Abort

if (S3Enbl) S3=S2|S1 & RU | SC_Abort

BumpEntry = RU & ~S1 & S0 & (Execl & BumpRUX | ~Execl & BumpRUY)

SOEnbI = “Issue OpJi] to “ & CHP_LUAdVO |
“Opli] to SU “ & CHP_SUAdVO |
“Issue OpJi] to RUX” & CHP_RUXAdVO |
“Issue Opl[i] to RUY” & CHP_RUYAdVO |
SC_Abort | BumpEntry

S1Enbl = LU & CHP_LUAdVO |
SU & CHP_SUAdVO |
RU & (Execl & CHP_RUXAdVO | ~Execl & CHP_RUYAAVO) |
SC_Abort

S2Enbl = LU & CHP_LUAdv1 | SU & CHP_SUAdv1 | RU | SC_Abort
S3Enbl = LU & CHP_LUAdV2 | SU & CHP_SUAdv2 | RU | SC_Abort

Abort Handling (revisited)

The signal SC_Abort in the above pseudo-RTL description warrants
special attention. When an abort cycle occurs, the entire scheduler is
flushed. All OpQuad entries are invalidated by clearing all of the OpQuad
Valid fields (OpQV) and certain fields of all Op entries are also cleared to
innocuous values. The latter is necessary since OpQV only affects the con-
trol of scheduler OpQuad entry loading and shifting. All other operations
within the scheduler ignore OpQV and simply assume that Op entries are
always valid and sufficiently well defined.

208 chapter 3: The K6 3D Microarchitecture

DesicN NoTE

Representation of an Invalid Op

An invalid Op within the scheduler is represented as a valid but innocu-
ous Op. Its State field is set to completed so the Op will not be executed.
Its DestBM and StatMod fields are set to indicate that it does not modify
any register bytes or status flags. All other fields, in these circumstances,
can have any values without causing any “harm” (side effects). An
invalid Op is effectively a NoOp.

One important aspect of abort cycle handling within the scheduler occurs
after mispredicted BRCOND Ops. In this case, a new OpQuad may be
loaded into the scheduler during the abort cycle. This OpQuad is not asso-
ciated with any of the outstanding OpQuads that all need to be flushed. It
is logically the first new OpQuad after the abort. In all other cases, there
will be a delay to the reception of the first new OpQuad after abort cycles
due to exception conditions.

As discussed in the section titled “Loading the Scheduler” beginning
on page 184, in the section titled “Static Field Storage Element Shifting
Operation” beginning on page 190 and the section titled “Dynamic Field
Storage Element Operation” beginning on page 190, the storage elements
within the scheduler are fully synchronous and do not change state in
response to inputs until the next cycle boundary. Thus, the following
sequence of events occur at the end of the abort cycle. First, certain Op
entry fields are changed to innocuous values. Then all, some, or none of
the OpQuad entries shift down one position and a new OpQuad is loaded
into the top scheduler entry. The shifting of any OpQuads other than
OpQuad[0] during an abort cycle is a “don’t care” situation. In the case of
exception-related aborts, this new OpQuad is also invalidated. In the case
of BRCOND-related aborts, this new OpQuad is allowed to be valid and
reloading of the top scheduler OpQuad entry is forced.

To improve the clock frequency, there is both an “early” and a “late”
version of the abort signal. The late version is logically the same as the
early version, but delayed by one cycle using a flip-flop. The late version is
called SC_Abort, and the early version is called SC_EAbort. SC_EAbort is
used to flush the scheduler immediately; SC_Abort is used to flush the
execution pipelines—this is not performance critical since there will be at
least two cycles after SC_EAbort before an Op can possibly be ready to
enter Stage 1 of a pipeline. The SC_Abort signal was “split off” of
SC_EAbort to reduce the fanout/loading on a critical signal and to also
make the longer distance usages non-timing critical. In short, this was
done for timing improvement on a critical signal.

The Scheduler: An Expanded Description 209

Dynamic Field Exec

If the Op is a RegOp, the Execl field indicates that register unit RUX (ver-
sus RUY) is executing it. This field is set when the Op has successfully been
issued to RUX or RUY. The OpQuad Expansion Logic initializes the Execl
field to low (it is actually a “don’t care” before the RegOp is issued). The
following pseudo-RTL description defines the logic which sets and
changes field Execl. The signals “Issue Op[i] to RUX” are generated dur-
ing the Op issue selection scan process; see the section titled “Issue Selec-
tion Logic” beginning on page 228.

Pseupo-RTL DESCRIPTION

Dynamic Field Execl
if (SOEnbl) Execl = “Issue OpJ[i] to RUX”

Dynamic Field DestBM (2:0)

The dynamic field DestBM[2:0] specifies which bytes of the register speci-
fied by the DestReg field are modified by the Op. DestBM[2], DestBM[1],
and DestBM[0] correspond to bits [31:16], [15:8], and [7:0], respectively.
The DestBM field is initialized by the operation decoder and may be
cleared during an abort cycle. The logic associated with dynamic field
DestBM is given in the following pseudo-RTL description. As in the case
of the Src1/2BM fields, “BM” is used as an abbreviation for “byte marks.”
The equations shown are for integer results. There are similar 64-bit
MDestVal fields (one per pair of Ops) for MMX/3D register results.

Dynamic Field DestVal(31:0)

The dynamic field DestVal[31:0] holds the register result value which has
resulted from execution of the Op and is to be committed to DestReg.
DestBM indicates which bytes of the result value are valid after the execu-
tion of the Op. The DestVal field is loaded when the Op completes execu-
tion stage 1 or 2 (depending on the type of Op). For non-executed Ops
(e.g., the load constant operation LDK), DestVal is initialized with the
appropriate register result value. DestVal can be used for temporary
storage before register results are stored when an Op is completed. DestVal
initially holds immediate values for RegOps, displacement values for
LdStOps, and the alternate (sequential or target) branch program counter
(PC) value for a BRCOND Op.

210 cChapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

Dynamic Field DestBM

Initialization by OpQuad Expansion Logic:

if (Opld=LIMMOp)
if (LIMMOp.DestReg = t0)
DestBM[2:0] = 3'b000
else
DestBM[2:0] = 3'b111
elseif (Opld=LdStOp LdStOp.Type = STUPD)
DestBM[1:0] = 2'b11
DestBM[2] = (LdStOp.ASz=4B)
else
DestBM[0] = ~(LdStOp.DSz=1B) | ~LdStOp.Data[2]
DestBM[1] = ~(LdStOp.DSz=1B) | LdStOp.Data[2]
DestBM[2] = (LdStOp.DSz=4B)

if (~OpQV | (DestReg[4:0] = 5'b01111) | // invalid or dest is t0
((Opld = LAStOp) & (LAdStOp.Type = ST/STF))) // stores have no dest reg
DestBM = 3'b000

if (SC_Abort)
DestBM = 3'b000

The DestVal field plays an important role in the K6’s implicit renaming
strategy. The OpQuad Expansion Logic circuitry used to initialize the
DestVal field and the scheduler circuitry logic associated with dynamic
field DestVal is given in the following pseudo-RTL description:

The Scheduler: An Expanded Description 2 11

Pseupo-RTL DESCRIPTION

Dynamic Field DestVal

The OpQuad Expansion Logic generates the DestVal field according to
the following logic:

DestVal[31:0] = switch(Opld)
case RegOp: sext(RegOp.Imm8)
case LdStOp: sext(LdStOp.Disp8)
case LIMMOp: {LIMMOp.ImmHi[16:0],LIMMOp.ImmLo[16:0]}
case SpecOp: if (SpecOp.Type=BRCOND & ~DEC_OpQSel_E)
DEC_AIltNextIPC[31:0]
else
sext(SpecOp.Imm17)

Following execution of the Op, the DestVal field changes as follows:

if (~S2|LU) & ~S3 & S1)
DestVal[31:0] = switch (Type)
case LU: DC_DestRes
case SU: SU1l DestRes
case (RU & Execl): RUX_DestRes
case (RU & ~Execl): RUY_DestRes

where signals DC_DestRes, SU1_DestRes, RUX_DestRes, and RUY_DestRes are the
LU, SU, RUX, and RUY result buses, respectively.

Dynamic Field StatMod(3:0)

Status flag bits EZE, ECE OF, SE AF, PE and CF may be modified by
RegOps. This field specifies which groups of status flags can be moditfied
by the Op as shown in the following table:

Table 3.9 StATUS FLAGS GROUPS SPECIFIED BY THE STATMOD FIELD

StatMod Status Flags Groups that can be Modified by
bit RegOps
3 {EZF, ECF}
2 {OF}
1 {SE, ZF, AF, PF}
0 {CF}

212 Chapter 3: The K6 3D Microarchitecture

EZF and ECF are separate “zero” and “carry” flags for use within OpQuad
Sequences. When set, they are set in the same way as the architectural ZF
and CF flags. The StatMod field is initialized to all zeroes for non-RegOp
Ops and is cleared during abort cycles. The logic associated with dynamic
tield StatMod is given in the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

Dynamic Field StatMod

Initialization by OpQuad Expansion Logic:
StatMod[3:0] = (~OpQV & (Opld=RegOp) & RegOp.SS) ? RegOp.Ext : 4'b0000
Logic in the scheduler clears field StatMod during an abort:

if (Execl & ~S3 & S1 & RUX_NoStatMod | SC_Abort)
StatMod[3:0] = 4'b0000

Dynamic Field StatVal(7:0)

Like the StatMod field, the StatVal field is significant only for RegOps. The
StatVal dynamic field stores the Op’s status flag results value which are to
be committed to status register EFLAGS. StatMod indicates which bits are
valid after the RegOp completes execution stage 1. The StatVal[7:0] field is
loaded when the RegOp completes execution stage 1. The logic associated
with dynamic field StatVal is given in the following pseudo-RTL descrip-
tion. Note that there are no two-cycle RegOps that produce status flag
results.

Pseupo-RTL DESCRIPTION

Dynamic Field StatVal

Field StatVal is initially set to zero (i.e Statval = 8'b00000000) and
changes when a RegOp completes execution pipeline Stage 1.

if (~S3 & S1)
StatVal[7:0] = Execl ? RUX_StatRes[7:0] : RUY_StatRes[7:0]

Dynamic Fields OprndMatch_XXsrcY

This set of dynamic fields is associated with the control of transient infor-
mation that is passed between two adjacent pipeline stages; see, for exam-
ple, Figure 2.13 on page 160. In the notation, OprndMatch_XXsrcY, XX is
either the Load Unit, the Store Unit, RUX, or RUY, and Y is either 1 or 2.

The Scheduler: An Expanded Description 2 1 3

The logic associated with dynamic field OprndMatch_XXsrcY is given in
the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

Dynamic Fields OprndMatch_XXsrcY

match with operand XXsrcY:
OprndMatch_XXsrcY =(busReg[4:0] = DestReg[4:0]) &
(busBM[1] & DestBM[1] | busBM[0] & DestBM[1])

where XXsrcY takes on the values LUsrc1, LUsrc2, SUsrcl, SUsrc2, RUXsrcl,
RUXsrc2, RUYsrcl, and RUYsrc2, and “bus” refers to Oprndinfo_XXsrcY. The
byte mark checking does not include BM[2], as a simplification, since (BM[2]

= 1'b1) implies (BM[1] & BM[Q]); thus, if (bus.BM[2] = 1'b1), then a match

will be signaled irrespective of DestBM[2].

Dynamic Field DBN(3:0)

The DBN[3:0] dynamic field holds four data breakpoint status bits Bn (for
n =0 to 3) for a LdStOp. This field is initially all zeroes. When the associ-
ated LdStOp executes, the breakpoint bits from the appropriate execution
unit are recorded for later trapping. Field DBN is initialized to zero
(DBN[3:0] = b0000). Scheduler circuitry changes it during execution as
shown in the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

Dynamic Field DBN

if (AdvLU2 | AdvSU2) & ~S3 & S2)
DBN[3:0] = (DBN_LU[3:0] & LU) | (DBN_SUI[3:0] & SU)

THE OPQUAD FIELDS IN MORE DETAIL

In addition to the static and dynamic fields for each Op entry in a row, the
scheduler contains fields that are associated with the OpQuad as a whole.
Most of these OpQuad fields are static; however, some are dynamic. Logic
in each row of the scheduler changes the dynamic OpQuad fields as
required. We will now examine the OpQuad fields that were given in
Table 3.3 on page 198 in more detail.

OpQuad Field Emcode

The Emcode field indicates if the OpQuad was fetched from the OpQuad
ROM or if it was generated from the hardware decoders. The scheduler

214 chapter 3: The K6 3D Microarchitecture

logic associated with field Emcode field, which is a static field, is given in
the following pseudo-RTL description:

Pseupo-RTL DescRIPTION

OpQuad Field Emcode

Emcode = DEC_OpQSel_E | DEC_Vec2Emc
/I treat initial vectoring OpQuad as part of an
/[l OpQuad Sequence

OpQuad Field Eret

The Eret field indicates the OpQuad was fetched from the OpQuad ROM
and that it is marked as the last OpQuad in an OpQuad Sequence. The
scheduler logic associated with the Eret field, which is a static field, is given
in the following pseudo-RTL description:

Pseupo-RTL DescRIPTION

OpQuad Field Eret
Eret = DEC_OpQSel_E & EDR_Eret

OpQuad Field FaultPC(31:0)

Field FaultPC[31:0] holds the logical x86 instruction fault program
counter value associated with Ops in the OpQuad. In the case of a dual
hardware decode, the FaultPC field holds the value of the PC associated
with the first of the two instructions. The OCU uses the FaultPC field
when handling fault exceptions for any of the Ops in the OpQuad. The
logic associated with the FaultPC field, which is a static field, is given in
the following pseudo-RTL description:

Pseupo-RTL DescRIPTION

OpQuad Field FaultPC

FaultPC = DEC_IPC // the logical PC for the first
/I decoded x86 instruction in the
/I OpQuad.

The Scheduler: An Expanded Description 2 1 5

OpQuad Field BPTInfo(14.0)

The BPTInfo[14:0] field holds branch prediction table-related informa-
tion from when the OpQuad was generated. The BPTInfo field is defined
only for OpQuads generated by the hardware decoders which contain a
BRCOND Op; it is not defined for OpQuads fetched from the OpQuad
ROM. The logic associated with field BPTInfo field, which is a static field,
is given in the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

OpQuad Field BPTInfo

BPTInfo = DEC_BPTInfo // information from the
I/l current BPT access.

OpQuad Field RASPtr(2:0)

The RASPtr([2:0] field points to the top of the return address stack as of
when the OpQuad was generated. The RASPtr field is defined for all
Opquads but is significant only for OpQuads that contain a BRCOND Op.
When a mispredicted BRCOND Op occurs, the RASPtr field is used to
restore the decoder’s top of Return Address Stack (RAS) pointer to its
value as of the mispredicted branch. Note, the K6’s RAS is used only for
the implementation of x86 RET instructions. A separate one-deep return
address stack is implemented in hardware to support one level of OpQuad
Sequence subroutine nesting. The logic associated with the RASPtr field,
which is a static field, is given in the following pseudo-RTL description:

Pseupo-RTL DEeSCRIPTION

OpQuad Field RASPtr

RASPtr = DEC_RASPtr
/l the current return address stack pointer.

216 cChapter 3: The k6 3D Microarchitecture

Historical Comment and Suggested Readings

Return Address Stacks in Microprogrammable Processors

Standard Computer Corporation’s MLP-900 was among the early dynamically microprogrammable pro-
cessors that supported return address stacks for microcode-level subroutines. The MLP-900 return
address stack was also used in the processing of interrupts by automatically saving the return address
before branching to the control store address where the class of interrupts to be serviced was located.
Additionally, the MLP-900 supported a reasonably complete set of micro-operations that used the return
address stack in relatively obvious ways, (e.g., branch and enter a subroutine, conditional branch or
return, and branch and increment or decrement). See Harold W. Lawson, Jr’s. and Burton K. Smith’s arti-
cle “Functional Characteristics of a Multi-Lingual Processor,” in the Preprints of the 3rd Annual Workshop
on Microprogramming, Buffalo, New York, October 12-13, 1970.

OpQuad Field LimViol

The LimViol field indicates that the OpQuad contains the decode of a
transfer of control instruction for which a code segment limit violation
was detected on the target address. The LimViol field is actually loaded
one cycle later than all of the other fields above (i.e., during the first cycle
that the new OpQuad is resident and valid within the scheduler). For most
rows, field LimViol is static; however, this field can be changed in the first
row and therefore the field must be considered a dynamic field. The logic
associated with the LimViol field is given in the following pseudo-RTL
description. The LimViol field is initialized to zero (LimViol = 1'b0). The
description reflects the fact that LimViol is loaded one cycle later:

Pseupo-RTL DESCRIPTION

OpQuad Field LimViol

LdLV = LdEntry[0] & ~DEC_OpQSel_E // a simple flip-
Il flop

if (LdLV) LimViol = DEC_LimViol

OpQuad Field OpQV

The OpQYV field indicates whether the row contains a valid OpQuad. The
OpQV field is used by the global control logic when shifting the OpQuads.
Invalid OpQuads may be overwritten if an OpQuad lower in the scheduler
is held up. The fields in a row containing an invalid OpQuad have the
same values as an aborted OpQuad. An OpQuad can become invalid as a
result of an abort.

The Scheduler: An Expanded Description 2 17

The OpQuad Expansion Logic initially sets the OpQV field to indicate
whether the OpQuad loaded into the top of the scheduler is valid. The
logic associated with the OpQV field, which is a dynamic field, is given in
the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

OpQuad Field OpQV

OpQV = (DEC_OpQSel_E ? EDR_OpQV : DEC_OpQV) &
~ExcpAbort & ~(SC_MisPred & ~BrAbort)

Field OpQV can later be cleared after an abort to
invalidate an OpQuad and prevent execution or com-
mitment.

if (SC_Abort) OpQV = 1'b0

OpQuad Field FPOP

The FPOP field indicates that the OpQuad contains a floating-point oper-
ation (an FpOP). The associated pseudo-RTL description is as follows:

Pseupo-RTL DESCRIPTION

OpQuad Field FPOP

FPOP = DEC_NPPopV // indicates that Opquad contains
/Il a floating-point op

OpQuad Field ILen0(2:0)

In the case of OpQuads produced from dual hardware decodes, the field
ILen0 holds the length in bytes of the first of the two decoded x86 instruc-
tions. For all other OpQuads, this field is forced to indicate a zero length.
The TLenO field is used to calculate the proper instruction address for
faults on the third or fourth Ops within an OpQuad (i.e, as FaultPC +
ILen0). The logic associated with the ILenO field, which is a static field, is
given in the following pseudo-RTL description:

218 cChapter 3: The k6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

OpQuad Field ILen0

ILen0 = DEC_ILen0 // instruction length of first
I/ short-decoded instruction

OpQuad Fields Smc1stAddr, Smc1stPg, Smc2ndAddr,
and Smc2ndPg

The fields SmclstAddr, SmclstPg, Smc2ndAddr, and Smc2ndPg hold the
first and, if there are instructions from more than one cache line in the
OpQuad, the second cache-line addresses covered by the instruction bytes
of the instruction associated with the OpQuad. These fields are used in the
detection of self-modifying code, which consists of writes to any of the
bytes of the current instructions. The logic associated with the
SmclstAddr, SmclstPg, Smc2ndAddr, and Smc2ndPg fields, which are
static fields, is given in the following pseudo-RTL description:

Pseupo-RTL DESCRIPTION

OpQuad Fields SmclstAddr, SmclstPg, Smc2ndAddr, & Smc2ndPg

SmclstAddr[11:5] = DEC_Smc1stAddr[11:5] // page and address from first
SmclstPg[24:12] = DEC_SmclstPg[24:12] // cache line

Smc2ndAddr[11:5] = DEC_Smc2ndAddr[11:5] // page and address from second
Smc2ndPg[24:12] = DEC_Smc2ndPg[24:12] // cache line

THE SCHEDULER PIPELINE Physically the scheduler is a large storage structure, holding most of the
fields of information describing the Ops that are outstanding in the
machine at any point in time. This includes both (a) the static state
derived from the original Ops as fetched from ROM or generated by the
decoders, and (b) the dynamic state resulting from the processing of these
Ops. From a control perspective, however, an alternative and perhaps bet-
ter view of the scheduler is to view it as a pipelined datapath that generates
various bits of control information related to the execution of the Ops
through their respective execution unit processing pipelines.

The functioning of the scheduler pipeline and the generation of the
appropriate control signals are based on the State field associated with
each scheduler entry. As we saw in the section titled “Dynamic Field
State[3:0]” beginning on page 205, the bits in an entry’s State field reflect
the progress of that Op through the appropriate execution unit pipeline.

The Scheduler Pipeline 219

All changes to the processor state are synchronous with the clock in a
very strict manner, (i.e., all state changes effectively occur on the rising
edge of the clock). This means, among other things, that processor state
changes do not occur in the middle of a cycle and multiple changes to a
given element of state do not occur within one cycle or, if they do, the one
that occurs on the rising edge of the clock will take effect. In essence, the
scheduler, at this level of abstraction, can be thought to be comprised of
edge-triggered flip-flops for all storage elements that store processor state
information.

The pipelined nature of the processing of Ops is reflected in the struc-
ture of the scheduler itself. The overall scheduler and, correspondingly,
each Op entry can be divided into many distinct, independent portions
(chunks) of logic, each of which is directly associated with a specific pro-
cessing pipeline stage of a given type of Op or execution pipeline. Corre-
spondingly, from the perspective of a particular processing pipeline, there
is a chunk of scheduler logic associated with each pipeline stage that pro-
vides key control information for the processing done in that stage and/or
for determining when that stage can successfully complete. From the per-
spective of a given pipeline stage, as viewed across all processing pipelines
(at least for the first few common pipeline stages), there are n sets of simi-
lar chunks of logic that perform the same function for each pipeline or for
each Op source operand of each pipeline.

Suggested Review

It might be useful at this point for you to review several pipeline dia-
grams shown in Chapter 2 (Figure 2.12, Figure 2.14, Figure 2.15, Figure
2.18, and Figure 2.21) and the text that accompanies them as well as the
scheduler diagram, Figure 2.9, and its related discussion.

Each Op goes through a multistage pipeline as it is processed and transi-
tions between several states:

1. the first two pipeline stages are common to all Ops and represent
Op Issue stage and Operand and Operand Transfer stage.

2. the last one or two stages are the actual execute stages.

For integer RegOps there is a single execute stage, corresponding to the
fact that all RegOps execute in a single cycle. Further, once an integer
RegOp enters this stage, it always successfully completes and exits this
stage at the end of the cycle. Some MMX/3D RegOps take two cycles and
some can be held up in execute Stage 1. For LdStOps there are two execute
stages, during which address calculation, segment and page translation
and protection checking, and D-Cache accessing (in the case of LdOps) all
take place. Furthermore, LdStOps can be held up for arbitrary periods of

220 cChapter 3: The K6 3D Microarchitecture

Row 4

time in either stage. Most reasons for holdups apply to the last stage, most
notably D-Cache and D-TLB misses, and faults. Holdups in the first of the
two execute stages stem typically from misaligned memory references®®
and the second execute stage being occupied and blocked, (i.e., not
advancing).

The scheduler has limited involvement with the control of the execute
stages of the processing pipelines; it simply keeps track of the state of each
Op as it is executed and captures resultant register and status values as and
when appropriate. Because of its usefulness at this point, Figure 2.9 is
reprinted here:

OpQuad Expansion
Logic
"
Scheduler OpQuad .
OpQuad 0, Entry 3 Fields Self
OpQuad 0, Entry 2 Fields Issue Operand | Load/Store | Modifying
- Selection | Selection | Ordering Code
OpQuad 0, Entry 1 Fields Logic Logic Logic Support
OpQuad 0, Entry 0 Fields Logic
LN]
Status Flag
Dependent
RegOp
Logic
Status Flag Brancb
Handli Resolution
anding Logic
Op Commit
OpQuad 5, Entry 3 Fields : Unit
OpQuad 5, Entry 2 Fields :
OpQuad 5, Entry 1 Fields
OpQuad 5, Entry 0 Fields

<

g

Global Control Logic

REPRINTING OF FIGURE 2.9, THE SCHEDULER AND ITS CENTRALIZED BUFFER

26 Actually there are some miscellaneous additional cases that occur during cache
and TLB fill which are not worth describing in any detail. The idea was to give
you an example that already appeared in Chapter 2.

The Scheduler Pipeline 221

The various chunks of scheduler logic shown in this figure, namely the

1.

No o~ wN

8.

will be summarized and then discussed in more detail using this pipeline
framework in the following sections. We will show how the information in
the static and dynamic fields in the scheduler is used during the processing

issue selection logic

operand selection logic

load/store ordering logic

status flag handling logic

status flag dependent RegOp logic

branch resolution logic

self-modifying code support logic

global control logic

of instructions.

An inspection of Figure 2.12, Figure 2.14, Figure 2.15, and Figure 2.18
shows the scheduler processing in the first two common pipeline stages,
where each stage consists of two phases. Each phase nominally occurs
during the first and second halves of a cycle. These common stages are

shown in Figure 3.3.

Op Issue Operand Fetch
Stage Stage
Issue Operan.d Operand Operand
. Information .
Selection Broadcast Selection Transfer
Phase Phase Phase
Phase

Figure 3.3 COMMON PIPELINE STAGES FOR ALL REcOPs, LDOPs,

AND STOPS

222 Chapter 3: The K6 3D Microarchitecture

The Issue Selection Logic and the Operand Selection Logic shown in Fig-
ure 2.9 are directly related to the Op Issue Stage and the Operand Fetch
Stage, respectively.

Recall that we introduced some textual abbreviations in Figure 2.16,
Figure 2.19, and Figure 2.20 that help reduce the visual clutter of those
already crowded figures. Using “S” to stand for stage and “C” to stand for
commit, we introduced the notation S; at the left hand side of Figure 2.16
and Figure 2.19 and the notation C; in Figure 2.20. We then summarized
these pipeline notational correspondences in Table 2.43. We now extend
that table to reinforce the fact that neither Figure 2.16 nor Figure 2.19
show the Op Issue Stage.

Table 3.10 ApDDITION OF NEw Row TO TABLE 2.43

Figure 2.16 Figure 2.12, Figure 2.14
and Figure 2.19 and Figure 2.18
Not shown in either figure Op Issue Stage
SO Operand Fetch Stage
S1 Execution Stage 1
S2 Execution Stage 2
C Commit Stage

The use of C1, C2, and C3 in Figure 2.20 reflects the fact that the overall
Commit Stage for StOps is composed of several “stages.” We will find this
useful when discussing the operation of the Store Queue Commit and L1
D-Cache Access logic. The registers shown in Figure 2.16, Figure 2.19, and
Figure 2.20 in between the pipeline stages (i.e., S0, S1, S2, C, C1, and C2)
are the pipeline registers discussed earlier in this section.

OP Issue STAGE Locic OVERVIEW

The Issue Selection Stage Logic supports the requirements of both the Op
Issue Selection Phase and the Operand Information Broadcast Phase.

Issue Selection Phase

During the Op Issue Selection Phase, the scheduler selects the next Ops to
enter the LU, the SU, the RUX, and the RUY processing pipelines—(i.e.,
four Op selections occur). Each cycle, based on the updated State field of
all the scheduler Op entries as of the beginning of the cycle, the scheduler
performs a selection process to determine the next LdOp, StOp, and the
next two RegOps to be issued into the corresponding execution unit pro-
cessing pipelines. This will be discussed in detail later in this section.

The Scheduler Pipeline 223

Operand Information Broadcast Phase

During the Operand Information Broadcast Phase of the cycle, information is
broadcast to all scheduler entries and to external logic about each operand
required by the Ops that were selected in the Op Issue Selection Phase. The
Operand Information Broadcast Phase sets the scheduler up for actually
locating where the appropriate operand values need to come from: (a) a
scheduler Op entry, (b) the architectural register file, or (c) the results buses of
the execution units (i.e., the bypass case). Since each of the four Ops may have
up to two operands, a total of eight operand values might be involved. The
store data operand for StOps represents a ninth register operand to be
fetched, but this operand is not fetched until later in the SU pipeline, (i.e., at
the latest possible moment before execution completion).

OPERAND FeTCH STAGE LoGIC OVERVIEW

The Operand Selection Logic supports the requirements of both the
Operand Selection Phase and the Operand Transfer Phase.

Operand Selection Phase
During the Operand Selection Phase, the scheduler determines:

1. where each of eight operand values actually needs to come from—
including which specific scheduler Op entry, architectural register,
or execution unit result bus.

2. the status of each value, (i.e., whether a valid value is or is not avail-
able from the designated source).

Based on this information, the scheduler determines which of the current
Stage0 Ops will be able to advance into Stagel of their respective execution
pipelines. This determination is made independently for each Op. Only
explicit operand dependencies constrain the order with which Ops are
actually executed. Different types of Ops are processed through their
respective execution unit pipelines in arbitrary order with respect to other
types of Ops after explicit operand dependencies are taken into account.

Operand Transfer Phase

During the Operand Transfer Phase, eight operand values are transferred
from the designated sources over the operand buses to the LU, SU, RUX,
and RUY execution units. The transfers occur irrespective of whether the
values are valid or not. If a value is invalid, then the value will not be used
by the execution unit since the associated Op will not have advanced.
Once an Op enters pipeline Stagel, the associated execution unit has
latched its required operand values and will hold them as long as it
remains in Stagel.

results buses

operand buses

224 Cchapter 3: The K6 3D Microarchitecture

displacement buses

Also during the Operand Transfer Phase, two displacement operand
values are transferred over the displacement buses to the Load Unit and
the Store Unit execution units (one to each unit). The displacements are
32-bit values and always come from scheduler Op entries; in particular,
from the DestVal field of the LdStOp’s associated scheduler Op entry; see
the section titled “The DestVal field plays an important role in the K6’s
implicit renaming strategy. The OpQuad Expansion Logic circuitry used
to initialize the DestVal field and the scheduler circuitry logic associated
with dynamic field DestVal is given in the following pseudo-RTL descrip-
tion:” beginning on page 210. The selection of the source entries occurs
during the Operand Selection Phase in a relatively trivial manner. When a
LdOp or a StOp enters pipeline Stagel, the transferred displacement val-
ues are latched by the Load Unit or the Store Unit execution unit along
with the associated register operand values.

Immediate values, which can exist as Src2 operands of RegOps, are
handled as part of the operand transfer mechanism. In such cases, for-
warding of a register value is inhibited and the immediate value is for-
warded in its place, using the operand buses, directly from the DestVal
field of the scheduler entry holding the Op requiring the immediate value.

DesicN NoTE

Store Data Register Value for a StOp

In addition to the above process for obtaining the source operands of the
next Ops that will start execution, a similar process is performed for
obtaining the store data register value for a StOp. The process is virtually
identical to that just described. The only difference is that the four
phases—the Issue Selection Phase, the Operand Broadcast Phase, the
Operand Selection Phase, and the Operand Transfer Phase—occur in
synchronization with pipeline Stagel and pipeline Stage2 of the StOp. In
this case, issue selection is interpreted as the trivial selection of the StOp
currently in the SU pipeline Stagel. In essence, store data is fetched in
parallel with StOp execution. The actual data value is obtained concur-
rent with completion of StOp execution. If a valid value is not available
yet, then the StOp is held up in Stage2. When a StOp successfully com-
pletes execution and exits Stage2, this data and the associated store
address is put into the Store Queue as part of creating a new Store Queue
entry for this StOp. Effectively, the Store Queue entry is created at the
end of pipeline Stage2 and exists as a valid entry starting with the next
clock cycle. We will revisit this topic later.

The Scheduler Pipeline 225

LoOP-STOP ORDERING LOGIC OVERVIEW

There are two chunks of logic, one associated with the LdOp pipeline and
one associated with the StOp pipeline, that comprise the LdOp-StOp
Ordering Logic. Just as certain execution ordering must be maintained
between Ops due to register dependencies, a certain degree of execution
ordering must be maintained between LdOps and StOps due to memory
dependencies. For example, LdOps cannot freely execute ahead of older
StOps.

Only a relatively limited amount of ordering is maintained between
LdOps and StOps and it is enforced only at Stage2 of the two execution
pipelines. This occurs in the form of holding up a LdOp or a StOp in
Stage2 until it is acceptable or safe to allow the Op to complete. Up until
this point, no ordering is maintained between the two processing pipe-
lines. Further, LdStOps are generally allowed to complete out of order
when memory independence can be proved based on partial address com-
parisons with older LdStOps that are somewhere in the other pipeline,
(i.e., when the least significant, untranslated physical address bits are reli-
ably available for such a comparison).

The word “safe” in the above paragraph means the LdOp and StOp in
question access a disjoint set of memory bytes. The word “independent” is
used as a synonym in this context. Given the splitting of misaligned StOps
into pairs of StOps, this can be determined simply by the comparing of 28-
bit octet addresses and the 8-bit byte marks. The Ops in question are inde-
pendent if any part of the address bits don’t match or if the two sets of byte
marks and non-overlapping (i.e., the bit-wise AND of the two sets of byte
marks equals all zeros). Clearly a comparison of a subset of address bits
can be sufficient to show two LdStOps are independent; however, all
address bits may need to be examined to prove either independence or
dependence. Although dependence checks between LU Stage2 and SU
Stage2 use full-address and byte mark comparisons, dependency checks
between Stage2 and Stagel pipeline stages use partial-address and full-
byte-mark comparisons to determine independencies in the majority of
cases (statistically speaking).

The actual address comparisons associated with dependency checking
are external to the scheduler, within the LU and SU. However, scheduler
support is required for determining the relative age of the LdOps and
StOps in the Load Unit and Store Unit execution pipelines. This is neces-
sary so that only the appropriate address comparisons are considered in
determining whether a given LdOp or StOp can be allowed to complete.
The two chunks of logic referred to are used in these comparisons. The
chunk of logic associated with the LdOp pipeline Stage2 determines the
age of any LdOp in that stage with respect to any StOps in the StOp pipe-
line Stagel or Stage2 and any other StOps which are in earlier stages of
processing. The chunk of logic associated with the StOp pipeline Stage2

226 cChapter 3: The K6 3D Microarchitecture

cc-dependent Ops
cc-dep Ops

determines the age of any StOp in that stage with respect to any LdOps in
the LdOp pipeline Stage2 and any other LdOps which are in earlier stages
of processing.

In the case of a LdOp in LU Stage 2 and older StOps before SU Stagel
(i.e., not having started execution yet), not even a partial-address compar-
ison can be performed. In such cases, which statistically are not perfor-
mance critical, the temporary conservative assumption is made that these
Ops may be dependent and consequently the LdOp is held up in
LU Stage2 until a better dependency check can be performed. Similarly, in
the case of a StOp in SU Stage2 and older LdOps before LU Stage2, the
StOp is blindly held up in Stage2. Address comparison with LU Stagel is
not supported since this has minimal performance benefit and saves
LdOp-StOp ordering logic in the scheduler.

St1ATUS FLAG HANDLING LoGIC OVERVIEW

Lastly, in addition to the chunks of scheduler logic associated with Op
issue, register operand fetch, and LdOp-StOp ordering, there is a chunk of
scheduler logic associated with the fetching and usage of status flag values.
Three relatively independent areas are involved: the fetching of status flag
values for status-dependent RegOps, the fetching of status flag values for
the resolution of BRCOND Ops, and the synchronization of nonabortable
RegOps with surrounding Ops. There is no explicit synchronization with
BRCOND Ops per se. Instead, this synchronization roadway simply
enforces that nonabortable RegOps will always execute in OpQuad[4] of
the scheduler and not above or below OpQuad[4]. This, combined with
appropriate OpQuad Sequence coding rules and the fact that nonabort-
able RegOps occur only in OpQuad Sequences, allows the OpQuad
Sequence programmer to efficiently achieve the necessary synchronization
or serialization with any surrounding dependent or potentially affected
Ops (both preceding as well as following).

St1ATUS FLAG DEPENDENT REGOP LoGIc OVERVIEW

All status-dependent RegOps, which are referred to as condition code
dependent, “cc-dependent,” or “cc-dep” Ops, are executed only by RUX
and require their status operand value with the same timing as their regis-
ter operand values, (i.e., by the end of pipeline Stage0). Unlike the fetching
of register values, though, the entire status fetch process is not pipelined
and occurs in one cycle, (i.e., entirely during RUX pipeline Stage0). Fur-
ther, a common set of logic serves to fetch appropriate up-to-date status
flag values for both cc-dependent RegOps and for resolution of BRCOND
Ops. In the former case these values are simply passed on to the RUX exe-
cution unit while validity of the status values needed by the RegOp is
checked. If valid values for the required status flags are not yet all available,

The Scheduler Pipeline 227

then the RegOp is held up in pipeline Stage0, just as is done for register
operand values not yet available when needed.

BRANCH REsOLUTION LoGcIic OVERVIEW

As is seen from Figure 2.21 on page 175, BRCOND Ops do not require any
actual execution processing. Instead, while a BRCOND Op is outstanding
and before it reaches the bottom row of the scheduler’s buffer, it must be
resolved as to whether it was correctly predicted or not. This is done for
each BRCOND Op as it passes through OpQuad4 of the scheduler, in
order, at a rate of up to one per cycle. When the above status fetch logic
obtains the appropriate status for the next unresolved BRCOND Op, the
set of status flag values is passed to condition code evaluation logic which
determines whether the condition code specified within the BRCOND Op
is TRUE or FALSE. If valid values for the required status flags are not yet
all available, then resolution of the Op is held up.

If the branch condition is FALSE, the BRCOND Op was incorrectly
predicted. In this case, the BRCOND Op is marked as mispredicted and
the appropriate restart signal is asserted to restart the upper portion of the
processor at the correct branch address (see Figure 2.4 on page 87). Only
the upper portion is restarted at this point. The scheduler and the rest of
the lower portion are not flushed and restarted until the branch abort
cycle. The correct branch direction is the alternative or not-predicted
branch direction and the resulting address may be either the sequential or
the target address. If the branch was correctly predicted, then nothing hap-
pens other than the BRCOND Op is marked as predicted correctly and
BRCOND resolution processing advances on to the next BRCOND Op.

This treatment for handling BRCOND Ops applies to BRCOND Ops
from the hardware decode of x86 conditional branch instructions and
from within OpQuad Sequences. The only difference is whether the alter-
native address is an x86 instruction address or an OpQuad Sequence
address.

The State of BRCOND Ops is initially set to unissued (0000). When
the Op is resolved, it is left in this state if it is mispredicted or it is changed
to complete (1111) if it is predicted correctly. Later, based on the state of
the Op, the OCU knows whether a branch abort cycle is necessary or not.
Typically, RegOps and BRCOND OPs are “trivially” handled by OpQuad
Sequences avoiding placing two such Ops in the same OpQuad. As a
result, only one of these executes or resolves in any given clock. These exe-
cutions/resolutions are naturally strictly ordered in OpQuad Sequence
programming order. Further, a nonabortable RegOp in the next OpQuad
after a BRCOND Op is kept from executing if the BRCOND Op was
mispredicted, by the SC_MisPred flip-flop being set (i.e., by that signal
being asserted).The case of a nonabortable RegOp and a BRCOND Op in
the same OpQuad is allowed (and sometimes actually done) when the

228 Chapter 3: The K6 3D Microarchitecture

BRCOND is status-flag-dependent on the nonabortable RegOp (since this
ensures that the BRCOND Op is not resolved and the SC_MisPred flip-
tlop possibly set until after the nonabortable RegOp has executed.

GLoBAL CoNTROL LoGcic OVERVIEW

Basically, the global control logic coordinates the overall operation of the
scheduler. For example, among other things it is involved with: RegOp
Bumping, the control of the source operand input multiplexers for each of
the execution units, validity of each operand value being transferred, and
generation of the pipeline advance signals that enable the pipeline registers
for each pipeline stage.

SeLF-MobpIFYING CoDE SuPPORT Locic OVERVIEW

Logically, in the scheduler, a detection of self-modifying code is treated as
a “kind” of trap of the modifying instruction and factors into the Ké’s
“trap pending” logic. The self-modifying code support logic detects the
existence of such situations and deals appropriately with them.

Issue SELECTION LoGic

As mentioned above, each cycle, based on the updated State fields of all the
scheduler Op entries as of the beginning of the cycle, the scheduler per-
forms a selection process to determine the next LdOp, StOp, and the next
two RegOps to be issued into the corresponding execution unit processing
pipelines. This selection is based solely on the State field and the Type field
within each Op entry and essentially results in an in-order issue selection
to each type of execution pipeline. The selection is not based on any con-
sideration of the register, status, or memory dependencies that each Op
may have on older Ops since such dependencies are not yet known (or at
least not within the context of a reasonably short clock cycle time).

This selection process is physically performed simultaneously and
independently for each of the four pipelines. The selection algorithms for
all four pipelines are similar—the next unissued Op, as indicated by its
State field, of the given type of Op is chosen. In other words, the next unis-
sued LdOp is selected for the Load Unit, the next unissued StOp is selected
for the Store Unit, and the next two unissued RegOps are selected for RUX
and RUY, the first to RUX and the second to RUY. Conceptually, as
described earlier in this chapter, the issue selection for RUY is dependent
on RUX, but physically is performed in parallel with RUX issue selection.
Also as was discussed earlier, some RegOps are only issueable to RUX and
thus the Op selected for issue to RUY is the next RegOp that is in fact
issueable to RUY. The following describes the selection algorithm in
generic terms:

The Scheduler Pipeline 229

The Selection Algorithm

Each scheduler Op entry generates a signal that represents whether that
Op is currently eligible for issue selection to the appropriate pipeline.
These signals,

“Issueable to XXX =
(State = Unissued) AND (“Executable by XXX”)

and their pseudo-RTL description were discussed earlier. The selection
process consists of a scan, from the oldest scheduler Op entry to the
youngest,”’ to locate the first entry with its “Issueable to XXX” signal
asserted. The first such Op located is the one selected for issue to execu-
tion unit XXX. For RUY issue selection, it is the first such Op after the Op
selected for RUX that is selected. The terms in the “Issueable to XXX”
equation use information from the State field and Type fields of an Op
entry. Specifically, “State = Unissued” = ~S0. The Type field, as shown in
Table 3.4 on page 199, indicates if an Op is “Executable by XXX” where
XXX = LU, SU, RUX, RUY for the execution pipelines Load Unit, Store
Unit, RUX, and RUY respectively. This process can be shown abstractly in
the Figure 3.4:

Ops are eligible for issue selection immediately after being loaded into

the scheduler which means that an Op can be issued during its first cycle
of residence within the scheduler. In such cases, only the Type field and
State[0] need to be valid at the beginning of the cycle. All other bits com-
prising an Op entry can be generated as late as during the issue selection
phase (i.e., up to one half cycle later); they only need to be valid within a
scheduler entry and set up for the next phase of the processing pipeline.
If an Op selected for issue does not actually advance into pipeline Stage0,
then effectively it was not successfully issued. During the next cycle its
state will continue to indicate unissued. During the next cycle, it will rec-
ompete for issue and will be available to be selected again. In the case of
RegOps, it is not guaranteed that the Op will be immediately reissued due
to the implementation of “RegOp bumping” which is described in the sec-
tion titled “RegOp Bumping” beginning on page 254.

27 That is, from the bottom row of the scheduler to the top row.

230 Chapter 3 The K6 3D Microarchitecture

Row 0, Op 3 ﬁ%
Row0,0p2 —=>—>
Row0,0pl —=—>

Row0,0p0 ——=——>

eee
Rowi, Opj S "Issue Op To XXX"

Row 5, Op 3
Row5,0p2 —=——>
Row5,0p 1 ﬁ%

Row 5, Op 0 ﬁ%

C =1

Figure 3.4 OpP ISSUE SELECTION

Scan Chains

The scheduler’s scanning process can be viewed from an implementation
perspective as a simple form of carry chain. The carry-in, C;,,is injected
into the beginning of the scan chain at the bottom of the scheduler at the
start of the cycle. C;;, = 1 and begins to advance through each bit position
either propagating or being killed:

Kill = ~Propagate = “Issue To XXX

The C;, to each bit position (i.e., to each Op entry) indicates whether that
entry can be selected:

“Selected for issue to XXX” = “Issueable to XXX” & (C;, = 1)

The Scheduler Pipeline 231

A “ripple-carry” style implementation of this process is shown in Figure
3.5 below:

Cinlic1]

State[i] K[i]
Typeli] } Issueable to XXX[i]

Cinli]

Figure 3.5 ScAN CHAIN STYLE IMPLEMENTATION OF OP SELECTION

The final C,; from the youngest Op entry is also used by peripheral
scheduler logic to indicate whether any Op was found and selected for
issue. The scan chain for RUY is more complicated and is discussed below.
While a serial scan implementation is very simple, a substantially faster
implementation was necessary for the K6 given the central role this scan
algorithm plays in issue selection. As with conventional carry chains, carry
lookahead techniques can be applied.

The following discussion provides a more concrete description of each
scan chain in terms of carry lookahead equations analogous to the tradi-
tional Generate-Propagate-Kill equations used in traditional adders. For
the LU, SU, and RUX scan chains, the bit-level K terms are defined, the G
(generate) terms are all zero, and the P (propagate) terms are the comple-
ment of the associated K (kill) terms; i.e., as defined earlier,

Gli] =0, P[i] = ~K[i].

For the RUY scan chain a more complex set of lookahead equations is nec-
essary to do the scan in parallel with the RUX scan, instead of being
dependent on it. Four terms are needed: G, P, K, and O. The first three
terms are analogous to the conventional terms. At the bit level, the O and
G terms are identical and are the same as the bit-level K terms for the RUX
scan chain. The K terms are analogous to the K terms for the other chains
and the P terms are again the complement of the associated K terms. The
overall lookahead equations are extended forms of the conventional ones.
The following bit-level G, P, K, and O terms are based on the State and
Type fields of an Op entry. The operative definition of the Type field stems
from its usage here, i.e. LU = 1 for LdOps, SU = 1 for StOps, RU = 1 for all
RegOps, and RUY = 1 for RegOps executable by RUY. These bits are gen-
erated by the OpQuad Expansion Logic as Ops are loaded into the sched-

lookahead techniques

generate, propagate, kill signals
and equations

232 Chapter 3: The k6 3D Microarchitecture

uler. This is trivially done without any logic since a bit in the RegOp
format indicates this.

Pseupo-RTL DESCRIPTION

Scan Chain Equations

Bit-level or Op entry equations
LU: ~P =K =LU ~S0

SU: ~P=K=SU ~S0

RUX: ~P =K =RU ~S0

RUY: ~P = K = RUY ~S0
O=G=RU~S0

Group lookahead equations (based on four-bit groups
LU,SU,RUX: Pgrp = PO P1 P2 P3
CIn0 =Cin
Cinl =CIn PO
Cin2=CIn POP1
CIn3 =CIn PO P1 P2
COut=CIn POP1P2P3
RUY: Pgrp = PO P1 P2 P3
Ogrp=00+01+ 02+ 03
Ggrp =GO P1 P2 P3 +~00 G1 P2 P3 +~00~01 G2 P3 +
~00 ~01 ~02 G3
CIn0 =Clin
Cinl =CIn PO + GO
Cln2=CInPOP1 +GOP1 +-~00G1
Cin3=CInPOP1P2+G0OP1P2+~00G1P2+~00~01G2
COut=CInPOP1P2P3+GO0P1P2P3+~00G1P2P3
+~00~01 G2 P3 + ~O0 ~O1 ~02 G3

Issue selection equations
Issue OPi to LU = LUchain.CINi LUchain.Ki

Issue OPi to SU = SUchain.CINi SUchain.Ki
Issue OPi to RUX = RUXchain.CINi RUXchain.Ki
Issue OPi to RUY = RUYchain.CINi RUYchain.Ki

OPERAND INFORMATION BROADCAST

During the Operand (information) Broadcast Phase of the Op Issue Stage
of the four processing pipelines, information about each of the four
selected Ops is broadcast to all scheduler entries and to external logic. This
information describes the two source register operands required by each
Op. In addition, other information about each selected Op is also sent to
external logic for use later by the associated execution units when they exe-
cute the Ops.

The Scheduler Pipeline 233

In total there are eight operand information buses that run through
the scheduler. Each is driven by an issue-selected Op and goes to compari-
son logic within each Op entry. The total number of comparisons is equal
to (8 * the number of Op entries). The results of all of these comparisons
are 1-bit signals that control the actions that occur during Operand Selec-
tion Phase, which is the next processing phase.

Each operand information bus is eight bits wide and carries the five-
bit register number and the three byte marks for a source operand. For
each Op that has been selected for issue, the Src1Reg, Src2Reg, Src1BM,
Src2BM, and Src12BM fields of its scheduler entry are driven, during the
operand broadcast phase, onto the pair of operand information buses cor-
responding to the processing pipeline that the Op has been selected to be
issued to. The following pseudo-RTL description summarizes the equa-
tions determining which operand information buses, if any, are driven by
a scheduler Op entry during this phase of a cycle:

operand information buses

Pseupo-RTL DESCRIPTION

Operand Information Bus Equations

Srclinfo[7:0] = {Src1BMJ[1:0], Src12BM[2], Src1Reg[4:0]}
Src2Info[7:0] = {Src2BM[1:0], Src12BM[2], Src2Reg[4:0]}

Oprndinfo_Lusrcl ="“Issue Opto LU” ? Srclinfo: 8'bZ
Oprndinfo_Lusrc2 = "“Issue Opto LU" ? Src2Info : 8'bZ
Oprndinfo_Susrcl = “Issue Op to SU” ? Srclinfo: 8'bZ
Oprndinfo_SUsrc2 = “Issue Op to SU” ? Src2Info : 8'bZ
Oprndinfo_RUXsrcl = “Issue Op to RUX” ? Srclinfo : 8'bZ
Oprndinfo_RUXsrc2 = “Issue Op to RUX” ? Src2Info : 8'bZ
Oprndinfo_RUYsrcl = “Issue Op to RwUY” ? Srclinfo : 8'hZ
Oprndinfo_RUYsrc2 = “Issue Op to RUY” ? Src2Info : 8'bZ

During the latter part of the operand broadcast phase, every Op entry
monitors the operand information buses and checks for matches between
its Op’s destination register and any of the source operands about to be
fetched. This comparison logic checks both for matching register numbers
and for overlapping byte marks as some or all of the bytes required for an
operand are or will be modified by this Op. The following pseudo-RTL
description summarizes the generic comparison equation:

234 cChapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

Destination Register & Source Operand Comparisons

match with operand XXsrcY:
OprndMatch_XXsrcY =(bus.Reg[4:0] = DestReg[4:0]) &
(bus.BM[1] & DestBM[1] | busBM[0] & DestBM[1])

where XXsrcY takes on the values LUsrc1, LUsrc2, SUsrc1, SUsr c2,RUXsrcl,
RUXsrc2, RUYsrcl, and RUYsrc2, and “bus” refers to Oprndinfo_XXsrcY.

The byte mark checking does not include BM[2], as a simplification, since
(BM[2] = 1'b1) implies (BM[1] & BM[Q]); thus, if (bus.BM[2] = 1'b1), then a
match will be signaled irrespective of DestBM[2]

pipeline registers
match signals

The results of these comparisons represent the output of the operand
broadcasting phase and are captured in pipeline registers for use in the
Operand Selection Phase of Stage0, which is the very next pipeline stage.
This is done concurrently within each and every Op entry—within each
entry, eight match signals (the values of the comparison results) are cap-
tured in pipeline registers to be used in the entry’s operand selection logic.
All of the match signals remain local to each Op entry. In essence, within
each entry, eight operand information bus comparators feed eight “con-
trol” signals (the match signals) to eight chunks of Operand Selection
Logic. We will learn later that the match signals within each Op entry in
the bottom row of the scheduler are masked by additional signals associ-
ated with the committing of the results of the Ops in this OpQuad to the
architectural register file.

The loading of the pipeline registers that capture the match signals is
not controlled by logic within the entry. Instead, the registers within each
entry associated with the two load unit operands are controlled by global
control signals generated by scheduler peripheral logic. For example, all
pipeline registers within the scheduler associated with the LU pipeline
Stage0 are controlled by the global signal LUAdv0. The global control sig-
nal is a function of whether an Op selected for issue to the LU can advance
into pipeline Stage0. Similarly, the registers across all entries that are asso-
ciated with the SU, RUX, and RUY Stage0 are controlled by SUAdAVO,
RUXAdvO0, and RUYAdvO,respectively.

Besides the internal use of the values on the operand information
buses, these values are also latched into external pipeline registers for use
by peripheral logic. Additional information about each selected Op,
namely the Oplnfo field, is also read out of the scheduler during this phase
and latched into external pipeline registers; see the section titled “Static

The Scheduler Pipeline 235

Field OpInfo[12:0]” beginning on page 204. The following summarizes
the equations representing this readout of OplInfo fields:

Pseupo-RTL DESCRIPTION

OplInfo Field Readout

Opinfo_LU ="“Issue Op to LU” ? Oplnfo: 13'bZ
OpInfo_SU = "“Issue Op to SU” ? Oplnfo: 13'bz
OpInfo_RUX = “Issue Op to RUX” ? Oplnfo: 13'bZ
Opinfo_RUY = “Issue Op to RUY” ? Oplnfo: 13'bZ

All of these external pipeline registers are controlled in the same way as the
above internal registers, (i.e., by the XXAdv0 signals). The SrclReg,
Src2Reg, Src1BM, Src2BM, and Src12BM fields are used for a number of
purposes during the next two pipeline phases, (i.e., during pipeline
Stage0). The Oplnfo fields are simply passed “down the pipeline” to the
corresponding execution units through a second set of pipeline registers
controlled by the corresponding XXAdv1 signals.

Operand Selection Logic

Each cycle, based on the values of the match signals in the pipeline Stage0
operand match registers as generated by the above Op issue stage chunk of
logic, the scheduler performs a selection process to determine which Op
entry, if any, will supply the operand value for each register operand being
“fetched”. This is called the Operand Selection Phase. It must also be
determined during this phase whether each operand’s value will come
from the scheduler or the architectural register file. The architectural regis-
ter file is the default source for these values if there is no matching Op
entry to supply the value. As with the Op selection process in the Op issue
stage pipeline, the operand selection process is independently and simul-
taneously performed for each operand being fetched. Thus there are eight
chunks of Operand Selection Logic. The operand selection process is very
similar to the Op issue selection process. During the next Stage0 phase, the
Operand Transfer Phase, the operand values from the selected scheduler
entries or register file will be driven onto the operand buses and trans-
terred to the associated execution units.

For each operand, there is an operand match register bit in each Op
entry (see the section titled “Dynamic Fields OprndMatch_XXsrcY”
beginning on page 212). There are a total of (8 * “# of Op entries” = 192)
such operand match register bits. The selection algorithm is to find the
youngest Op entry with a match which is older than the Op entry contain-
ing the Op whose operand is being selected (i.e., fetched).

236 Chapter 3: The K6 3D Microarchitecture

DEesiecN Norte, HistoricAL COMMENT, AND SUGGESTED READINGS

Operand Forwarding and Register Bypassing

During each cycle, the selection process determines what needs to be done to forward appropriate operand
values during that cycle in case the Op successfully advances into pipeline Stagel after this cycle. If an Op,
whose operands are being selected, does not advance out of pipeline Stage0, then the selection process will
be performed again the next cycle. Since an Op’s state and location within the scheduler can change each
cycle, the outcome of the new selection may be different from the current cycle’s outcome.

The terms operand forwarding or register bypassing are typically applied to a design that allows a result
value produced by an operation to be used at an earlier stage in a pipeline than it would normally be able
to be used by forwarding the output directly from the producing unit to the unit that requires the value as
a source operand, bypassing an intermediate load of a register from which it would be subsequently read.
See, for example, Michael J. Flynn, Computer Architecture Pipelined and Parallel Processor Design, Jones
and Bartlett Publishers, 1995.

This can be viewed as a scan, from the Op entry containing the Op whose
operand is being fetched and in the direction of older entries, for the first
entry with its operand match bit set. This Op is selected as the supplier of
the required operand value and thus as the driver of the associated oper-
and bus during the operand transfer phase. As mentioned earlier, if no
older matching entry exists, then the register file, by default, is selected to
supply the operand value.

The scan to find the appropriate source for an operand value can be
viewed, like the Op issue selection scans, as a form of carry chain. In this
case, though, the scan chains cannot be simple “propagate-kill” chains. In
fact, it turns out that an operand selection scan chain is directly analogous
to a traditional carry or “generate-propagate-kill” chain. Furthermore, the
scan is in the direction of older Ops which is the opposite direction of the
Op issue selection scans.

The initial C;,, into the least significant bit of the chain is set equal to 0
while a carry generate occurs at the Op entry position corresponding to
the Op whose operand is being fetched. Carry kills occur at all Op entries
with set operand match bits. Carry propagates occur at all other positions.
The Op entry with both a set match bit and a C;, = 1 is the selected entry.
The final C;; from the oldest Op entry is also used by peripheral sched-
uler logic to determine if any entry was selected and thus whether the
architectural register file should instead be selected—if C;; = 1, then use
the value in the architectural register file. The selected operand value
source drives the corresponding operand bus during the operand transfer
phase, (i.e., the latter part of the cycle).

As with the issue selection scan chains, a carry-lookahead-based
implementation will be necessary for speed. The following pseudo-RTL

The Scheduler Pipeline 237

description provides a concrete definition of the operand selection scan
chain in terms of carry-lookahead equations similar to the traditional gen-
erate-propagate-kill equations:

Pseupo-RTL DESCRIPTION

Operand Selection Scan Chain

Bit-level or Op entry equations:

LUsrcl: ~P = K = OprndMatch_LUsrcl
G=LU&~S1&S0

LUsrc2: ~P = K = OprndMatch_LUsrc2
G=LU&~S1&S0

SUsrcl: ~P = K = OprndMatch_SUsrcl
G=SU&~S1&S0

SUsrc2: ~P = K = OprndMatch_SUsrc2
G=SU&~S1&S0

RUXsrcl: ~P = K = OprndMatch_RUXsrcl
G =RU & Execl & ~S1 & SO

RUXsrc2: ~P = K = OprndMatch_RUXsrc2
G =RU & Execl & ~S1 & SO & ~Imm

RUYsrcl: ~P = K = OprndMatch_RUYsrcl

G =RU & ~Execl & ~S1 & SO
RUYsrc2: ~P = K = OprndMatch_RUYsrc2

G =RU & ~Execl & ~S1 & SO & ~Imm

Group lookahead equations (based on four-bit groups)

Pgrp=P0 & P1 & P2 & P3
Ggrp=GO0&P1&P2&P3|GL&P2&P3|G2&P3|G3
CIn0 =Clin

CInl=CIn & P0 | GO

CIn2=CIn & PO & P1 | GO&P1 | G1

continued on the next page ...

238 Chapter 3: The K6 3D Microarchitecture

Pseudo-RTL Description (cont.)

Operand Selection Scan Chain

CIn3=CIn&PO0&P1&P2|GO0&PL&P2]
Gl&P2|G2

COut=CIn&PO&PL1&P2&P3|GO&P1&P2&P3|
Gl&P2&P3|G2&P3|G3

Operand selection equations:

“Supply Op[i] result value to LUsrcl” =
LUsrclchain.CINJi] & LUsrc1chain.K]i]
“Supply Op[i] result value to LUsrc2” =
LUsrc2chain.CINJi] & LUsrc2chain.K]i]
“Supply Opli] result value to SUsrcl” =
SUsrclchain.CIN[i] & SUsrclchain.K]i]
“Supply Op[i] result value to SUsrc2” =
SUsrc2chain.CIN[i] & SUsrc2chain.K]i]
“Supply Op[i] result value to RUXsrcl” =
RUXsrc1chain.CIN[i] & RUXsrclchain.KJi]
“Supply Op[i] result value to RUXsrc2" =
RUXsrc2chain.CINJ[i] & RUXsrc2chain.K]i]
“Supply Op[i] result value to RUYsrcl” =
RUYsrclchain.CIN[i] & RUYsrclchain.K]i]
“Supply Op[i] result value to RUYsrc2"” =
RUYsrc2chain.CINJ[i] & RUYsrc2chain.KJi]

Operand Transfer Logic

During the Operand Transfer Phase of Stage0 of the four processing pipe-
lines, appropriate values for each of the eight register source operands
being fetched are transmitted over the eight operand buses to input oper-
and registers of the associated execution units. Integer operand values are
always 32-bit quantities; some bytes may be undefined and an execution
unit may not use all four bytes. Undefined operand bytes will never be
used by an execution unit if the processor is functioning properly. As pre-
viously described, each operand bus can be driven by any scheduler Op
entry or by the register file. Conversely, any Op entry could drive any or all
of the buses or none of them.

During the preceding phase (8 * “# of Op entries” = 192) operand
selection signals and eight scan chain carry-outs (C,,;) were generated.
The pseudo-RTL description for the Operand Information Bus Equations
on page 233 summarizes the equations that determine which operand

The Scheduler Pipeline 239

information buses, if any, are driven by a scheduler Op entry or the regis-
ter file during this phase of a cycle.

The operand values transferred over the eight operand buses are
captured in pipeline registers at the inputs of the four execution units for
use in the next pipeline stage, which is the first execution unit pipeline
stage, Stagel. The loading of these pipeline registers is controlled by global
control logic signals generated by scheduler peripheral logic as was
described earlier for the Stage0 pipeline registers. The LU pipeline Stagel
source operand registers are controlled by global signal LUAdv1; similarly,
the SU, RUX, and RUY Stagel operand registers are controlled by
SUAdv1, RUXAdv1, and RUYAdv1, respectively. The signals are a function
of whether an Op in a pipeline Stage0 can advance into pipeline Stagel.

MMX/3D operands are handled similarly to integer operands and,
notably, they use the same logic. To accomplish this, the following modifi-
cations are utilized:

1. the 64-bit MMX/3D registers are treated like 4-byte reads and
writes of integer registers insofar as source and destination byte
marks, (i.e., all three byte marks are set for MMX/3D registers).

2. separate 5-bit register numbers are used for MMX/3D registers
(twenty-four numbers are used for integer registers and eight
numbers are used for MMX/3D registers). Consequently, register
number comparisons between integer and MMX/3D registers
never match, (i.e., operand match and selection logic equations
readily handle, without change, both integer operands for integer
Ops and MMX/3D operands for MMX/3D-related Ops).

3. copies of the integer operand selection signals are also used as
MMX/3D operand selection signals. Similarly, copies of integer
operand bypass control signals are also used as MMX/3D operand
bypass control signals.

During the operand transfer phase of Stage0, information about each of
the Ops selected to provide an operand value is also read out of the sched-
uler. Each operand bus can be viewed as having an associated operand
status bus that carries information describing the “origins” of the value
being fetched. This information is used during this phase, by external
logic, to determine the availability of a valid operand value and where the
operand came from.

Each operand information bus is ten bits wide and contains a number
of fields. The following summarizes these fields as taken directly from or
derived from fields of the Op entry that is providing the operand value:

OprndStat[9:0] = {State[3:0], DestBM[2:0], Type[2:1], Execl}

operand status bus

240 chapter 3: The K6 3D Microarchitecture

The following pseudo-RTL description summarizes the equations
describing this readout of OprndStat information. These equations deter-
mine how and when the operand status buses, if any, are driven by a
scheduler Op entry during this phase of a cycle. It can be easily seen that
they directly correspond to the operand bus driver enable equations just
given.

Pseupo-RTL DESCRIPTION

OprndStat_LUsrcl =

“Supply Op result value to LUsrc1” ? OprndStat : 10'bZ

OprndStat_LUsrc2 =

“Supply Op result value to LUsrc2” ? OprndStat : 10'bZ

OprndStat_SUsrcl =

“Supply Op result value to SUsrc1" ? OprndStat : 10'bZ

OprndStat_SUsrc2 =

“Supply Op result value to SUsrc2” ? OprndStat : 10'bZ

OprndStat_ RUXsrcl =

“Supply Op result value to RUXsrc1” ? OprndStat : 10'bZ

OprndStat_ RUXsrc2 =

“Supply Op result value to RUXsrc2” ? OprndStat : 10'bZ

OprndStat_RUYsrcl =

“Supply Op result value to RUYsrc1” ? OprndStat : 10'bZ

OprndStat_RUYsrc2 =

“Supply Op result value to RUYsrc2” ? OprndStat : 10'bZ

OprndStat Information

Just as with the operand buses, there is a similar set of drivers at the output
of the register file. As default drivers of these buses, they ensure that the
operand status buses always carry defined values and, in these cases, that
the values result in appropriate behavior by the external logic using this
information. The pseudo RTL-description for OprndStat Information on
this page summarizes the equations describing how and when the operand
status buses are driven by the register file.

Completion Of Operand Transfer

The source operand value that is eventually delivered to an execution unit
can come from any one of three possible sources:

1. ascheduler Op entry.

2. the architectural register file.

3. the result bus coming from the output of this or another execution
unit.

The Scheduler Pipeline 241

The first case is covered by the Operand Transfer Logic described in the
section titled “Operand Transfer Logic” beginning on page 238. In the sec-
ond case, the register file is accessed during the operand selection phase of
Stage0. As we learned, the register number of the desired architectural reg-
ister is read out of the associated Op entry during the operand informa-
tion broadcast phase of the Op Issue Stage and passed to the appropriate
read port of the register file. For both of these cases, the resultant source
operand value is transferred, during the Operand Transfer Phase, to the
execution unit’s operand input via a dedicated operand bus
(Oprnd_XXsrcY) where it is multiplexed into the unit’s operand register.
The selection of whether a scheduler Op entry or the register file is enabled
to drive the operand bus is determined by the scheduler during the pre-
ceding operand selection phase, as described at the end of the preceding
section. The operand registers are controlled/enabled by the XXAdv1 glo-
bal pipeline control signals. There are five-to-one (5:1) multiplexers which
are used to select between the operand bus from the scheduler and the
four buses from the LU, SU, RUX, and RUY execution units.

In the third case above, the value on the operand bus is ignored by the
execution unit and, instead, the value on the appropriate result bus
(Result_XX) is directly multiplexed into the unit’s operand register. Thus,
five operand buses run to each operand input of each execution unit,
namely the operand bus for that operand input plus the four execution
unit result buses. Since there are a total of eight operand fetches per cycle,
there are twelve (8 + 4 = 12) buses carrying register values to and from the
execution units. There is one additional operand bus, described later, for
the store data operand of StOps, see the section titled “Store Data Oper-
ands” beginning on page 244.

The control for the 5:1 multiplexer at operand input of each execution
unit is generated by the scheduler during the operand transfer phase of
Stage0. The scheduler determines if the desired operand value is or may
just be coming available, in which case the appropriate result bus is
bypassed into the execution unit; otherwise, the operand bus is selected as
the input. The validity of the desired operand value is an independent
issue that only affects whether the associated Op in pipeline Stage0 will be
allowed to advance into pipeline Stagel and thus actually enter the execu-
tion unit.

Displacement Operand & Immediate Value
Forwarding

We will consider the logic associated with displacement operands and the
logic associated with immediate values separately as there are important
differences between them.

result buses

242 Chapter 3: The K6 3D Microarchitecture

displacement buses

Displacement Operand Forwarding

During the operand transfer phase of the Load Unit and the Store Unit
processing pipelines, in addition to the register operands for each of these
units, displacement operands are fetched and forwarded. The Load Unit
and the Store Unit each have three operand buses carrying two register
operands and one displacement operand. Displacement operands are
always 32-bit quantities that are sign-extended from 8-bit quantities, as
need be, when loaded into the scheduler from the decoders.

Displacement values are handled within the scheduler in a manner
similar to Op register result values. Until they are used, displacement val-
ues are stored within the 32-bit DestVal fields of Op entries. They are
driven onto displacement buses during the operand transfer phase of
Stagel of the LU and the SU pipelines. Displacement values are always
supplied from scheduler Op entries. They are never forwarded from the
register file. This usage of the DestVal field of a LdStOp does not conflict
with its normal usage by LdOps and some StOps since result values are not
loaded into the scheduler Op entry until after the displacement value is
used.

As noted above, all displacements are stored in the DestVal field. Small
(8-bit) displacements are expanded during Op decode. The selection
between this expanded displacement and the 32-bit dedicated displace-
ment bus occurs during Op decode and the final, effective 16/32-bit dis-
placement value is loaded into the Op’s DestVal field.

The selection of DestVal values to drive onto the displacement buses
during each cycle does not require a scanning process across scheduler Op
entries. Instead, each Op entry enables the drivers of its DestVal field onto
the appropriate displacement bus based on its State and Type bits. The fol-
lowing pseudo-RTL description summarizes the equations enabling the
displacement bus drivers within each Op entry:

Pseupo-RTL DESCRIPTION

Displacement Value Selection

Disp_LU = (LU & ~S1 & SO & ~LD) ? DestVal : 32'bZ
Disp_SU =(SU & ~S1 & SO & ~LD) ? DestVal : 32'bZ

Immediate Values Forwarding

Immediate values can only exist as Src2 operands of RegOps. They are han-
dled in a manner similar to displacements but as part of the operand trans-
fer mechanism. Like displacement values, they are stored in the DestVal
fields of Op entries; like register operands they are forwarded over register
operand buses, specifically the RUXsrc2 and RUYsrc2 operand buses.

The Scheduler Pipeline 243

Only small (8-bit) immediate values need to be handled and are
treated just like small displacement values in that they are stored in the
DestVal field of the Op entry holding the RegOp using the immediate
value. The are stored after suitable sign extension by OpQuad Expansion
Logic before being loaded into the DestVal field. Comments regarding
storage of displacement values in DestVal fields also apply to storage of
immediate values.

Src2 operand immediate values are forwarded to respective RegOp
execution units during the operand transfer phase of pipeline Stage0 in
place of any register value. The selection of any register value source (a
scheduler Op entry or the architectural register file) is inhibited and the
RegOp in question directly drives its DestVal field onto the appropriate
Src2 operand bus.

The inhibition of any RUXsrc2 or RUYsrc2 operand selection is done
during the operand selection phase through masking of the generate sig-
nal that would normally be asserted by the Op entry holding the RegOp
whose operands are being fetched. This is done separately and indepen-
dently for RUXsrc2 and RUYsrc2. This prevents selection of any Op entry
by the RUXsrc2 and RUYsrc2 scan chain and selection of the register file as
the default operand source and is reflected in the previous operand selec-
tion scan chain equations.

The selection of immediate DestVal values to drive onto the RUXsrc2
and RUYsrc2 operand buses during each cycle does not require a scanning
process across scheduler Op entries. Instead, each Op entry enables the
drivers of its DestVal field onto the appropriate operand bus simply based
on its State and related bits. These are the same drivers that are used for
normal register value forwarding; there is simply an additional term in
each enable equation for handling immediate operands. The following
pseudo-RTL description summarizes these terms as separate equations
enabling separate bus drivers within each Op entry:

Pseupo-RTL DESCRIPTION

Immediate Value Selection

Oprnd_RUXsrc2 = (RU & Execl & ~S1 & SO & Imm) ? DestVal : 32'bZ
Oprnd_RUYsrc2 = (RU & ~Execl & ~S1 & SO & Imm) ? DestVal : 32'bZ

When an Op entry drives an immediate DestVal onto an operand bus, it
must also drive the associated operand status bus. This is handled in the
same manner as it is with the operand buses, (i.e., the same bus drivers
and driver input values as for normal operands are used for immediate
values). There is simply an additional term in each enable equation—the
same additional terms as given above in the immediate value selection
equations.

244

Chapter 3: The K6 3D Microarchitecture

The following summarizes these terms as separate equations enabling sep-
arate bus drivers:

Pseupo-RTL DESCRIPTION

OprndStat Information for Immediate Values

OprndStat_RUXsrc2 = (RU & Execl & ~S1 & SO & Imm) ? OprndStat : 10'bZ
OprndStat_RUYsrc2 = (RU & ~Execl & ~S1 & SO & Imm) ? OprndStat : 10'bZ

Store Data Operands

StOps are rather special in that they have three register source operands
and (typically) no register destination. This is in contrast to all other Ops,
which have up to two register source operands and one register destina-
tion. A STUPD Op is an exception insofar as it also has a destination. The
data is only needed for completion of the Op. Certain StOps, such as
STUPD Ops and LEA Ops, are an exception insofar as they also have a reg-
ister destination. For LEA Ops there is no store data operand.

As a result, the fetching of StOp data operand values is performed in a
manner similar to that for all other register source operands, but it is syn-
chronized with the Store Unit pipeline Stage2 (see Figure 2.18 on page 167
and Figure 2.19 on page 168). Whereas the “normal” operand fetch pro-
cess occurs during the Op Issue and Stage0 stages of processing for an Op,
the store data fetch process occurs during Store Unit pipeline Stagel and
Stage2. If a data value is not yet available, this is realized during Store Unit
Stage2 and the associated StOp is held up there.

Given that the data fetch process is largely the same as described in
previous sections, the following section simply describes the two principal
differences and summarizes all of the corresponding equations that sup-
port this process. Thus, this section describes logic within each scheduler
Op entry.

The first difference is that the selection of an Op to issue is more sim-
ply the selection of the StOp currently in the Store Unit pipeline Stagel. A
scan across scheduler entries to choose between multiple selection candi-
dates is unnecessary. The second difference is that the Oplnfo field of the
StOp does not need to be read out during the operand broadcast phase.
Instead, the OpInfo value read out when the StOp was issued is retained
and used during the following two data fetch phases. The Oplnfo value
read out during the Store Unit Op Issue Stage is essentially passed down
the Store Unit pipeline through Stage0, Stagel, and Stage 2.

The Scheduler Pipeline

245

Pseupo-RTL DESCRIPTION

Store Data Operand Fetching
Store Unit stage 1: Op Selection

“Select for store data fetch” = SU & ~S2 & S1
Store Unit stage 1: Operand Info Broadcast
SrcStinfo[7:0] = {SrcStBM[2..0],SrcStReg[4..0]}
Oprndinfo_SUsrcSt = “Select for store data fetch” ? SrcStinfo : 8'bZ
“match with operand SUsrcSt'”:
OprndMatch_SUsrcSt = (busReg[4:0] = DestReg[4:0]) &
(busBM[1] & DestBM[1] | busBM[0] & DestBM[1])

where “bus” refers to Oprndinfo_SUsrcSt.

This match signal is then latched into a pipeline register bit within each
Op entry:

if (SUAdv2) OprndMatch_SUsrcSt = “match with operand SUsrcSt”
Store Unit stage 2: Operand Selection
Bit-level scan equations:

~P = K = OprndMatch_SUsrcSt

G=SU&~S3&8S2

Group-level scan equations:
same as for other operand selection scan chains

“Supply OPi result value to SUsrcSt” =
SUsrcStchain.CIN[i] & SUsrcStchain.K]i]

continued on next page ...

246 chapter 3: The K6 3D Microarchitecture

Pseudo-RTL Description (cont.)

Store Unit stage 2: Operand Transfer

Enable for driver within each Sched Op entry:

Oprnd_SUsrcSt =

“Supply Op result value to SUsrcSt'? DestVal : 32'bz
OprndStat_SUsrcSt =
“Supply Op result value to SUsrcSt” ? OprndStat:10'bZ

Enable for driver at output of register file:

Oprnd_SUsrcSt =

SUsrcStchain.COUT ? SUsrcStRewgVal : 32'bZ
OprndStat_SUsrcSt =
SUsrcStchain.COUT ? {7'b1111111,3'bxxx} : 10'bZ

Store Data Operand Fetching

store data operand bus,
Oprnd_SUsrcSt bus

The store data operand value transferred over the source data operand bus
(the Oprnd_SUsrcSt bus) is captured in a pipeline register at the input of
the Store Queue. The operand status value read out is used by external
control logic during this phase. There is the same sort of 5:1 multiplexer at
the input of the Store Queue like those for the other operand inputs to the
execution units.

RecOP BumMmpPING

When Ops are issued to a given execution unit processing pipeline, they
typically progress down it in order with respect to other Ops issued to that
pipeline. When an Op is held up in pipeline Stage0 the Op currently being
selected for issue to that pipeline also gets held up. The scheduler generally
manages the execution unit processing pipelines based on in-order issue
selection and processing.

When a RegOp is bumped out of either the RUX or RUY pipeline
Stage0, the following RegOp selected for issue to that register execution
unit advances into Stage0, immediately taking the place of the bumped
RegOp. This allows the issue-selected RegOp to “pass by” without delay.
Simultaneously, the bumped RegOp is immediately eligible for reselection
and Op issue.

The Scheduler Pipeline 247

DesicN NoTE

RegOp Bumping

Although Ops can readily pass each other when they are in different
processing pipelines, including the two RegOp pipelines, Ops cannot
pass each other within any given processing pipeline. One exception is
made to this general rule. When a RegOp is held up in pipeline Stage0 of
either RUX or RUY due to one or more unavailable operand values, it
may be both acceptable (insofar as not causing unnecessary Op
execution delays) and desirable (insofar as having positive performance
benefit) to bump the RegOp out of its processing pipeline. This RegOp
bumping is accomplished by clearing the Stage0 valid bit for the RegOp
and by resetting its state in the associated scheduler Op entry to
unissued.

The bumping of a stalled RegOp is generally applicable to all RegOps and
is subject only to the following two constraints:

1. a RUX-only RegOp cannot be bumped if a RUX-only RegOp is
currently being selected for issue to RUX. Bumping the stalled Re-
gOp would violate the principle that RUX-only RegOps are guar-
anteed to execute in order with respect to each other. This fact is
taken advantage of in many OpQuad Sequences to accomplish
various serialization and synchronization purposes (e.g., for mul-
tiply, divide, and segment register loading instructions).

2. aRegOp should only be bumped if it is guaranteed to be stalled for
more than one cycle, otherwise it is generally better to leave the Re-
gOp in pipeline Stage0 waiting to advance in Stagel. This avoids
the additional execution delay and thus detrimental performance
impact that could result from bumping a RegOp that only needed
to wait one clock before being able to advance into Stagel and start
execution.

The implementation of RegOp bumping is reflected in the equations con-
trolling the S1 State bit of an Op’s scheduler entry; see the section titled
“Dynamic Field State[3:0]” beginning on page 205. The implementation is
also reflected in additional peripheral control logic that generates the glo-
bal bump signals BumpRUX and BumpRUY and forces assertion of the
RUXAdv0 and RUYAdVO signals.

BumpRUX
BumpRUY

248 cChapter 3: The K6 3D Microarchitecture

Pseudo-RTL Description

BumpRUX/Y Equations

I/ Inhibit Bumping of RUX
InhBumpRUX =
OpInfo_RUX_0.RegOp.R1 & OpV_RUX Iss & OpInfo_ RUX.RegOp.R1

/l RUX Time Out
RUXTimeOut = (RUXTimeOutCnt[2:0] == 0x0)

// Bump RUX Stage0 Op
BumpRUX =

('OprndStat RUXSrc1.State[0] ||
10prndStat_ RUXSrcl.State[1] && 'OprndStat. RUXSrc1.Type[1] ||
10prndStat_ RUXSrc2.State[0] ||
10prndStat_ RUXSrc2.State[1] && 'OprndStat. RUXSrc2.Type[1] ||
RUXTimeOut) &&
IINhBumpRUX && 'RegOpBumpDisable

/l RUY TimeOut
RUYTimeOut = (RUYTimeOutCnt[2:0] == 0x0)

// Bump RUY Stage0 Op

BumpRUY =
('OprndStat_ RUYSrc1.State[0] ||
10prndStat_ RUYSrcl.State[1] && !'OprndStat. RUYSrcl.Type[1] ||
10prndStat_ RUYSrc2.State[0] ||
10prndStat_ RUYSrc2.State[1] && !'OprndStat. RUYSrc2.Type[1] ||
RUYTimeOut) &&
IRegOpBumpDisable

LoAD/STORE ORDERING LOGIC

In this subsection, we will deal with two important issues: (1) the determi-
nation of the relative order or age, within the scheduler, between certain
LdOps and certain StOps; (2) the process of maintaining proper execution
ordering between dependent LdOps and StOps.

LdOp-StOp Ordering Determination and Control Logic

The scheduler provides key support for maintaining a sufficient degree of
execution ordering between LdOps and StOps. This is necessary so that
related memory-dependency handling logic can ensure appropriate for-
warding of memory data from memory writes to memory reads. As

The Scheduler Pipeline 249

described earlier, only a limited amount of ordering is maintained and is
done so only at Stage2 of the Load Unit and the Store Unit execution pipe-
lines. Further, this only applies to StOps which actually reference memory
or at least generate fault addresses (i.e., CIA and CDA StOps), although
these latter Ops are included only for design simplification reasons. There
is no execution-ordering constraint on or with respect to LEA Ops. No
LdOps are excluded since all LdOps reference memory.

The actual LdOp-StOp ordering control logic is based on partial address
comparisons between LdStOps in pipeline Stagel and Stage2 of their respec-
tive pipelines. The scheduler provides information about the relative age of
such LdStOps so that only the appropriate comparisons are considered in
determining whether to hold up a pipeline Stage2 LdOp or StOp. These com-
parisons are separately performed for any LdOp in Load Unit pipeline Stage2
and for any StOp in the Store Unit pipeline Stage2.

1. in the former case, the scheduler determines the age of any Stage2
LdOp with respect to any StOps in Store Unit Stagel or Stage2, and
any other StOps that are in earlier stages of processing. The purpose
in this case is to prevent LdOps from completing execution ahead of
Store Queue entries being created for older StOps that the LdOp is or
may be dependent on.

2. inthe latter case, the scheduler determines the age of any Stage2 StOp
with respect to any LdOps in Load Unit pipeline Stage2 and any other
LdOps that are in earlier stages of processing. The purpose in this case
is to prevent StOps from completing execution and creating Store
Queue entries ahead of older LdOps that would eventually look up in
the Store Queue and falsely appear dependent on these StOps.

The Relative Age Detfermination Process

Thus the two cases are not symmetric. The actual relative age determination
process is similar to the Op issue selection and operand information broad-
cast process described earlier and involves the use of scan chains. During the
first phase of pipeline Stage2 for a LdStOp, propagate-kill style scans (three
scans for LdOps and two for StOps) are performed across all the scheduler Op
entries from the oldest to the youngest. Each of the scan chains has its initial
carry-in signal (C;;,) set to 1. The initial Cin is the Cin injected into the begin-
ning of the scan chain. Carries are “killed” by certain LdStOps which are dif-
ferent for each scan chain. During the second phase of Stage2 the C;;, of the
Stage2 LdStOp is selected or read out via a multiplexer, effectively broadcast-
ing its C;;, values out to peripheral scheduler logic. The value of these signals
indicates the desired relative age information.

In the case of either a Stage2 LdOp or a misaligned Stagel LdOp (for which
the first half then is in Stage2 while the second half is in Stage1%®), three scan

28 See the section titled “LdOp Misaligned Accesses” beginning on page 171.

relative age of LdStOps

250 chapter 3: The K6 3D Microarchitecture

chains are needed since their age relative to the following three categories of
StOps must be determined:

1. any Stage2 StOp or Stagel StOp performing the second half of a mis-
aligned StOp.

2. any Stagel StOp.
3. any pre-Stagel StOps.

Each scan chain handles one of these cases and each scans for the oldest StOp
with a given state. The value of the carry at any point in the scan chain reflects
whether a StOp of given state has been found yet. Thus, the LdOp in question
can determine its relative age to any StOps in a given category simply by exam-
ining the value of the corresponding scan chain C;;, to its Op entry. If the carry
has not been killed yet (i.e., C;;, = 1), then no older StOp of the given state
exists. Based on these indications, LdOp ordering control logic can determine
which Store Unit pipeline Stagel or Stage2 address comparators to examine
and then whether to hold up the Stage2 LdOp in question.

In the case of either a Stage2 StOp or a misaligned Stagel StOp (for which
the first half then is in Stage 2 while the second half is in Stage 1>) performing
the second half of a misaligned StOp, only two scan chains are needed since
their age relative to only two categories must be determined:

1. any Stage2 LdOp or Stagel LdOp performing the second half of a
misaligned LdOp.

2. any pre-Stage2 LdOps.

Relative age determination for Stage2 LdOps is possible, at the cost of a third
scan chain, but proves to be of insignificant performance benefit. This is
because StOps: (a) have less opportunity to try to and execute ahead of older
LdOps and (b) often do not have following dependent LdOps that would bene-
fit from earlier StOp execution.

As in the Op issue selection scans, each scan handles one of the cases iden-
tified above. Then, based on the value of the carry-in signals to the Op entry
holding the StOp in question, StOp ordering control logic can determine
whether to examine the Load Unit pipeline Stage2 address comparator and
then whether to hold up the StOp.

The scan chains are simple propagate-kill chains, scanning from the oldest
scheduler Op entry to the youngest. The following pseudo-RTL description
describes each of the five scan chains in terms of carry lookahead equations.
The bit-level P and K terms are based only on the State and Type fields of an Op
entry (see the section titled “Dynamic Field State[3:0]” beginning on page 205
and the section titled “Dynamic Field Execl” beginning on page 209, respec-
tively). For the three LdOp scan chains, the ST Type field value (101) is used
instead of the SU Type field value (10X) as this distinguishes the StOps which

29 See the section titled “StOp Misaligned Accesses” beginning on page 173.

The Scheduler Pipeline

251

actually reference memory from LEA Ops, which only generate logical
addresses. LUst2, LUst1, LUst0, SUId2, and SUId1 denote the five scan chains.

Pseupo-RTL DESCRIPTION

Ld-St Ordering Determination Logic

Bit-level or Op entry equations:

LUst2:~P = K = ST & ~S3 & (S2 | S1 & SU2_FirstAddrV)
LUstl:~P = K = ST & ~S2
LUstO:~P = K = ST & ~S1
SUId2:~P = K = LU & ~S3 & (S2 | S1 & LU2_FirstAddrV)
SUId1:~P =K = LU & ~S2

Group lookahead equations (based on four-bit groups):
Pgrp=P0 & P1 & P2 & P3

CIn0 = CiIn// note: Op 0 is oldest Op within a quad
Cinl1 =Cin & PO

CIn2=CIn & PO & P1

CIn3=CIn & PO & P1 & P2

Lookahead among Quads:

CinGrp5 = 1// note: Quad 5 is oldest quad

CinGrp4 = Pgrp5

CinGrp3 = Pgrp5 & Pgrp4

CinGrp2 = Pgrp5 & Pgrp4 & Pgrp3

CinGrpl = Pgrp5 & Pgrp4 & Pgrp3 & Pgrp2
CinGrp0 = Pgrp5 & Pgrp4 & Pgrp3 & Pgrp2 & Pgrpl

During the second phase of pipe stage 2 for a LdStOp, the two/three Cin's to
the Op entry holding the LdStOp are combined with a 24:1 mux as follows:

LUAges[2:0] = 3'b000
SUAges[1:0] = 2'b00

for (all Ops)
LUAges[2:0] |=
(LU & ~S3 & (S2 | S1 & LU2_FirstAddrV)) ?
{~LUst2chain.CIN,~LUst1chain.CIN,~LUstOchain.CIN} : 3'b0
SUAges[1:0] |=
(SU & ~S3 & (S2 | S1 & SU2_FirstAddrV)) ?
{=SUld2chain.CIN,~SUld1chain.CIN} : 2'b0

252 Chapter 3: The K6 3D Microarchitecture

ScHeDULER Op ENTRY FiELDS READ OuT DURING OPERAND TRANSFER

During the Operand Information Broadcast and the Operand Transfer
Phases of fetching operand values, a variety of information is read out
from the associated Ops for use by external control logic. For most oper-
ands this occurs during the Op Issue Stage and pipeline Stage0 of the pro-
cessing pipelines. For the store data operand of StOps this occurs during
SU pipeline Stagel and Stage2.

During the operand information broadcast phase, information about
the Op whose operands are being fetched is read out onto the appropriate
Oplnfo bus. In parallel, the SrcReg and SrcBM fields of the Op’s scheduler
entry are read out onto the two associated OprndInfo buses. In the case of
the store data operand for a StOp, there is not an associated OpInfo bus
transaction since this information is retained from when the StOp was
issued. The OprndInfo information is used during the next couple of
phases. The Oplnfo data is simply passed down the pipeline to the actual
execution units; in the case of RUX and RUY, the two source BM[0] bits
from the OprndInfo buses are also passed down the pipeline to the execu-
tion units.

During the operand transfer phase, information about the status of
each Op that is the source of an operand value is read out onto the Oprnd-
Stat bus associated with each Oprnd bus. This information is only used
during operand transfer phase. The following pseudo-RTL description
summarizes all of the information that is read out of the scheduler, at vari-
ous times, for external use. In these equations, XX = {LU, SU, RUX, RUY}
and Y ={1, 2}.

Pseupo-RTL DESCRIPTION

During Operand Information Broadcast phase:

During Operand Transfer phase:

Scheduler Information for External Use

Oprndinfo_XXsrcY[7:0]
Oprndinfo_SusrcSt[7:0]
SrcYReg[4:0]
SrcYBMJ[2:0]
Oplinfo_XX[12:0]

OprndStat_XXsrcY[9:0]
OprndStat_SUsrcSt[9:0]
State[3:0]

DestBM[2:0]

Type[2:1]

Execl

The Scheduler Pipeline 253

GLoBAL CoONTROL Locic

During the descriptions of the logic, storage elements, and buses compris-
ing the core of the scheduler, there has been reference to a modest but crit-
ically important amount of peripheral control logic that coordinates the
overall operation of the scheduler and the “feeding” of Ops to the four
execution pipelines. The section describes each piece of this peripheral
logic in its order of significance within the four phases of the first two
pipeline stages.

During the issue selection phase the only external question to resolve
is whether any Op had been selected for issue to the various execution unit
processing pipelines. For each issue selection that did not find an eligible
Op, the corresponding OprndInfo and OplInfo buses will not be driven by
a scheduler entry. In such cases, the values on these buses and the opera-
tion of the scheduler during the following three phases for this execution
unit processing pipeline in question is a “don’t care.” The only require-
ment is that the scheduler must know if it should treat pipeline Stage0 as
still being empty or not. This is accomplished by using OpValid bits, one
for each pipeline stage.

The Stage0 OpValid bits are called OpV_LU_0, OpV_SU_0,
OpV_RUX_0, and OpV_RUY_0. Thus the OpValid bit passed into pipe-
line Stage0 must be zero for this pipeline stage is to be treated as still being
empty. The OpValid bits for each processing pipeline are generated from
the final carry-out (C,) of the issue selection scan chains out of the
youngest Op’s scheduler entry. The OpValid bits are loaded into pipeline
registers controlled by the XXAdv0 global signals. In addition, during
abort cycles these registers are unconditionally cleared. The following
pseudo-RTL description summarizes these equations:

Pseupo-RTL DESCRIPTION

Op_XXX_Iss Signals

OpV_LU_lIss =~LUchain.COUT
OpV_SU _lIss =~SUchain.COUT
OpV_RUX_Iss = ~RUXchain.COUT
OpV_RUY_Iss = ~RUYchain.COUT

During the Operand Information Broadcast Phase there is no significant
peripheral logic other than the pipeline registers which latch the Oprnd-
Info and OplInfo values read out of the scheduler for external use. During
the operand selection phase two external activities take place:

1. the SrcYReg fields of the latched OprndInfo values (i.e., the source
register numbers read out during the preceding phase) are used to
access the architectural register file. This is done blindly and in

OpValid bits:

OpV_LU_0
OpV_SU_0
OpV_RUX_0
OpV_RUY_0

254 chapter 3: The K6 3D Microarchitecture

parallel with operation of the operand selection scan chains within
the scheduler.

2. the determination is made for each operand bus of whether the
register file or the scheduler is to drive the bus with an operand val-
ue during the next phase. Each scheduler Op entry directly deter-
mines for itself whether it should drive the bus or not, so the only
issue is determining whether the register file should be enabled to
drive the bus. This decision is simply based on whether any Op en-
try was selected during this phase or not. If no Op entry was select-
ed, as indicated by the final C_,; of the associated operand

selection scan chains, then the register file is enabled. This is done
independently for each operand bus and the equations describing
this are summarized in the operand selection section.

DesicN NoTE

Architectural Register File Ports

Since there are up to nine source operands® to be fetched each cycle,
there are nine corresponding read ports to the architectural register file,
each port being associated with a source to one of the operand buses.
The register fields presented to these ports are SUsrcSt and XXsrcY,
where XX = {LU, SU, RUX, RUY} and Y = {1, 2}.

a
|

Eight Stage0 operands plus the store data operand.

During the operand transfer phase there are a number of external control
functions that occur:

1. RegOp bumping.
2. control of all the execution unit operand input multiplexers.

3. validity determination for each operand value being fetched.
4. generation of the HoldXXO0 signals.*

Fach of these situations will now be discussed

RegOp Bumping

As described in the section titled “RegOp Bumping” beginning on page
246, the implementation of RegOp bumping is split between logic within
each scheduler Op entry and peripheral logic which generates the global

30" The HoldXX0 signal factor into the generation of the XXAdv0 global pipeline
register control signals.

The Scheduler Pipeline 255

bump signals BumpRUX and BumpRUY and forces assertion of the
RUXAdv0 and RUYAdvO signals. The generation of the BumpRUX and
BumpRUY signals are based on the OprndStat values that are read out of
the scheduler, during the operand transfer phase, for each of the register
unit source operands—i.e., the four values OprndStat_ RUXsrcY, where X,
Y = {1, 2}. In particular, the State and Type fields for each operand source
are examined to determine whether the sourcing Op is at least two cycles
away from being able to (possibly) provide a valid operand value. If this is
the case for either sourcing Op, then the dependent RegOp is bumped out
of pipeline Stage0.

DEFINITION

Sourcing Op

A Sourcing Op is an Op that has been selected to be the source of an
operand value.

The following pseudo-RTL description summarizes the BumpRUX and
BumpRUY equations and includes an additional term in each equation
(the RUXTimeout and RUYTimeout signals) to handle what could other-
wise be deadlock situations:

Pseupo-RTL DESCRIPTION

RegOp Bumping Logic
Inhibit if RUX-only stage 0 RegOp and valid RUX-only issue stage RegOp:

INhBumpRUX = OplInfo_ RUX(RegOp).R1 & OpV_RUX Iss & OpInfo_ RUX_0(RegOp).R1

I/ “~S0 | ~S1 & LU | timeout”

BumpRUX = ~InhBumpRUX &
(~OprndStat_ RUXsrcl.State[0] |
(~OprndStat._ RUXsrcl.State[1] & ~OprndStat RUXsrcl.Type[1]) |
~OprndStat RUXsrc2.State[0] |
(~OprndStat_ RUXsrc2.State[1] & ~OprndStat RUXsrc2.Type[1]) |
RUXTimeout)

I/ “~S0 | ~S1 & LU | timeout”

BumpRUY = ~OprndStat_RUYsrcl.State[0] |
(~OprndStat_RUYsrcl.State[1] & ~OprndStat RUYsrcl.Type[1]) |
~OprndStat_ RUYsrc2.State[0] |
(~OprndStat_ RUYsrc2.State[1] & ~OprndStat RUYsrc2.Type[1]) |
RUYTimeout

256 Chapter 3: The K6 3D Microarchitecture

The RUXTimeout and RUYTimeout terms are generated by 3-bit counters
associated with Stage0 of the RUX and RUY pipelines. Taking RUX as an
example, whenever RUX Stage0 is loaded, irrespective of whether with a
valid or invalid Op, the associated counter is reset to a start value; during
all other cycles the counter is decremented. If the counter reaches 000,
then RUXTimeout is asserted.

The BumpRUX and BumpRUY signals force the reload of Stage0 of
the RUX and RUY pipelines, and reset the State bits to unissued within the
scheduler Op entries corresponding to the RegOps being bumped. They
also deassert the Stage0 OpValid signals and thus prevent a Stage0 RegOp,
while being bumped, from also advancing into pipeline Stagel. For exam-
ple, RUXTimeout immediately forces OpV_RUX_0 = 0. Recall that if the
Stage0 OpValid bit appears to be zero, the pipeline stage will be treated as
being empty. OpV_RUX_0 = 0 then causes assertion of the RUXAdv0
pipeline control signal and thus reloading of RUX Stage0.

Control of All Execution Unit Operand Input Multiplexers

The second peripheral function occurring during the operand transfer
phase is generation of the controls for each of the source operand input
multiplexers of each of the execution units. There are nine such multiplex-
ers, one for each of the eight Stage0 operands plus one for a store data
operand. As described in an earlier section, there is a 5:1 multiplexer asso-
ciated with each operand fetch that selects a value from either the corre-
sponding operand bus or one of the four execution result buses, to load
into the execution unit’s operand register.

The control for each of these multiplexers is based on the OprndStat
values that are read out of the scheduler, during operand transfer phase,
for each of the operands being fetched, i.e., OprndStat_XXsrcY and
OprndStat_SUsrcSt, where XX = {LU, SU, RUX, RUY} and Y = {1, 2}. In
particular, the State and Type fields for each operand source are examined
to determine whether the sourcing Op has already completed execution
or, if not, then which unit it is being executed by. The case of a RegOp
sourcing a Src2 immediate value to itself is also appropriately handled.
The following pseudo-RTL description summarizes the five input select
equations for each operand multiplexer:

The Scheduler Pipeline 257

Pseupo-RTL DESCRIPTION

Operand Multiplexer Logic

/I RUXsrc2 OprndStat values
RUXsrc2lmm = (Type[1:0]=2'b11) & ~S1 & SO & Execl

/I RUYsrc2 OprndStat values
RUYsrc2lmm = (Type[1:0]=2'b11) & ~S1 & SO & ~Execl

I1“S3|S2 & ~LU”
SelOprndBus_XXsrcY = State[3] | State[2] & Type[1]

I/l above is for all SelOprndBus signals except the two below
SelOprndBus_RUXsrc2 = State[3] | State[2] & Type[1] | RUXsrc2lmm
SelOprndBus_RUYsrc2 = State[3] | State[2] & Type[1] | RUYsrc2lmm

SelLUDestRes XXsrcY
SelSUDestRes_XXsrcY

~SelOprndBus_XXsrcY & ~Type[1]

~SelOprndBus_XXsrcY & Type[l] & ~Type[0]

SelRUXDestRes_XXsrcY = ~SelOprndBus_XXsrcY & Type[l] & Type[0] & Execl
SelRUYDestRes_XXsrcY = ~SelOprndBus_XXsrcY & Type[l] & Type[0] & ~Execl

\Validity Determination for Each Operand Value Being
Transferred

The third peripheral function occurring during the operand transfer
phase is determination of the validity of each of the nine operand values
being presented to execution unit source operand registers. A signal is
generated for each source operand that indicates whether its current value
is valid or not. As with the control of the associated execution unit input
multiplexers, the signal is based on the State and Type fields of the Oprnd-
Stat values that are read out of the scheduler. The sourcing Op must either
have completed execution or currently be completing execution. In addi-
tion, the DestBM field of the OprndStat value is compared with the
Src1BM or Src2BM field of the latched OprndInfo value for the operand
being fetched. The sourcing Op’s byte marks must be a superset of the
required byte marks. The case of a RegOp sourcing a Src2 immediate value
to itself is also appropriately handled, but in the HoldXX0 equations
described below instead of being factored into the appropriate equations
for the OprndInvld signals. The following pseudo-RTL descriptions sum-
marize the OprndInvld equations:

258 Chapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

OprndInvld Signals

/I~S1* | LU & (~S2 | ~S3 & ~LUAdv2)
Oprndinvld_XXsrcY= ~State[1] |
~Type[l] & (~State[2] | ~State[3] & ~CHP_LUAdV?2) |
SrcYBM[2] & ~DestBM[2] |
SrcYBM[1] & ~DestBM[1] |
SrcYBMJ[0] & ~DestBM][0]

Generation of the HoldXX0 Signals

The fourth and last peripheral function occurring during the operand
transfer phase is generation of the HoldXXO0 pipeline control signals. The
following summarizes the equations for generating these signals:

Pseupo-RTL DESCRIPTION

HoldXXO0 Pipeline Control Signals

SC_HoldLUO = Oprndinvid_LUsrcl | Oprndinvid_LUsrc2

SC_HoldSUO = Oprndinvid_SUsrcl | Oprndinvid_SUsrc2

SC_HoldRUXO0 = Oprndinvid_RUXsrcl | Oprndinvid_RUXsrc2 & ~RUXsrc2lmm |
Statusinvlid_RUX | NonAbSync

SC_HoldRUYO0 = Oprndinvid_RUYsrcl | Oprndinvid_RUYsrc2 & ~RUYsrc2Imm

SC_HoldSU2 = Oprndinvid_SUsrcSt & ~SU2_FirstAddrV

STATUS FLAG HANDLING LoGIc, STATUS FLAG DEPENDENT REGOP
LoGic, BRANCH ResOLUTION LoGic, AND NONABORTABLE REGOP
Loeic

The handling and usage of status flags, both architectural status flags and
K6 microarchitectural flags, involves three areas of functionality:

1. fetching of status flag operand values for cc-dependent RegOps.
2. fetching of status flag values for and the resolution of BRCOND
Ops.

3. synchronization of the execution of nonabortable RegOps.

Unlike the handling of register operands and LdOp-StOp ordering con-
straints, the logic for supporting these functions is not spread across all
scheduler Op entries. Status flag handling for related Ops can only
occur while they are within certain rows of the scheduler. In the case of

The Scheduler Pipeline 259

cc-dependent RegOps, they must be in Row 3 during the RUX pipeline
Stage0 cycle (i.e., the cycle in which status operand fetching occurs). In
the case of BRCOND Ops and nonabortable RegOps, they must be in
Row 4 during their resolution or RUX Stage0 cycle, respectively.

DesiecN NoOTE

Simplifications and Reductions in Logic

Condition code dependent and nonabortable RegOps are held up in
RUX Stage0 if they have not yet shifted down to scheduler Row 3 or 4,
respectively. Conversely, such Ops are held up at these positions by
inhibiting OpQuad shifting until they are successfully able to advance
into RUX Stagel. These restrictions enable all of the associated logic to
be simpler and much smaller. For example, the fetching of appropriate
status flag values for condition code dependent RegOps and BRCOND
Ops only occurs across the bottom three scheduler rows and can be per-
formed independently for each of the four groups of status flags. One set
of this status fetching logic can be shared or utilized for both condition
code dependent RegOp status operand fetching and BRCOND Op reso-
lution.

In addition, the direct bypassing of status flag values directly from
either RegOp execution unit to a condition code dependent RegOp
entering the RUX execution unit, is not supported. The result is a mini-
mum one-cycle latency between the execution of a RegOp that modifies
status flags® and the execution of a following cc-dependent RegOp. The
overall performance impact of this is found to be minimal. In cases
where an OpQuad Sequence is being executed, the impact might very
well be eliminated through appropriate Op scheduling.

% Such RegOps are termed “.cc” RegOps.

To further aid the simplification and reduction of logic, a number of
restrictions are placed on where condition code dependent RegOps,
BRCOND Ops, and nonabortable RegOps can occur relative to each other
within OpQuads. Many of the relevant Ops can only occur in OpQuad
Sequences. The restrictions generally translate into OpQuad Sequence
coding rules and in some cases also constrain the decoding of multiple x86
instructions in one cycle. In particular, the restrictions are as follows:

1. no “.cc” RegOps after a BRCOND Op within an OpQuad.
2. no cc-dependent RegOps after a “.cc” RegOp within an OpQuad.
3. no nonabortable RegOps in the same OpQuad as a BRCOND Op.

260 Chapter 3: The K6 3D Microarchitecture

4. only one cc-dependent RegOp within an OpQuad.
5. only one BRCOND Op within an OpQuad.

The following describes each of the pieces of logic: for status value fetch-
ing, status forwarding to condition code dependent RegOps, BRCOND
resolution, and nonabortable RegOp synchronization

The Fetching of Status Flag Operand Values for CC-
Dependent RegOps and BRCOND Ops

During each cycle, the effective set of status flag values at the boundary
between scheduler Rows 3 and 4 is computed by examining all the RegOps
in OpQuads 4 and 5. Since it is possible for each RegOp to modify only a
subset of the flags, this process is performed independently for each of
four groups of status flags, corresponding to the four StatMod bits within
each scheduler Op entry (see the section titled “Dynamic Field Stat-
Mod[3:0]” beginning on page 211). The result, within each group, is a set
of flag values and state information from the youngest RegOp with its
StatMod bit set for that set of flag values. The validity of the flag values is
directly implied by the associated state information.

The end result or output of the status flag fetch logic is eight flag val-
ues and four associated valid bits. These are passed to the logic handling
condition code dependent RegOps and to the logic handling BRCOND
Op resolution, where the flag values are evaluated and the valid bits are
examined to determine whether the required flag values are, in fact, valid.
Based on the latter information, appropriate pipeline and scheduler shift
control signals are generated. The correspondence between the Stat-
Mod|[3:0] bits and the status flags was given in Table 3.9 on page 211.

NOTATION (REPEATED FOR CONVENIENCE)

OpQuadY and OpX

We will, from time to time, use the following notation to refer to sched-
uler OpQuads: OpQuadY, where Y =0to 5. For example, OpQuadl
identifies the OpQuad in Row 1 of the scheduler, OpQuad2 the OpQuad
in Row 2, etc. Additionally, we will use the following notation to refer to
scheduler Op entries: OpX, where X = 0 to 23. For example, X = 0 iden-
tifies the youngest Op in the scheduler and X = 23 identifies the oldest
Op in the scheduler. Thus OpQuad4, for example, contains Opl6,
Op17, Op18, and Op19.

A process somewhat similar to that for fetching register operand values is
used within each status flag group to obtain the appropriate flag values,
i.e., the most recent new values relative to Op15 in the scheduler. A propa-

The Scheduler Pipeline 261

gate-kill-style scan from Op16 to Op23 locates the first Op with its Stat-
Mod bit for this flag group set, and that Op entry’s Completed State bit
(i.e., S3) and the appropriate set of flag values are read out; the valid bit for
this group is simply the State bit. In the case that no such Op is found, the
desired flag values are read from the architectural status flags register along
with S3 = 1. The following pseudo-RTL descriptions give the equations
for the status flag fetch logic for each flag:

Pseupo-RTL DESCRIPTION

Status Flag Fetching Logic

for (j = 16 to 23) {
Oplj]:Statinfo_3[1:0] = {Op][j]:StatVal[7], Opl[j]:S3} //OF
Oplj]:Statinfo_2[4:0] = {Op[j]:StatVal[6:3],0p][j]:S3} //SF,ZF,AF,PF
Oplj]:Statinfo_1[1:0] = {Op[j]:StatVal[2], Oplj]:S3} //CF
Oplj]:StatInfo_0[2:0] = {Op[j]:StatVal[1:0],0p]j]:S3} //[EZF,ECF

}

FlgStatinfo_3[1:0] = {StatFlags[7], 1'b1} //OF
FlgStatinfo_2[4:0] = {StatFlags[6:3],1'b1} //SF,ZF,AF,PF
FlgStatinfo_1[1:0] = {StatFlags[2], 1'b1} //CF
FlgStatinfo_0[2:0] = {StatFlags[1:0],1'b1} //EZF,ECF

for i=0to 3) {
/I i indexes flag group corresponding to StatMod]i]
StatSel16_[i] = Opl6:StatMod(i]
StatSell17_[i] = ~Op16:StatMod][i] & Op17:StatMod[i]
StatSel18 [i] =
~0Opl6:StatMod[i] & ~Op17:StatMod]i] & Op18:StatMod]i]
StatSel19 [i] =
~Opl6:StatMod][i] ... ~Op18:StatMod[i] & Op19:StatMod]i]
StatSel20 _[i] =
~Opl6:StatMod][i] ... ~Op19:StatMod[i] & Op20:StatMod]i]
StatSel21_[i] =
~Opl6:StatMod][i] ... ~Op20:StatMod[i] & Op21:StatMod]i]
StatSel22_[i] =
~Opl6:StatMod][i] ... ~Op21:StatMod[i] & Op22:StatMod]i]
StatSel23 [i] =
~Opl6:StatMod][i] ... ~Op22:StatMod[i] & Op23:StatMod]i]
StatSelFlg_][i]=
~Opl6:StatMod][i] ... ~Op22:StatMod][i] & ~Op23:StatMod]i]
}

continued on next page ...

262 Chapter 3: The k6 3D Microarchitecture

Pseudo-RTL Description (cont.)

Status Flag Fetching Logic

Statinfo_3[1:0] = {2{StatSel16_3}} & Opl6:Statinfo_3[1:0] |
{2{StatSell7_3}} & Opl7:Statinfo_3[1:0] |
{2{StatSel18_3}} & Op18:Statinfo_3[1:0] |
{2{StatSel19_3}} & Op19:Statinfo_3[1:0] |
{2{StatSel20_3}} & Op20:Statinfo_3[1:0] |
{2{StatSel21_3}} & Op21:Statinfo_3[1:0] |
{2{StatSel22_3}} & Op22:Statinfo_3[1:0] |
{2{StatSel23_3}} & Op23:Statinfo_3[1:0] |
{2{StatSelFIg_3}} & FlgStatinfo_3[1:0]

Statinfo_2[4:0] = {5{StatSell6_2}} & Opl6:Statinfo_2[4:0] |
{5{StatSell7_2}} & Opl7:Statinfo_2[4:0] |
{5{StatSell8 2}} & Op18:Statinfo_2[4:0] |
{5{StatSell9 2}} & Op19:Statinfo_2[4:0] |
{5{StatSel20_2}} & Op20:Statinfo_2[4:0] |
{5{StatSel21_2}} & Op21:Statinfo_2[4:0] |
{5{StatSel22_2}} & Op22:Statinfo_2[4:0] |
{5{StatSel23_2}} & Op23:Statinfo_2[4:0] |
{5{StatSelFlg_2}} & FlgStatinfo_2[4:0]

Statinfo_1[1:0] = {2{StatSel16_1}} & Opl6:Statinfo_1[1:0] |
{2{StatSell7_1}} & Opl7:Statinfo_1[1:0] |
{2{StatSel18_1}} & Op18:Statinfo_1[1:0] |
{2{StatSel19_1}} & Op19:Statinfo_1[1:0] |
{2{StatSel20_1}} & Op20:Statinfo_1[1:0] |
{2{StatSel21_1}} & Op21:Statinfo_1[1:0] |
{2{StatSel22_1}} & Op22:Statinfo_1[1:0] |
{2{StatSel23_1}} & Op23:Statinfo_1[1:0] |
{2{StatSelFIlg_1}} & FlgStatinfo_1[1:0]

Statinfo_0[2:0] = {3{StatSel16_0}} & Op16:Statinfo_0[2:0] |
{3{StatSell7_0}} & Opl7:Statinfo_0[2:0] |
{3{StatSel18_0}} & Op18:Statinfo_0[2:0] |
{3{StatSel19_0}} & Op19:Statinfo_0[2:0] |
{3{StatSel20_0}} & Op20:Statinfo_0[2:0] |
{3{StatSel21_0}} & Op21:Statinfo_0[2:0] |
{3{StatSel22_0}} & Op22:Statinfo_0[2:0] |
{3{StatSel23_0}} & Op23:Statinfo_0[2:0] |
{3{StatSelFlg_0}} & FlgStatinfo_0[2:0]

continued on next page ...

The Scheduler Pipeline 263

Pseudo-RTL Description (cont.)

Status Flag Fetching Logic
I/l OF; SF,ZF,AF,PF; CF; EZF,ECF

Status[7:0] =
{Statinfo_3[1],StatInfo_2[4:1],StatInfo_1[1],Statinfo_0[2:1]}

StatusV[3:0] =
{Statinfo_3[0],StatInfo_2[0],Statinfo_1[0],Statinfo_0[0]}

CC-Dependent RegOp Synchronization

During each cycle, the four Ops within scheduler Row 3 are examined for
whether any of them is a condition code dependent RegOp. If one is
found, then the specific type of the RegOp is decoded to determine which
groups of status flags are needed, and the Status valid bits are checked to
determine whether all of those groups are, in fact, valid. Concurrently, bits
Status(7:0] are blindly passed to the RUX execution unit.

If all of the required flag groups are currently valid, then the RegOp is
allowed to advance into RUX pipeline Stagel, at least insofar as the status
operand fetch is concerned. If the RegOp does not immediately advance
into Stagel, though, then shifting of scheduler OpQuad3—and thus
Opquad4-OpQuad5—are inhibited. If any of the required flag groups are
not currently valid, then the RegOp is held up from advancing into RUX
Stagel and shifting of scheduler OpQuad3-OpQuads5 is inhibited.

If there is no unexecuted cc-dependent RegOp in scheduler
OpQuad3, but there is a cc-dependent RegOp in RUX pipeline Stage0,
then the RegOp is unconditionally held up in Stage0 until it also arrives in
OpQuad3. If there is a cc-dependent RegOp in OpQuad3 that has not yet
executed, but there is no cc-dependent RegOp in RUX Stage0 or there is
an unexecuted cc-dependent RegOp in scheduler OpQuad4, then shifting
of OpQuad3-OpQuad5 is inhibited.

There is an additional input called RUX_NoStatMod from the RUX
unit pipeline Stage 1. RUX_NoStatMod indicates that the Op being
executed there does not modify status flags despite it being marked as
modifying status flags. This is necessary to handle certain architectural sit-
uations where a RegOp does not modify status flags for certain zero oper-
and values. A cycle-delayed version, called NoStatMod, is used in control
logic. The following pseudo-RTL description gives the equations for syn-
chronizing or coordinating the execution of cc-dependent RegOps:

264 chapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

CC-Dependent RegOp Synchronization Logic
CCDepInRUX_0 = (OpInfo_RUX_0(RegOp).Type[3:2] = 2'b01) & OpV_RUX_0

UnexecCCDeplnQ3 = OP12:(RU & Oplinfo(RegOp).Type[3:2]=2'b01 & ~S1) |
OP13:(RU & OplInfo(RegOp).Type[3:2]=2'b01 & ~S1) |
OP14:(RU & OplInfo(RegOp).Type[3:2]=2'b01 & ~S1) |
OP15:(RU & Oplinfo(RegOp).Type[3:2]=2'b01 & ~S1)

if (~Oplnfo_RUX_0(RegOp).Type[5])
StatV = StatusV[1] //need CF for ADC,SBB,RLC,RRC Ops

elseif (Oplnfo_RUX_0(RegOp).Type[1:0] = 2'b10)
StatV = StatusV[0] //need EZF,ECF for MOVcc Op

else /Ineed OF,...,CF for MOVcc,RDFLG,DAA,DAS Ops
StatV = StatusV[3] & StatusV[2] & StatusV[1]

Il keep track of when an unexecuted cc-dep RegOp
I/l is in Sched Op quad 3:

StrtExecCCDep = CCDepInRUX_0 & SC_AdvRUXO0 & ~BumpRUX

Il keep track of when an unexecuted cc-dep RegOp

I/l is in Sched Op quad 4

if (LdEntry4 | StrtExecCCDep | SC_EAbort) // enabled flip-flop
UnexecCCDeplnQ4 = LdEntry4 & UnexecCCDeplnQ3 &

~StrtExecCCDep & ~SC_EAbort

// hold copy of status flag values at input to

/l RUX execution unit:

SC_HoldStatus = UnexecCCDeplnQ4

// hold RegOp execution if ...:
Statusinvld_RUX = (CCDepInRUX_0 & ~UnexecCCDeplnQ4) &
~(UnexecCCDepInQ3 & StatV & ~NoStatMod)

// hold Op quad from shifting out of Sched quad 3 if ...:
HoldOpQ3 = UnexecCCDepInQ3 & ~(CCDepInRUX_0 & StatV & ~NoStatMod) |
UnexecCCDeplInQ4

The Scheduler Pipeline 265

BRCOND Op Resolution Logic

In the “Branch Resolution Logic” section of Chapter 2, we explained that a
BRCOND Op must be resolved as to whether the associated conditional
branch instruction was correctly predicted or not while the BRCOND Op
is outstanding and before it reaches the bottom row of the scheduler’s
buffer. By way of review, we will summarize that discussion before pre-
senting the pseudo-RTL description which gives the equations for the
BRCOND Op resolution logic. We also recommend that you review the
placement of the Branch Resolution Unit (a.k.a. the branch resolution
logic) in Figure 2.2 on page 69 and in Figure 2.9 on page 130.

BRCOND Op resolution is done for each branch operation, in order,
at a rate of up to one per cycle. The appropriate set of status flag values is
used to determine if the condition code specified within the BRCOND Op
is TRUE or FALSE when the status flag handling logic obtains the appro-
priate status for the next unresolved BRCOND Op. If valid values for the
required status flags are not yet all available, then resolution of the
BRCOND Op is held up.

If the branch condition is FALSE, the BRCOND Op was incorrectly
predicted and an appropriate restart signal is immediately asserted to
restart the upper portion of the processor at the correct next program
address (i.e., the instruction fetch and decode portion—see Figure 2.4 on
page 87). The correct address is either the branch target address or next
sequential address, whichever was not predicted.

If the branch was correctly predicted, then nothing happens other
than BRCOND Op resolution processing advances on to the next
BRCOND Op. The branch resolution logic is concerned with resolving
these issues.

With this review as background, we will now give some additional, more
detailed comments, to aid in understanding the pseudo-RTL description
of the resolution process.

266 Chapter 3: The K6 3D Microarchitecture

During each cycle, the four Ops within scheduler OpQuad4 are examined
for whether any of them (at most one) is a BRCOND Op. If one is found,
then the Condition Code field of that Op entry is decoded to select one of
thirty-two condition values and associated valid bits. The value and valid-
ity of the selected condition are then used to inhibit scheduler shifting of
OpQuad4-OpQuad5 or to assert pipeline restart signals when appropri-
ate.

In the case that a BRCOND Op is found to be mispredicted, a pipeline
restart is required. The appropriate restart signal is asserted based on
whether the BRCOND Op has been produced by the decoders or is from
an OpQuad Sequence. If the BRCOND Op is from an OpQuad Sequence,
the signal also depends on whether it is from an internal (OpQuad ROM-
based) or external (external memory-based) sequence. In addition to gen-
erating the restart signal, an appropriate x86 instruction address or
OpQuad Sequence vector address must be generated.

For the benefit of the logic handling synchronization between non-
abortable RegOps and preceding BRCOND Ops, a record is also main-
tained of the occurrence of a mispredicted BRCOND Op until an abort
cycle occurs via the SC_MisPred flip-flop. Further, the existence of an out-
standing mispredicted BRCOND Op is used to hold up the loading of new
OpQuads into the scheduler from the “restarted” decoders until the abort
cycle occurs.

In the case that a BRCOND Op was correctly predicted, the only
action taken is to set the BRCOND Op’s S3 State bit. The following
pseudo-RTL equations describe all of this logic. Reference is made below
to the DTF and SSTF signals used to indicate pending data breakpoint and
single-step traps, respectively. There is also a signal called MDD (“multiple
decode disable”) which can be used for silicon debugging to prevent more
than one instruction from being decoded into each OpQuad. The
following pseudo-RTL description gives the equations for the BRCOND
Op resolution logic:

The Scheduler Pipeline 267

Pseudo-RTL Description

BRCOND Op Resolution Logic

BRCOND16 = OP16:(Type=SpecOp & Oplnfo(SpecOp).Type=BRCOND & ~S3)
BRCOND17 = OP17:(Type=SpecOp & Oplnfo(SpecOp).Type=BRCOND & ~S3)
BRCOND18 = OP18:(Type=SpecOp & OplInfo(SpecOp).Type=BRCOND & ~S3)
BRCOND19 = OP19:(Type=SpecOp & OplInfo(SpecOp).Type=BRCOND & ~S3)

BRCONDINQ4 = (BRCOND16 | BRCOND17 | BRCOND18 | BRCOND19) & OPQ4:0pQV

CondCode[4:0] = {5{BRCOND16}} & Op16:Oplinfo(SpecOp).CC[4:0] |
{5{BRCOND17}} & Op17:Oplinfo(SpecOp).CC[4:0] |
{5{BRCOND18}} & Op18:Opinfo(SpecOp).CC[4:0] |
{5{BRCOND19}} & Op19:OpInfo(SpecOp).CC[4:0]

CondV = switch (CondCode[4:1])

case 0000:
case 0001:
case 0010:
case 0011:
case 0100:
case 0101:
case 0110:
case 0111:
case 1000:
case 1001:
case 1010:
case 1011:
case 1100:
case 1101:
case 1110:
case 1111:

1'bl

StatusV][0]

StatusV][0]

StatusV[0] & StatusV[2]
StatusV][0]

StatusV][0]

StatusV][0]

StatusV[0] & StatusV[2]
StatusV][3]

StatusV[1]

StatusV|[2]

StatusV[2] & StatusV[1]
StatusV|[2]

StatusV|[2]

StatusV[3] & StatusV[2]
StatusV[3] & StatusV[2]

/l any active hardware interrupt requests?:
IP = SI_NMIP | SI_INTRP

continued on next page ...

268 Chapter 3: The K6 3D Microarchitecture

Pseudo-RTL Description

CondVal = switch (CondCode[4:1])

BRCOND Op Resolution Logic

case 0000: CondCode[0] ~ 1'b1
case 0001: CondCode[0] ~ Status[0]
case 0010: CondCode[0] ~ Status[1]
case 0011: Status[1] | (CondCode[0] ~ ~Status[5])
case 0100: CondCode[0] * (~Status[1] & ~IP & ~(DTF|SSTF|MDD))
case 0101: CondCode[0] * (~Status[1] & ~IP & ~(DTF|SSTF|MDD))
case 0110: CondCode[0] * (~Status[0] & ~IP & ~(DTF|SSTF|MDD))
case 0111: ~Status[1] & ~IP & ~(DTF|SSTF|MDD) &
(CondCode[0] » Status[5])
case 1000: CondCode[0] Status[7]
case 1001: CondCode[0] Status[2]
case 1010: CondCode[0] ” Status|[5]
case 1011: CondCode[0] ” (Status[5] | Status[2])
case 1100: CondCode[0] * Status|[6]
case 1101: CondCode[0] Status|[3]
case 1110: CondCode[0] M (Status[7] ~ Status[6])
case 1111: CondCode[0] ” ((Status[7] » Status[6]) | Status[5])

/I the definitions of CondCode[4:1] is as follows

/I (bit O flips the sense):

True 4'b0000
ECF 4'b0001
EZF 4'b0010
SZnZF 4'n0011
MSTRZ 4'b0100
STRZ 4'b0101
MSTRC 4'b0110

STRZnZF 4'n0111
OF 4'h1000

CF 4blo01

ZF 4'b1010
CvZF 4b1011
SF 4'b1100

PF 4'b1101

SxOF 4'b1110
SxOVZF 4'h1111

continued on next page...

The Scheduler Pipeline

269

Pseudo-RTL Description (cont.)

BRCOND Op Resolution Logic

// hold Op quad from shifting out of Sched quad 4 if ...:
HoldOpQ4A = BRCONDINQ4 & ~CondV

SC_Resolve = BRCONDInQ4 & CondV & ~SC_MisPred & ~NoStatMod & ~OPQ4:Emcode

/l remember resolution of a BRCOND Op in quad 4:
Resolved = ~LdEntry4 & (SC_Resolve | Resolved)// simple flip-flop

I/ terminate REP MOVS OpQuad Sequence loop if almost done:

// use CS “D” hit supplied by RUX to aid termination in 16-bit case

TermMovs = BRCONDINQ4 & CondV & ~NoStatMod & ~SC_MisPred &
// CondCode=MSTRC ... | CondCode=MSTRZ ...
((CondCode[4:1] = 4'b0110) & (OP19:DestVal[15:0] = 16'h5) &
((OP19:DestVal[31:16] = 16'h0) | RUX_D) |
(CondCode[4:1] = 'b0100) (OP23:DestVal[15:0] = 16'h6) &
((OP23:DestVal[31:16] = 16'b0) | RUX_D))

TermedMOVS = ~LdEntry4 & (TermMOVS || TermedMOVS)// simple flip-flop
SC_TermMOVS = TermMOVS | TermedMOVS

Il get OpQuad Sequence or instruction vector address for

// handling mispredicted branch

BrVecAddr[31:0] = {32{BRCOND16}} & Op16:DestVal[31:0] |
{32{BRCOND17}} & Opl17:DestVal[31:0] |
{32{BRCOND18}} & Op18:DestVal[31:0] |
{32{BRCOND19}} & Op19:DestVal[31:0]

I/ supply old RAS TOS ptr to decoders for restoring
// if BRCOND Op mispredicted:
SC_OIdRASPtr[2:0] = OpQ4:RASPtr[2:0]

I/ supply old BPT info to decoders for restoring
// if BRCOND Op mispredicted:
SC_OIdBPTInfo[14:0] = OpQ4:BPTInfo[14:0]

Il supply either fault PC or alternate branch address to
I/ decoders if BRCOND Op mispredicted:
SC_RestartAddr[31:0] = ExcpAbort ? OpQ5:FaultPC :
(OpQ4:Emcode ? OpQ4:FaultPC[31:0] :
BrVecAddr[31:0])

continued on next page ...

270 Chapter 3: The K6 3D Microarchitecture

Pseudo-RTL Description (cont.)

BRCOND Op Resolution Logic

Il initiate restart if BRCOND Op mispredicted:
BrVec2Emc = SC_Resolve & ~CondVal & OpQ4:Emcode
BrVec2Dec = SC_Resolve & ~CondVal & OpQ4:~Emcode

/l remember misprediction:
if (SC_Resolve | SC_Abort)
SC_MisPred = ~SC_Abort & (~CondVal | SC_MisPred) // enabled flip-flops

/l mark BRCOND Op as Completed if correctly predicted:
I/l enabled flip-flops

if (SC_Resolve & CondVal & BRCOND16) Op16:S3 = 1'bl
if (SC_Resolve & CondVal & BRCOND17) Opl17:S3 = 1'bl
if (SC_Resolve & CondVal & BRCOND18) Op18:S3 = 1'bl
if (SC_Resolve & CondVal & BRCOND19) Op19:S3 = 1'bl

A BRCOND Op that is being successfully resolved may sit in scheduler
OpQuad3 for more than one cycle due to OpQuad4 and OpQuad5 not
being able to shift and thus OpQuad4 is not able to shift down. During
this time SC_Resolve = 1 and one of the BrVec2XXX signals remains
asserted for the entire time, versus for just the first cycle. This is all right
since the x86 instruction fetch and decode or OpQuad Sequence fetch
areas of the machine which are in the process of being restarted will simply
keep on restarting each cycle until the BrVec2XXX signal deasserts. All of
the other associated signals such as the vector address will maintain their
proper values throughout this time.

Nonabortable RegOp Execution Synchronization Logic

During each cycle, the four Ops within scheduler OpQuad4 are examined
for whether any of them is a nonabortable RegOp. If one is found, then it
is checked whether there are any preceding mispredicted BRCOND Ops.
Due to the OpQuad Sequence coding constraints, any preceding
BRCOND Ops must be in a lower scheduler OpQuad (i.e. ,OpQuad5) and
thus have all been resolved.

If no such mispredicted BRCOND Ops exist, then the RegOp is
allowed to advance into RUX pipeline Stagel. If there is no unexecuted
nonabortable RegOp in OpQuad4, but there is a nonabortable RegOp in
RUX pipeline Stage0, then the RegOp is unconditionally held up in
Stage0. If there is a nonabortable RegOp in OpQuad4 that has not yet exe-
cuted, but there is no nonabortable RegOp in RUX Stage0, then shifting of

The Scheduler Pipeline 27 1

OpQuad4 (and OpQuad5) is inhibited. The pseudo-RTL descriptions that
give the equations which describe this logic follow:

Pseupo-RTL DESCRIPTION

Nonabortable RegOp Execution Synchronization Logic

NonAbInRUX_0 = (OplInfo_RUX_0(RegOp).Type[5:2] = 4'b1110) & OpV_RUX_0

UnexecNonAbInQ4 = Opl16(RU & Opinfo(RegOp).Type[5:2]=4'b1110 & ~S1) |
Op17(RU & Oplinfo(RegOp).Type[5:2]=4'b1110 & ~S1) |
Op18(RU & Oplinfo(RegOp).Type[5:2]=4'b1110 & ~S1) |
Op19(RU & Oplinfo(RegOp).Type[5:2]=4'b1110 & ~S1)

// hold RegOp execution if ...:
NonAbSync = NonAbInRUX_0 & (~UnexecNonAbInQ4 | SC_MisPred | “trap pending”)

// hold Op quad from shifting out of Sched quad 4 if ...:
HoldOpQ4B = UnexecNonAbInQ4

SeLr-MobirYING CODE SupPORT LoGic

Logically, in the scheduler, a detection of self-modifying code is treated as
a trap and it factors into the “trap pending” logic. The Store Queue pro-
vides the physical address of the store it is preparing to commit. Most of
the bits of this address are compared against the instruction address or
addresses, if the instructions were from two different (logically consecu-
tive) cache lines of each scheduler OpQuad. If any OpQuad addresses
match, then there may be a write to an instruction which has already been
fetched, decoded, and is now present in the scheduler—i.e., there must be
self-modifying code. Accordingly, the scheduler is then flushed and the
fetch/decode process is restarted from the last committed instruction,
namely, the modifying instruction.

The following equations describe this functionality. Not all of the
address bits need to be compared. A partial-address comparison reduces
logic and improves speed while resulting in a very low incidence of “false”
matches. In particular, several of the most significant bits and a few least
significant bits are not compared. STQ_LinAddr[11:5] are untranslated

272 Chapter 3: The K6 3D Microarchitecture

address bits and thus are the same as STQ_PhysAddr[11:5]. The logic is
conceptually only doing a comparison between physical address bits.

Pseupo-RTL DESCRIPTION

Self-Modifying Code

for (i=0; i < 5; ++i) {
Matchlst =
(STQ_LinAddr[11:5] = OpQi:SmclstAddr) &
(STQ_PhysAddr[19:12] = OpQi:Smc1lstPg)
Match2nd =
(STQ_LinAddr(11:5) = OpQi:Smc2ndAddr) &
(STQ_PhysAddr(19:12) = OpQi:Smc2ndPg)
MatchSMC]Ji] = (Matchlst | Match2nd) & OpQi:OpQV
}

SmcHit =
“STQ store is not a special memory access” &
(“self-modifying code detected” |
MatchSMCJ0] | MatchSMCJ1] | MatchSMCJ[2] |
MatchSMCJ3] | MatchSMCJ[4]);

THE OCU: AN The OCU operates in conjunction with the scheduler and generally oper-
EXPANDED DESCRIPTION 2tes on the Ops within the bottom two rows of the scheduler. Its principal
function is to commit the results of the execution of the Ops within the
bottom OpQuad and then to retire the OpQuad from the scheduler. The
OCU also handles mispredicted BRCOND Ops and various types of

exceptions by initiating abort cycles for them.

The OCU: An Expanded Description 273

DesicN NoTE

Committing and Retiring OpQuads (revisited)

One of the differences between committing the results of an Op and the
retiring of an OpQuad from the scheduler in the K6 3D is that the
actions of commitment and retirement may or may not happen on the
same cycle. If some, but not all, of the Ops in an OpQuad can be com-
mitted in a given cycle, whatever can be committed is committed. The
OpQuad is not retired and removed from the scheduler until all its Ops
are committed, so the Ops that were committed will still be in the sched-
uler. Typically the commitment of all of the Ops in an OpQuad and the
retirement of the OpQuad all happen simultaneously.

It is important to note that when result values (both the register
value and status flag bits) of an Op are committed, the corresponding
byte marks and status modification bits are cleared in the scheduler’s Op
entry.

There are many types of results or state changes that can stem from the
execution of an Op. The principal types of changes are abortable (i.e., they
can be speculatively executed and backed out of later) and encompass the
following:

1. general register results.

2. status flag results.

3. memory writes.

We include in “general register results” the possibility of partial register
modifications and “superset” register dependencies that arise from regis-
ter forwarding being supported from only one source at a time.>!

All other state changes are nonabortable (i.e., they cannot be backed
out of once executed) and are limited to being the result of RegOp execu-
tions. These include changes to:

1. segment registers.

2. non-status EFLAGS bits.

3. special registers, both architectural registers and K6 3D microar-
chitectural registers.

With respect to general register commitment, the OCU only looks at one
OpQuad at a time. It looks at OpQuad5 in the bottom row if it is not all

31 All needed bytes must come from either one scheduler entry, a result bus, or
from the architectural register file.

274 chapter 3: The K6 3D Microarchitecture

committed. Otherwise, it looks at OpQuad4 in the second from the bot-
tom row. This is necessary to avoid deadlock situations in which
OpQuad3-related or OpQuad4-related synchronization logic is prevent-
ing shifts of OpQuad4 and OpQuad5. These situations result from an Op
in OpQuad3 or OpQuad4 waiting directly or indirectly for an Op in
OpQuad4 to execute or commit before it can execute. Status commitment
is always from OpQuad5 (since full forwarding of individual status flag
bits is provided). To achieve better performance, store commitment is
only loosely coupled with register commitment, (i.e., the OCU can start
committing StOps in OpQuad4 while still committing register results
from OpQuad5). Given one store commit per clock, this lets the store
commit get a head start which is useful when there is more than one StOp
in an OpQuad.

In general it is possible for the OCU to commit the state changes of all
four Ops in OpQuad5 in one cycle. However, this may take additional
cycles. If all the Ops of an OpQuad have been committed or are being suc-
cessfully committed, then the OpQuad is retired from the scheduler at the
end of the current cycle. Otherwise, as many changes as possible are com-
mitted during the current cycle and the process is repeated on successive
cycles until all changes have been committed.

DesicN NoTE

Abortable, Permanent, and Nonabortable State Changes

Abortable state changes are supported by the scheduler and the Store
Queue through the general technique of temporarily storing (a) register
and status results in the scheduler Op entries and (b) memory write data
in Store Queue entries until the associated Ops are committed and
retired. Permanent state changes are made during Op commitment
when it is safe and definite for the changes to be made. While these new
state values reside in the scheduler and the Store Queue, they are for-
warded to dependent Ops as necessary. Nonabortable state changes, in
contrast, occur immediately during RegOp execution and the responsi-
bility or burden is placed on OpQuad Sequences to ensure sufficient
synchronization with surrounding operations.

CoMMITMENT CONSTRAINTS

The commitment of the results of the execution of an Op is constrained
by:
1. the Op’s execution state—it must be completed.

2. the status of any preceding faultable Ops—these Ops must be
completed, which implies that they are fault-free.

The OCU: An Expanded Description 275

3. the status of any preceding conditional branch Op—the associated
BRCOND Op’s State must be completed (versus unissued), which
implies that it was correctly predicted.

In the case of StOps which generated a memory write there is the addi-
tional constraint that only one write can be committed per cycle from the
Store Queue into the D-Cache. However, StOps can commit despite pre-
ceding not completed RegOps since RegOps can never result in a fault
exception.

DesiecN NoOTE

Independent Commitments

The commitment of register results, status flag results, and memory
writes are performed independently. For Ops that have multiple results
(e.g., a RegOp with both a register result and a status flag result, or a
STUPD Op with a register result and a memory write), the various
results will not necessarily be committed simultaneously. The commit-
ment of one type of state change can generally get ahead of or behind the
commitment of another type of state change. The overall commitment
of an Op is considered to occur when the last of all the necessary result
commitments associated with that Op occurs. Finally, the commitment
of results from multiple Ops is performed without regard to whether the
Ops are part of one x86 instruction or separate x86 instructions.

Typically the OCU will commit and retire an OpQuad from the scheduler
every cycle. It has the capability to commit up to four register and four sta-
tus results per cycle and one memory write per cycle. An OpQuad can sit
unretired at the bottom of the scheduler for more than one cycle only if it
contains multiple memory write StOps or if some of the Ops are suffi-
ciently delayed in their execution that they are not yet completed.

If an Op in the bottom OpQuad needs to be faulted, then all of the
succeeding Ops (i.e., Ops higher in the scheduler) are inhibited from
being committed. Once all preceding Ops (i.e., Ops lower in the sched-
uler) within the OpQuad have been committed or are being successfully
committed, then the OCU initiates an abort cycle. The abort cycle flushes
the entire scheduler and all the execution units of all outstanding Ops.

Concurrent with the abort cycle, the OCU vectors the machine to one LDDHA, load default handler
of two possible OpQuad Sequence entry point addresses—either the OCU address
default handler address or an OCU alternate handler address; see Figure
2.10 on page 139. The setting of these addresses is supported by the LDAHA, load alternate handler
LDDHA Op (LoaD Default Handler Address) and the LDAHA Op (LoaD address
Alternate Handler Address). Both of these Ops are loaded into the sched-

uler in a completed State and are recognized and “executed” by the OCU reset OpQuad Sequence

276 cChapter 3: The k6 3D Microarchitecture

when they reach the bottom of the scheduler. The default fault handler
address is initialized by the Reset OpQuad Sequence and the alternate
handler address is specified by OpQuad Sequences for some instructions
and some exception processing cases.

FAULT Ops AND LDSTOPs WITH PENDING FAULTS

Only certain types of Ops can be faulted, namely LdOps, StOps (except for
LEA Ops), and FAULT Ops. For a LdOp or StOp, faults are determined by
the second stage of the LU or SU execution pipe respectively. If a fault is
detected, the LdStOp is held up in pipe Stage2 indefinitely until either an
associated or an unrelated abort cycle flushes it. This results in the charac-
teristic that completed LdStOps are guaranteed fault-free.

The OCU is able to differentiate between a faulting LdStOp and a
LdStOp that simply has not yet completed. This is done using signals from
the LU and the SU indicating when a faulting Op is stuck in their respec-
tive second pipe stages. When the OCU attempts to commit the next
uncompleted LdStOp and the associated execution unit is signaling that it
contains a faulting Op, then these two Ops must be one and the same.
Thus, this Op has encountered a fault. If, instead, the associated execution
unit’s signal is not asserted, then nothing definite can be determined. In
this case, the OCU must continue to wait for the LdStOp to complete.

FAULT Ops are special Ops that are handled somewhat differently by
the OCU since they do not execute. They are loaded into the scheduler in
an unissued state and unconditionally always fault. The handling, though,
with respect to commitment and abortion of surrounding Ops is the same
as for LdOps and StOps. The not-completed state of a FAULT Op is key in
causing all of this handling to fall out “naturally”—i.e., without explicit
special logic.

DeBuG TRAPS AND SEQUENTIAL AND BRANCH TARGET LimiT
VIOLATIONS

In addition to faults on specific Ops, the OCU also recognizes various
debug traps. As discussed in the the section titled “Status Flags, Faults,
Traps, Interrupts, and Abort Cycles” beginning on page 83, traps are rec-
ognized at the end of the instigating instruction. In the case of instructions
decoded to an OpQuad Sequence, the traps are accumulated and remem-
bered up until the end of an OpQuad Sequence. Traps are processed on
the first OpQuad of the next instruction, which may or may not come
along to the OCU in the next clock. This is done so that the FaultPC of the
next instruction can be used as the value of the desired TrapPC. Recall that
OpQuad sequences end with an “ERET” action field value within the
sequencing field of the last OpQuad of the sequence. When such an
OpQuad is retired, any accumulated traps are then recorded as now being

The OCU: An Expanded Description 277

a pending trap exception or waiting for the first valid OpQuad of the next
instruction to come along.

Lastly, the OCU recognizes both sequential and branch target limit
violation conditions which, while occurring with just certain Ops within
an OpQuad, is associated with the OpQuad as a whole. This is done since
the instruction(s) associated with the OpQuad are partially or wholly part
of the end of the current code segment limit. If such a violation is detected,
it unconditionally causes an abort cycle to be initiated as if a fault was rec-
ognized on the first Op within the OpQuad. This bit of OCU functionality
handles both sequential and hardware-decoded branch target code seg-
ment limit violations.

ABORTS FOR MisPrReDICTED BRCOND Ops

While the OCU is primarily concerned with all the types of Ops that gen-
erate abortable state changes, it is also concerned with mispredicted
BRCOND Ops. BRCOND Ops are resolved before they reach the bottom
of the scheduler and, when mispredictions are detected, the instruction
fetch and decode portions of the machine are immediately reset and
restarted from the proper instruction address. Therefore, when an
OpQuad containing a mispredicted BRCOND Op reaches the bottom of
the scheduler and the OCU tries to commit it, the OCU initiates an abort
cycle to flush the scheduler and all the execution units of all the older Ops,
but does not also restart the upper portion of the processor. This abort
cycle also allows new OpQuads to start loading into the scheduler and Ops
to immediately be issued.

Aborts for mispredicted BRCOND Ops are similar to aborts for Op
faults. For example, for mispredicted BRCOND Ops the commitment of
all following Ops is inhibited, pending initiation of an abort cycle. Fur-
thermore, the mispredicted BRCOND Op abort cycle is not initiated until
all preceding Ops within the OpQuad, relative to the BRCOND Op, have
been committed or are being successfully committed. However, mispre-
dicted BRCOND Op aborts and Op fault aborts are different in that no
vectoring to an OpQuad Sequence is initiated for mispredicted BRCOND
Op aborts. As mentioned earlier, vectoring to an OpQuad Sequence in the
case of a BRCOND Op from an OpQuad Sequence or restarting the x86
instruction fetch and decode in the case of a BRCOND Op hardware
decode of a conditional branch instruction has already occurred. If a
BRCOND Op is correctly predicted when it reaches the bottom of the
scheduler, no action is necessary to “commit” the Op.

The BRCOND Op can be viewed as being either trivially committed
or aborted by the OCU—the choice of action is based on the BRCOND
Op’s scheduler Op entry State. If a BRCOND Op was correctly predicted
when it is resolved, its scheduler Op entry State is changed to 'b1111
(effectively completed). However, if it was mispredicted it is left in its ini-

278 Chapter 3: The K6 3D Microarchitecture

tial State of 'b0000. Thus, the prediction status of a BRCOND Op is
implied by whether it is completed or not. Treating the state of a
BRCOND Op in this way is key in allowing the commitment and abortion
of surrounding Ops to occur without explicit special logic.

THE TIMING OF ResuLT COMMITMENTS

The actual timing of Op result commitments is relatively simple and can
be viewed as happening during the latter part of the commit cycle. In a
typical case, an OpQuad reaches the bottom row of the scheduler during
some cycle, is committed during that cycle, and is retired from the sched-
uler at the end of the cycle. During this cycle, while results are being writ-
ten to the corresponding architectural registers, operand values continue
to be forwarded to all dependent Ops from the scheduler (versus from the
architectural registers).

MEeMORY WRITES

The commit process for memory writes is actually a two-stage process
implemented in the form of a two-stage write commit pipeline (see Figure
2.20 on page 169). The first stage of this pipe corresponds to the OCU’s
commit cycle for a StOp. As far as the OCU is concerned, the StOp has
been committed when it enters the second stage of this pipeline (this
includes the case of the StOp possibly having been retired from the sched-
uler). The StOp must enter the second write commit pipe stage before or
concurrent with retirement of the associated OpQuad from the scheduler.
If a StOp cannot enter this second stage, then the StOp is viewed as not yet
being committable and retirement of the OpQuad is held up.

THE TIMING OF ABORTS

When the OCU initiates an abort cycle due to an Op fault, the abort signal
SC_Abort and its associated OpQuad Sequence vector address are asserted
during the commit and retire cycle of the OpQuad containing the faulting
Op. During the next cycle the scheduler will have been flushed and the
fetch of the first or target OpQuad from the OpQuad Sequence is started.
In the case of internal K6 microarchitectural OpQuad Sequences, the
scheduler will be empty for exactly this one cycle.

In the case of aborts for mispredicted BRCOND Ops, the abort signal
is also asserted during the commit and retire cycle of the associated
OpQuad. Since instruction fetch and decode has already been restarted,
the scheduler can be reloaded with a new OpQuad as early as the very next
cycle. In this case, the scheduler will typically not sit empty for even one
cycle.

The OCU: An Expanded Description 279

DesicN NoTE

Multiple Ops Within an OpQuad Requiring Abort Cycle Processing

When the OCU recognizes multiple Ops within an OpQuad as requiring
abort cycle processing, it chooses the first such Op and initiates appro-
priate abort actions with respect to that Op, at the appropriate time for
that Op. The following Ops requiring an abort are flushed along with all
other Ops following the chosen Op.

The following sections detail each aspect of OCU operation. It begins by
discussing issues that arise for the various types of Ops that can produce
the abortable state changes identified at the beginning of the current sec-
tion, namely:

1. general register changes produced by all RegOps, LdOps, some
StOps (LEA and STUPD), LIMM Ops, and LDK Ops.

2. status flag changes produced by RegOps.

3. memory writes produced by memory-writing StOps.

GENERAL REGISTER COMMITMENT

Probably the most obvious function of the OCU is to manage and control
the commitment of register result values to the architectural register file.
Such values are generated by most types of Ops, e.g., general register
changes result from RegOps, LdOps, LIMM Ops, LDKxx Ops, and
STUPD StOps. During any given cycle, the OCU examines OpQuad5 and
possible OpQuad4 as described earlier in this section to determine which,
it any, of the register results can be written into the architectural register
file. This is done during the latter part of the cycle via four independent
write ports. Each of these writes is performed based on the associated reg-
ister byte marks, DestBM[2.0], from the appropriate scheduler Op entry.
This process applies equally to the architectural registers and to the
K6 3D’s temporary microarchitectural registers. If an Op is not yet com-
pleted and committable, then the associated register file write is inhibited
for this cycle.

280 chapter 3: The K6 3D Microarchitecture

contention resolution logic

DesicN NoTE

Clearing Byte Marks (Part 1)

If an Op is of a type which conceptually does not generate a register
result, then the byte marks will be all clear and the register number pos-
sibly undefined. This results in no bytes being modified during the regis-
ter file write. If t0 is specified as the destination register for an Op, the
byte marks will again be all clear. In both of these cases the byte marks
were forced to 3'b000 when the Op was loaded into the scheduler. See
the K6 3D Design Note, “Clearing Byte Marks (Part 2),” below.

MuLtipLE SIMULTANEOUS FuLL AND PARTIAL WRITES

In general, when there are multiple enabled file writes, the possibility of
contention—in the form of multiple simultaneous writes to the same
register—exists. The desired result is that the youngest write succeeds and
the other, older writes are inhibited or effectively ignored. Achieving this
result is handled within the register file itself, separate from the OCU’s
control of the register commitment process. It is based simply on the pre-
sented register numbers and associated write enables to the register file.

Further, if the contending writes are such that the older writes modify
register bytes which are not modified by the youngest write, then the effec-
tive register file write must be of the appropriate combination of bytes
from each of the possible source Ops. For example, if the first (oldest) Op
modifies bytes {3,2,1,0}, the second Op modifies bytes {1,0}, and the third
(youngest) Op modifies byte {1}, then the actual register file write takes
bytes {3,2} from the first Op, byte {0} from the second Op, and byte {1}
from the third Op. This effect is handled locally by the register file’s write
control logic. The contention resolution or prioritization logic operates on
the basis of individual bytes instead of 32-bit words.

In addition, the nine “match with operand XXsrcY” signals associated
with a scheduler Op entry must be forced to indicate no match at the same
time that the DestBM bits within that Op entry are about to be cleared (see
the section titled “Dynamic Fields OprndMatch_XXsrcY” beginning on
page 212. This is due to the pipelined nature of the register operand fetch
process within the scheduler. The DestBM bits of an Op entry are used in
both stages of this process and must be consistent across both cycles.

The OCU: An Expanded Description 28 1

DesicN NoTE

Clearing Byte Marks (Part 2)

The write enable signals for all four Ops are generated in parallel. For
each Op, if it is completed and all preceding Ops are completed (which
includes no FAULT OPs and mispredicted BRCOND Ops), and all other
“preceding” conditions that can inhibit commitment (e.g., a pending
trap exception from the preceding x86 instruction), are inactive, then
the associated write enable is asserted. Further, the associated DestBM
bits are cleared to reflect the fact that the scheduler entry for this Op no
longer needs to provide a register value to dependent Ops. Such values
may now be obtained from the register file. Clearing the DestBM field is
also necessary in the case of partial register writes since a dependent Op
will be held up in a pipe Stage 0 until it can obtain more or all the bytes
of the register from the register file if it cannot obtain all its required
bytes from this Op. See the K6 3D Design Note, “Clearing Byte Marks
(Part 1),” above.

As discussed in the “Register Renaming” section later in this chapter,
Op register writes may also take place from OpQuad4 when all the Ops in
OpQuad5 have completed. This is accomplished through the use of a 2:1
multiplexer between OpQuad4 and OpQuad5 and by generalizing the
RegOp write enable logic to consider either the four Ops in OpQuad5 or
the four Ops in OpQuad4. The Ops of the selected OpQuad are renamed
OpA through OpD in place of Op0 through Op3 or Op4 through Op7.

NoOTATION

Continuous Numbering of Ops

Sometimes the twenty-four Ops in the scheduler are numbered continu-
ously from Op0 to Op23. Op0 corresponds to the youngest Op (i.e., at
the top of the scheduler) and Op23 corresponds to the oldest Op (i.e., at
the bottom of the scheduler). When this is done, Op0 corresponds to
OpQuado[Op3], Op2 to OpQuad0[Op2], Op3 to OpQuad0[Op1], Op4
to OpQuad0[Op0], Op5 to OpQuad1[Op3], Op6 to OpQuadl[Op2],
and so on with Op23 corresponding to OpQuad5[Op0]. Note that this
numbering scheme is similar to the numbering of OpQuads from
OpQuad0 to OpQuad5 and is in contrast to the numbering of Ops
within an OpQuad from 0 to 3, where Op0 is the first (and oldest) Op in
the OpQuad and Op3 is the last (and youngest) Op in the OpQuad.

282 Chapter 3: The K6 3D Microarchitecture

The following pseudo-RTL description summarizes the register file write
enable equations and the modified DestBM and “match with operand
XXsrcY” equations for each Op of the bottom two OpQuads of the sched-
uler, where Op0 is the oldest Op and Op3 is the youngest Op. These equa-
tions ensure the in-order commitment of register results, although not
necessarily the simultaneous commitment of these results.

Pseupo-RTL DESCRIPTION

Register File Write Enable

RegCmtSel = Op0:S3 & Opl:S3 & Op2:S3 & Op3:S3 &
(Op0:DestBM = 3'b0) & (Opl:DestBM = 3'b0) &
(Op2:DestBM = 3'b0) & (Op3:DestBM = 3'b0)

OpA = RegCmtSel ? Op4 : Op0
OpB = RegCmtSel ? Op5 : Opl
OpC = RegCmtSel ? Op6 : Op2
OpD = RegCmtSel ? Op7 : Op3

Cmtinh = OpQ5:LimViol | “trap pending”

RegCmtinh = Cmtinh | RegCmtSel & (OpQ4:LimViol | ~StCmtSel[2] | SetTrapPend)

WTrEnbIO = ~(RegCmtSel ? OpQ4:LimViol :
WTrEnbl1 = ~(RegCmtSel ? OpQ4:LimViol :
WTrEnbI2 = ~(RegCmtSel ? OpQ4:LimViol :

OpA:S3 & OpB:S3 & OpC:S3

WTrEnbI3 = ~(RegCmtSel ? OpQ4:LimViol :

OpQ5:LimViol) & OpA:S3
OpQ5:LimViol) & OpA:S3 & OpB:S3
OpQ5:LimViol) &

OpQ5:LimViol) &

OpA:S3 & OpB:S3 & OpC:S3 & OpD:S3

I/l enabled flip-flops:
if (WrEnblO)
if (WrEnbl1)
if (WrEnbl2)
if (WrEnbl3)

OpO0:DestBM = 3'b0
Opl:DestBM = 3'b0
Op2:DestBM = 3'b0
Op3:DestBM = 3'b0

if (WrEnblO & RegCmtSel) Op4:DestBM = 3'b0
if (WrEnbll & RegCmtSel) Op5:DestBM = 3'b0
if (WrEnbl2 & RegCmtSel) Op6:DestBM = 3'b0
if (WrEnbl3 & RegCmtSel) Op7:DestBM = 3'b0

continued on the next page ...

The OCU: An Expanded Description 283

Pseudo-RTL Description (cont.)

Register File Write Enable

/I dynamic field flip flops
Op0:“effective match with Operand XXsrcY” =

OpO0:*match with Operand XXsrcY” & ~WrEnblO
Op1l:“effective match with Operand XXsrcY” =

Op1:"match with Operand XXsrcY” & ~WrEnbl1
Op2:"effective match with Operand XXsrcY” =

Op2:"match with Operand XXsrcY” & ~WrEnbl2
Op3:"effective match with Operand XXsrcY” =

Op3:"match with Operand XXsrcY” & ~WrEnbl3
Op4:"effective match with Operand XXsrcY” =

Op4:"match with Operand XXsrcY” & ~(WrEnbl0 & RegCmtSel)
Op5:"effective match with Operand XXsrcY” =

Op5:"match with Operand XXsrcY” & ~(WrEnbll & RegCmtSel)
Op6:"effective match with Operand XXsrcY” =

Op6:"match with Operand XXsrcY” & ~(WrEnbl2 & RegCmtSel)
Op7:"effective match with Operand XXsrcY” =

Op7:"match with Operand XXsrcY” & ~(WrEnblI3 & RegCmtSel)

Status FLAG COMMITMENT

The second function of the OCU is to manage and control the commit- architectural status flags register
ment of status flag result values, as generated by status flag modifying
RegOps (a.k.a. “cc” RegOps) to the architectural status flags register.
Unlike the commitment of register results, none of the four groups of sta-
tus results within the bottom OpQuad are written into EFLAGS until the
OpQuad is about to be either retired or aborted. In the meantime, full for-
warding of individual status flag values is performed as needed. In the nor-
mal case, when all the Ops within the OpQuad have been fully committed
or are being successfully committed, then the cumulative or overall result
of all four status results is written into EFLAGS at the end of the cycle as
the OpQuad is retired from the scheduler. In the case of an OpQuad con-
taining a faulting Op or a mispredicted BRCOND Op, only the status
results from the Ops before the faulting or BRCOND Op are committed
and this cumulative result is written at the end of the abort cycle.

The above process applies to both the architectural status flags and the
K6 microarchitectural status flags. In essence, the architectural EFLAGS
register is extended to thirty-four bits to make room for the extra two
microarchitectural status flags, EZF and ECE. The RDFLG (ReaD FLaG)
and WRFLG (WRite FLaG) RegOps reference only the standard 32-bit
portion of this extended EFLAGS register.

284 chapter 3: The K6 3D Microarchitecture

The generation of the cumulative status result is based on the status
bit marks StatMod[3:0] from each of the four Op entries within the bot-
tom scheduler OpQuad (see the section titled “Dynamic Field Stat-
Mod[3:0]” beginning on page 211, and the section titled “Dynamic Field
StatVal[7:0]” beginning on page 212). As discussed in these sections, the
eight x86 status flags are divided into four groups for modification mark-
ing purposes instead of having eight individual bit marks. This provides
sufficient status modification control within the context of implementing
the x86 instruction set architecture. As with updates to a general register
within the register file, the possibility of contention exists, i.e., of multiple
modifications to the same group of status flags. The desired result, of
course, is to take the youngest modification values for each group of status
flags as was done for register results.

The generation of the cumulative status result is also based on
whether the State of each of the four Ops is completed or not. The follow-
ing pseudo-RTL description summarizes the equation to perform this
cumulative result generation or selection process for a status group, which
is applied independently for each status group.

No explicit control or constraint on Op commitment and retirement
is required for status flag results. Since status flag state changes only results
from RegOps and since all RegOps generate register state changes (even if
just to microarchitectural register t0), an OpQuad cannot be retired until
all RegOps within it are completed and thus also have valid status result
values. Consequently, when an OpQuad is ready to retire, it is guaranteed
that all status results are available and thus ready to be committed. There is
also no need, given the fully unconstrained forwarding of status flag values
to BRCOND Ops and “cc-dependent” RegOps, for any clearing of Stat-
Mod fields within the Ops of the bottom scheduler OpQuad.

The OCU: An Expanded Description 285

Pseupo-RTL DESCRIPTION

Status Flag Generation and Selection

NextStatFlags[x1..x2] =

if (Op3:StatMod[x] & Op0:S3 & Op1:S3 & Op2:S3)
Op3:StatVal[x1..x2]

elseif (Op2:StatMod[x] & Op0:S3 & Op1:S3)
Op2:StatVal[x1..x2]

elseif (Opl:StatMod[x] & Op0:S3)
Op1l:StatVal[x1..x2]

elseif (Op0:StatMod][x])
OpO0:StatVal[x1..x2]

else
StatFlags[x1..x2]

S1OPs AND MEMORY WRITE COMMITMENT

The third function of the OCU is to commit StOps, particularly StOPs
performing actual memory writes. We contrast these types of StOPs with
those that do not perform memory writes, such as LEA, CDA, and CIA
Ops. LEA Ops do not require any additional commitment handling past
commitment of their register results. CIA and CDA Ops do, however,
because like normal memory-writing Ops, each of these Ops can result in
memory access-related faults. The process of writing data values to
“memory”—i.e., to either the D-Cache, the main memory, or the L2-
Cache—differs from the commitment of register and status results in a
number of ways:

1. StOp commitment involves, in most cases, a memory write and
thus an associated store queue entry.

2. at most one memory write can be committed per cycle.

3. the memory write commitment process is a two step process
implemented in the form of a two-stage commit pipeline.

4. the OCU looks across the bottom two OpQuads of the scheduler
to find StOps with memory writes to commit.

5. the possibility of faults on the associated StOps exists.

When a StOp completes execution, the associated memory address and
store data is entered into the store queue. Later, when the memory write of
a StOp is committed, this entry is read and retired from the store queue.
Since StOps are executed in order and later committed in order, the store
queue is managed as a simple FIFO and the matching of store queue
entries with associated scheduler StOps is straightforward.

286 Chapter 3: The K6 3D Microarchitecture

The Commitment Process

The actual commitment process is relatively complicated. We make
reference to Figure 2.19 on page 168 to aid in the explanation. A two-step
process is required in which the oldest store queue entry is first read and
the address looked up in the L1 D-Cache. Then, based on the status of this
lookup, the store data is written into the L1 D-Cache or out to memory. In
the latter case, the data and address are loaded into the Write Buffer and
written out to memory later. From the OCU’s perspective the commit
process is largely viewed as a single-cycle, single-stage action that either
succeeds or is delayed (like the commit process for register and status
results). However, it is actually implemented as a two-stage write commit
pipeline. The first commit stage C1 corresponds to the commit cycle of
register and status results. During this stage no control decisions are made.
The L1 D-Cache tag lookup is performed and the accessed tag data is
latched for examination during the second commit stage C2. When a write
does enter commit stage C2, the associated StOp can be retired from the
scheduler and the remainder of the commit process proceeds completely
asynchronous to the OCU and the scheduler.

DesicN NoTE

One Memory Write Per Cycle

The implication of this “one memory write per cycle” implementation is
that OpQuads containing multiple StOps have to sit at the bottom of the
scheduler for multiple cycles. In the case of OpQuads containing at most
one memory-writing StOp, we have the possible commitment and
retirement of an OpQuad each and every cycle, subject to the same sort
of constraints that stem from the commitment of register state changes.
A corresponding number of cycles is required to commit all the StOps in
the OpQuad. For long bursts of StOps, this will typically result in
fewer—but still extra—cycles of OpQuads being held up at the bottom
of the scheduler before being retired. For short bursts, due to the OCU
sometimes being able to get a “head start” by committing StOps from
OpQuad4, and due to there sometimes being other retirement delays,
there are often times when there are no additional delays due to needing
extra cycles to commit the burst of StOps.

The fact that an OpQuad could sit at the bottom of the scheduler for many
cycles is partially mitigated by providing support for committing memory
writes associated with StOps in the second to bottom scheduler OpQuad
as well as the bottom OpQuad. Given that memory writes are committed
in order, the OCU can get a “head start” on multiple write OpQuads when
the bottom OpQuad does not contain any StOps or when it is held up but

The OCU: An Expanded Description 287

otherwise empty of uncommitted memory writes. This helps to better
match the OCU’s one write per cycle commitment capability to the aver-
age number of writes per OpQuad, which is less than one per OpQuad.

Commitment Criteria

During each cycle the OCU’s memory write commit logic searches the
bottom two scheduler OpQuad entries for the oldest uncommitted mem-
ory-writing StOp, i.e., for the next StOp and associated write to try and
commit. This selected Op corresponds to the current oldest Store Queue
entry. Concurrently, the address of this Store Queue entry is presented to
the L1 D-Cache and a tag lookup initiated. The tag lookup is done without
consideration of whether the associated StOp is presently committable. If
the selected StOp is, in fact, committable, and if this write commit is able
to advance into the commit pipe stage C2, then the StOp is considered by
the OCU to be committed. In the next cycle the OCU will search for and
move on to the next memory-writing StOp.

The criteria for StOp commitment are similar to those for register
result commitment:

1. the selected StOp must be completed (in the case of misaligned
writes; this also means that both associated Store Queue entries
have been created).

2. all older LdStOps within the OpQuad, and possibly the preceding
OpQuad if this StOp is in the second to last scheduler OpQuad,
must also be completed.

3. there must not be an older mispredicted conditional branch Op.

As mentioned earlier for register commitments, there are other “miscella-
neous” conditions as well, but the above serve to illustrate the points that
need to be made here. A write commit is able to advance into commit
pipeline stage C2 when that stage is either empty or is successfully com-
pleting commitment of a write.

If the selected StOp is not committable and this is only because it is
not completed, then the OCU examines the signal from the store unit
pipeline Stage2 indicating whether a StOp is “stuck” in that stage with a
detected fault condition. If there is any such Op, then it is the same StOp
as the one being unsuccessfully committed by the OCU, and thus must be
aborted by the OCU. An appropriate abort cycle will not be initiated,
though, until the StOp is in the bottom scheduler OpQuad, all preceding
Ops within the OpQuad have been committed, and there is no preceding
mispredicted BRCOND Op. This set of conditions is essentially an exten-
sion of the condition for StOp committability. The OCU will remain in
this state until an abort cycle is initiated for a preceding Op.

288 Chapter 3: The K6 3D Microarchitecture

Handling CIA and CDA Ops

While the OCU is primarily concerned with memory-writing StOps, it
must also handle CIA and CDA Ops. This is necessary since these Ops
generate faultable memory addresses and thus must be examined and
committed by the OCU. In the normal case of such an Op having executed
fault-free, the OCU trivially spends a cycle on committing the Op and
simply moves on to committing the next StOp in the next cycle. Since no
store queue entry was created during execution of the Op, no entry is
retired from the store queue. If, instead, a fault was detected during execu-
tion of the CIA or CDA Op, then it is “stuck” in the store unit pipeline
Stage2 and the OCU aborts it in exactly the same fashion as for memory-
writing StOps.

Memory References Crossing Alignment Boundaries

The OCU must accommodate the situation that arises when a StOp’s
memory reference crosses an alignment boundary, eight bytes for eight-
byte accesses and four bytes for two-and four-byte accesses.’> When this
occurs, the reference is split by the SU into two memory writes and two
associated store queue entries during its execution. In such situations,>
the OCU takes two cycles to retire the two store queue entries and does
not officially commit the StOp until the end of the second cycle. If the
StOp has a fault then it must be aborted without retirement of either store
queue entry.

The OCU’s Write Commit Logic

The following pseudo-RTL description summarizes the functionality of
the OCU’s write commit logic (where Op0 is the oldest Op and Op3 is the
youngest Op in the bottom/last scheduler OpQuad, Op4-Op7 are the cor-
responding Ops in the second to last scheduler OpQuad, and Op8-Op11
are the corresponding Ops in the third to last scheduler OpQuad).

Its operation is based on a set of CmtMask[7:0] mask bits which repre-
sent the OCU’s progress in committing memory-writing StOps within the last
two scheduler OpQuads. The first several bits, starting from bit 0, are clear,
indicating that the OCU has already committed any StOps up to the last such
Op position, which contains the next StOp to be committed. All Ops
corresponding to the remaining, set, mask bits have yet to be examined for

32 This irregularity is due to the fact that this is how alignment boundary crossing
is defined in the x86 instruction set architecture.

33 The OCU is able to distinguish aligned versus misaligned StOps because the
first Store Queue entry of a misaligned access pair is specially marked as such
via a bit that is part of each Store Queue entry.

The OCU: An Expanded Description 289

committable StOps. In addition, from cycle to cycle the OCU maintains a set
of UncmtStOp[7:0] bits indicating which Op positions contain uncommitted
memory-writing StOps.

During each cycle the OCU selects the next uncommitted StOp and gen-
erates a new set of CmtMask mask bits based on the position of this Op. The
unmasked Ops (i.e., those with their mask bit set to 0) are examined to deter-
mine whether:

1. theselected StOp is presently committable (i.e., is it completed and all
preceding OPs are fault-free).

2. an abort cycle needs to presently be initiated.

In the former case, if the selected Op is committable and if Stage 2 of the com-
mit pipeline is able to accept a new write commit at the end of the cycle, then
the StOp is “committed” and the UncmtStOp bits are updated with new val-
ues. The UncmtStOp bits are also updated (shifted) to match any shifting of
the last two OpQuads within the scheduler.

Pseudo-RTL Description

Write Commit Logic

// StCmtSel = 0000 if OPO selected (highest priority)

/I * = 0111 if OP7 selected (lowest priority)

/[* = 1111 if no Op selected

StCmtSel[3:0] =

priority_encode((OPQ5:0pQV & UncmtStOp[0]), ... ,

(OPQ5:0pQV & UncmtStOp[3]),
(OPQ4:0pQV & UncmtStOp[4]), ...,
(OPQ4:0pQV & UncmtStOp[7]))

/I this generates a field of zeroes from bit O up to and including

/ the bit pointed at by StCmtSel[2:0], and a field of ones past

// this up to bit 7

CmtMask[7:0] = {(StCmtSel[2:0] < 3'b111),..., (StCmtSel[2:0] < 3'b000)}

CmtCiaCda =

(~CmtMask[7] & Op7:Type[2]) |

(~CmtMask[6] & CmtMask[7] & Op6:Type[2]) |
(~CmtMask[5] & CmtMask[6] & Op5:Type[2]) |
(~CmtMask[4] & CmtMask[5] & Op4:Type[2]) |
(~CmtMask[3] & CmtMask[4] & Op3:Type[2]) |
(~CmtMask|[2] & CmtMask[3] & Op2:Type[2]) |
(~CmtMask[1] & CmtMask[2] & Op1:Type[2]) |
(~CmtMask[0] & CmtMask[1] & Op0:Type[2])

continued on the next page ...

290 cChapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

Write Commit Logic

StCmtinh = Cmtinh |
StCmtSel[2] & (OpQ4:LimViol | SmcHit & ~CmtCiaCda | “trap pending”)

StCmtV = ~StCmtSel[3] & ~StCmtinh &
(CmtMask[7] | Op7:S3) &
(CmtMask[6] | Op6:S3 | Op6:RU) &
(CmtMask[5] | Op5:S3 | Op5:RU) &
(CmtMask[4] | Op4:S3 | Op4:RU) &
(CmtMask[3] | Op3:S3 | Op3:RU) &
(CmtMask[2] | Op2:S3 | Op2:RU) &
(CmtMask[1] | Op1:S3 | Opl:RU)

Q5StCmtV = ~StCmtSel[2] & ~Cmtinh &
(CmtMask[3] | Op3:S3) &
(CmtMask[2] | Op2:S3 | Op2:RU) &
(CmtMask[1] | Op1:S3 | Opl:RU) &
(CmtMask[0] | Op0:S3 | Op0:RU)

StAdv = ~STQ_FirstAddr & ~DC_HoldSC1 & CHP_AdvSC2 | CmtCiaCda
StRetire = StCmtV & StAdv
Q5StRetire = StAdv & Q5StCmtV

NewUncmtStOp([7:0] = {(CmtMask[7] & Op7:Type=ST), ...,
(CmtMask[0] & Op0:Type=ST)}

// indicates when all memory-writing StOps have been
/l committed or are being successfully committed in the
// bottom Sched Op quad

AlIStCmt = StCmtSel[2] | Q5StRetire &
~NewUncmtStOp[3] &...& ~NewUncmtStOp|[0]

[/l update UncmtStOp bits:
NextUncmtStOp[7:0] = (StRetire) ? NewUncmtStOp[7:0] : UncmtStOp[7:0]
NextUncmtStOp[11:8] =

{Op11:Type=ST, Opl0:Type=ST, Op9:Type=ST, Op8:Type=ST}

/I mux followed by a flip-flop:
UncmtStOp[7:4] = LdEntry4 ? NextUncmtStOp[11:8]: NextUncmtStOp[7:4]
UncmtStOp[3:0] = LdEntry5 ? NextUncmtStOp[7:4] : NextUncmtStOp[3:0]

continued on the next page ...

The OCU: An Expanded Description 29]

Pseudo-RTL Description (cont.)

Write Commit Logic

SC_HoldSC1 = ~StQCmtV | CmtCiaCda

StAbort = ~StCmtSel[2] SUViol &
((StCmtSel[1:0] == 2'b00) & ~Op0:S3 |
(StCmtSel[1:0] == 2'b01) & ~Op1:S3 & Op0:S3 |
(StCmtSel[1:0] == 2'b10) & ~Op2:S3 & Op1:S3 & Op0:S3 |
(StCmtSel[1:0] == 2'b11) & ~Op3:S3 & Op2:S3 & Op1:S3 & Op0:S3)

MEeMORY READ FAuULT HANDLING

LdOps normally do not require any special handling by the OCU since
they only result in general register state changes. Like most StOps, though,
they can also encounter faults during their execution. When this occurs, it
is recognized by special logic and handled in the same manner as for StOp
faults. To determine whether a faulting LdOp exists in the bottom sched-
uler OpQuad, the OCU examines each Op in the OpQuad for the follow-
ing conditions:

1. itisaLdOp.
2. all older Ops are completed and fully committed.
3. there is no preceding mispredicted BRCOND Op.

Again there are other “miscellaneous” conditions as well and, again, the
above conditions serve to illustrate the points that need be made here. The
conditions identified ensure that all preceding Ops are properly commit-
ted. The OCU also examines the signal from the LU pipeline Stage2 indi-
cating whether a LdOp is stuck in that stage with a detected fault
condition. At most one of the Ops in the OpQuad satisfies all of these con-
ditions. If one does and the signal from the LU pipeline Stage2 is asserted,
then a faulting LdOp is recognized by the OCU and an appropriate abort
cycle is initiated immediately to abort this Op and all following Ops. The
following pseudo-RTL description summarizes the OCU's LdOp fault
handling logic:

292 Chapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

LdAbort = LU2_LUViol &
(Op0:(Type=LU & ~S3) |

Op1:(Type=LU & ~S3) & Op0:S3 & ~CmtMask][1] |
Op2:(Type=LU & ~S3) & Op0:S3 & Opl:S3 & ~CmtMask[3] | // [3]==[2]!
Op3:(Type=LU & ~S3) & Op0:S3 & Op1:S3 & Op2:S3 & ~CmtMask[3]

)

LdOp Fault Handling Logic

OpQuad Sequence constraints

FAULT Op COMMITMENT

In addition to commitment of abortable state changes associated with all
the normal types of Ops, there are a few special Ops—the FAULT,
LDDHA, and LDAHA Ops—that require additional, special commitment
handling. None of these Ops are issued to and executed by an execution
unit and they have no execution dependencies with other Ops. They are
significant only to the OCU.

The FAULT Op is similar to a faulting LdStOp in that it is handled by
the OCU in the same way—an abort cycle is initiated along with vectoring
to the current OpQuad Sequence OCU fault handler. Unlike faulting
LdStOps, though, there is no problem in determining whether there is a
fault to recognize and of when to initiate the abort cycle.

To simplify the OCU’s logic for handling FAULT Ops, the following
constraints are placed upon OpQuad Sequences:

1. FAULT Ops must be located in the first Op position of an
OpQuad.

2. all following Ops in the OpQuad must be NoOps.

3. the next OpQuad to be executed must not contain any memory-
writing StOps.

The latter constraints ensure that the OCU’s StOp commitment logic can
operate blindly of the presence of FAULT Ops, (i.e., without any special
consideration). Moreover, the last constraint has no negative effect on per-
formance since the next OpQuad will be unconditionally aborted when
the FAULT Op executes, (i.e., the next OpQuad could not have done use-
ful work anyway). In practice, OpQuad Sequences are written so that
FAULT OpQuads branch to themselves.

The state of a FAULT Op is initialized to unissued when it is loaded
into the scheduler. When it reaches the bottom of the scheduler, this
inhibits the OCU’s OpQuad retirement logic from retiring the containing

The OCU: An Expanded Description 293

OpQuad while the OCU's FAULT Op commit logic immediately initiates
an abort cycle. The specifics of this abort cycle are the same as for faults on
LdStOps; the only difference is the generation of a unique fault id. The fol-
lowing equation summarizes the OCU’s FAULT Op handling logic:

Pseupo-RTL DESCRIPTION

FAULT Op Handling Logic
FltAbort = OpQ5:0pQV & Op0:(Type=SpecOp & (OpInfo(SpecOp).Type=FAULT))

LDDHA Anp LDAHA Op COMMITMENT

The LDDHA and LDAHA Ops enable OpQuad Sequences to set and to
change the OpQuad ROM address to which OCU-recognized exceptions
are vectored. The OCU maintains two vector address registers: the first
holds a default handler address and the second holds an alternate handler
address. The first register is set once by the Reset OpQuad Sequence via an
LDDHA Op and is active, by default, for most OpQuad Sequences (for
both instructions and exception processing). The second register is set
during certain sections of OpQuad Sequences via a LDAHA Op.

For OpQuad Sequences that do not contain an LDAHA Op, any faults
recognized by the OCU result in vectoring to the address in the default
handler address register. For OpQuad Sequences that contain an LDAHA
Op, faults on Ops in OpQuads before the one containing the LDAHA Op
still result in vectoring to the default address, while faults on Ops in the
OpQuad containing the LDAHA Op or in any following OpQuads up to
and including the last OpQuad of the sequence (i.e., the OpQuad contain-
ing the ERET), result in vectoring to the address in the alternate handler
address register. The retirement of the ERET OpQuad, as well as the
occurrence of an abort cycle, reactivates the default handler address regis-
ter for all following OpQuads, until the next occurrence of a LDAHA Op.

To simplify matters for the OCU, LDDHA and LDAHA Ops are con-
strained to be located in the first Op position in an OpQuad. Valid Ops are
allowed in the following Op positions of the OpQuad (in contrast to
FAULT OpQuads where this is not allowed). The following pseudo-RTL
descriptions summarize the OCU’s LDDHA and LDAHA Op handling
logic:

294 Cchapter 3: The K6 3D Microarchitecture

Pseupo-RTL DESCRIPTION

LDDHA and LDAHA Op Handling

if (OpQ5:0pQV & Op0:(Type=SpecOp & (Oplnfo(SpecOp).Type=LDDHA)))
DefFItVecAddr[13:0] = Op0:DestVal[13:0]// enabled flip-flOp

LdAItAddr = OpQ5:0pQV & Op0:(Type=SpecOp & (Oplnfo(SpecOp).Type=LDAHA))

if (LdAItAddr)
AltFltVecAddr[13:0] = Op0:DestVal[13:0]// enabled flip-flop

I/l This implements the requirement for faults on Ops

I/ within the same Op quad as a LDAHA Op to be vectored

/ to the new alternate handler address.

EffAltFItVecAddr[13:0] = (LdAItAddr) ? Op0:DestVal[13:0] :
AltFltVecAddr[13:0]

I/ OpQ refers to an Op quad field
if (NextOpQ5:Eret & NextOpQ5:0pQV & ~BrAbort | LAAItAddr | ExcpAbort)
FltVecMode = ~ExcpAbort &
~(NextOpQ5:Eret & NextOpQ5:0pQV & ~BrAbort) &
LdAItAddr// enabled flip-flop

CurFltVecAddr[14:0] =
(FItVecMode | LdAItAddr) ? EffAltFItVecAddr[14:0] :
DefFItVecAddr[14:0]

SEQUENTIAL AND BRANCH TARGET SEGMENT LIMIT VIOLATION
HANDLING

In addition to the commitment of state changes associated with each of
the Ops within an OpQuad, the OCU also recognizes a special condition
tagged with an OpQuad as a whole. Right after the decoders have gener-
ated an OpQuad and it has been loaded into the scheduler, if a sequential
code segment limit overrun violation is detected, or if a transfer control
instruction was just decoded and a code segment limit violation is
detected on the target address, the OpQuad is marked to indicate that a
code segment limit violation was detected in association with the instruc-
tion decode that produced the OpQuad.

When the OpQuad reaches the OCU and is to be committed, the set
tag bit (called LimViol) is recognized and an abort cycle is initiated with-
out commitment of any state changes from the Ops within the OpQuad.
Effectively the entire OpQuad is faulted. The effect is similar to that which
would have occurred if there had been a FAULT Op in the OpQuad. The

The OCU: An Expanded Description 295

following equation summarizes the OCU’s logic for handling branch tar-
get limit violations:

Pseupo-RTL DESCRIPTION

Branch Target Limit Violations

LimAbort = OpQ5:(OpQV & LimViol)

MisprepicTED BRCOND Op HANDLING

Besides the commitment of abortable state changes and the handling of var-
ious special cases, the OCU handles the generation of abort cycles for
mispredicted BRCOND Ops. The restart of both the instruction fetch and
decode portions of the machine occurs before the BRCOND Op reaches the
bottom row of the scheduler (when the branch was resolved as correctly
predicted or not, while the BRCOND Op passed through scheduler
OpQuad4). The scheduler simply needs to generate an abort cycle and to
ensure that only preceding Ops are committed and, as with the generation
of abort cycles for Op faults, the abort must not be initiated until all preced-
ing Ops have been committed. The following pseudo-RTL description sum-
marize the OCU’s mispredicted BRCOND Op handling logic. The
commitment of following Ops is inhibited by the State of the BRCOND Op.

Pseupo-RTL DESCRIPTION

Handling Mispredicted BRCOND Ops

BrAbort = Op0:(Type=SpecOp & ~S3) |
Opl:(Type=SpecOp & ~S3) & Op0:S3 & ~CmtMask][1] |
Op2:(Type=SpecOp & ~S3) & Op0:S3 & Op1:S3 &

~CmtMask[3] | //[3]==[2]!
Op3:(Type=SpecOp & ~S3) & Op0:S3 & Op1:S3 & Op2:S3
& ~CmtMask[3]

OPQUAD RETIREMENT

The OCU retires the bottom OpQuad from the scheduler at the end of the
cycle when all of the abortable state changes of the Ops within it have been
committed or are being successfully committed. Since this process
removes this OpQuad from the scheduler, it also allows the next OpQuad
to shift into the bottom row of the scheduler and all earlier OpQuads to
shift down as well. During cycles in which not all such Op results have yet
been committed, the bottom OpQuad is not retired and either it is
retained into the next cycle for further commitment processing or it is

296 Chapter 3: The k6 3D Microarchitecture

invalidated due to an abort cycle. In the latter case, the abort cycle would
be in response to some fault having been recognized on one of the Ops
within the OpQuad.

DesicN NoTE

OpQuad Retirement

The retirement of an OpQuad requires that all register results, status
results, and memory writes are committed, and that there is no FAULT
Op or mispredicted BRCOND Op in the OpQuad. Removal of an
OpQuad also immediately occurs if the OpQuad is marked as invalid, a
situation taken care of by the scheduler shift control logic.? Status results
are all committed together in conjunction with retirement or abortion of
the OpQuad. Register results are guaranteed to be committed or cur-
rently committing if the associated Ops are completed.

a

See the pseudo-RTL description in the section titled “Dynamic Field Stor-
age Element Operation” beginning on page 190.

The following pseudo-RTL description summarizes the OCU's OpQuad
retirement control logic:

Pseupo-RTL DESCRIPTION

OpQuad Retirement Control

OpQRetire = Op3:S3 & Op2:S3 & Opl:S3 & Op0:S3 &
AlIStCmt

if ((OpQRetire | SC_Abort) & ~OpQ5:LimViol)
StatFlags[7:0] = NewsStatFlags[7:0]
/I enabled flip-flop

OpQRetire may be asserted for multiple cycles for the same OpQuad. This
will occur when shifting of the bottom scheduler entries is inhibited for
other unrelated reasons.

ABORT CYCLE GENERATION
The OCU generates abort cycles in two situations, recognition of:

1. an Op fault on a LdOp, StOp or a FAULT Op.
2. amispredicted BRCOND Op.

The OCU: An Expanded Description 297

Preceding sections have covered the generation of signals initiating an
abort cycle: LdAbort, StAbort, FltAbort, LimAbort, and BrAbort. This
section describes the generation of the general abort signal®* and related
information.

The Abort signal is simply a combination of all the individual abort
signals associated with commitment of specific types of state changes or
Ops. The associated OpQuad Sequence vector address, which is used only
for fault-related aborts and not BRCOND-related aborts, is simply the
currently active fault handler vector address as described earlier.

The Abort signal, itself, flushes the bottom portion of the machine—
the scheduler and all execution units—of all outstanding Ops and reini-
tializes these areas in preparation for receiving fresh new Ops from the
upper portion of the machine—the instruction fetch and decode areas.
For BRCOND-related aborts this is sufficient since the upper portion of
the machine was already restarted earlier by the BRCOND Op resolution
scheduler logic.

For exception-related aborts, though, the upper portion of the
machine also needs to be restarted at the above OpQuad Sequence vector
address. This is accomplished by assertion of the appropriate restart signal
SC_Vec2XXX. When the instruction fetch and decode restarts are signaled
simultaneously for both a mispredicted BRCOND Op and an Op excep-
tion, the latter is given higher priority and the restart vector address and
restart signals are generated accordingly.

When a fault-related abort occurs, the OCU also latches information
about the fault, namely the x86 instruction fault Program Counter, i.e., the
logical address of the x86 instruction associated with the Op being faulted;
in other words, the address of the instruction effectively being faulted. The
following pseudo-RTL description summarizes the abort cycle generation
logic:

3% SC_EAbort and SC_Abort, where the latter is simply a one-cycle delayed
version of the former.

298 Chapter 3: The k6 3D Microarchitecture

Pseudo-RTL Description

Abort Cycle Generation

ExcpAbort = LdAbort | StAbort | FItAbort | LimAbort | TrapAbort | SCReset
SC_EAbort = ExcpAbort | BrAbort
SC_Abort = SC_EAbort// simple flip-flop

if (TrapAbort)
Faultld[2:0] = (DTF | SSTF) ? 3'h1: 3'h0
else if (LimAbort)
Faultld[2:0] = 3'h2
else
Faultld[2:0] = LdAbort ? LU2_ViolType : SU2_ViolType

Il latch into SR4:

if (ExcpAbort)
SC_FID[2:0] = Faultld[2:0]// enabled flip-flop
SC_SR4[31:0] = OPQ5:FaultPC[31:0]// enabled flip-flop

Il select OpQuad Sequence vector address:
if (SCReset)
SC_VecAddr[13:0] = 14'h2200
ExtEmcVecAddr = SCExtReset
else
SC_VecAddr[13:0] =
(ExcpAbort) ? CurFltVecAddr[13:0] : BrVecAddr[13:0]
ExtEmcVecAddr =
(ExcpAbort) ? CurFltVecAddr[14] : BrVecAddr[14]

SC_Vec2ROM = (ExcpAbort | BrVec2Emc) & ~ExtEmcVecAddr
SC_Vec2RAM = (ExcpAbort | BrVec2Emc) & ExtEmcVecAddr
SC_Vec2Dec = ~ExcpAbort & BrVec2Dec

AvOIDING DEADLOCK

There is a difference between committing the results of an Op and retiring
an Op from the scheduler. Often these actions happen on the same cycle
but this is not always the case. If some, but not all, of the Ops in an
OpQuad can be committed in a given cycle, whatever can be committed is
committed. The OpQuad cannot be removed from the scheduler until all
of its Ops are committed, so committed Ops will still be in the scheduler.
When result values (both the register value and status flag bits) of an Op
are committed, the corresponding byte marks and status modification bits

are cleared in the scheduler’s Op entry.

The OCU: An Expanded Description 299

Ops can modify all or just part of a register with a result value (specif-
ically, either of the lower two bytes, both lower bytes, or all four bytes, cor-
responding to one,-two,-and-four byte size operations). When a scan is
being made for the supplier of an operand value required by an Op in
pipeline Stage0 or a StOp in SU Stage2), the scan must take into account
which bytes of the register are required and which bytes are modified by
each of the older Ops that modify the required register. The scan only
identifies those Op entries for which there is an overlap between which
bytes are needed and which bytes are modified. Destination byte mark
(DestBM[2:0]) bits keep track of which parts of a result register are modi-
fied by an Op. The result of the OCU clearing these bits during Op com-
mitment is that the scan logic realizes that this Op no longer looks like it
modifies the required register and the particular bytes, if needed, can be
supplied by the architectural register file.

Why is it that the OCU needs to be able to commit some of the Ops in
an OpQuad even though it cannot commit all of them? This approach is in
contrast to simply waiting until you can commit all of the Ops in the
OpQuad before committing any of them—i.e., commit and retire all of
them at the same time. The answer has to do with avoiding potential dead-
lock situations.

Suppose that one of the Ops in OpQuad3 or OpQuad4 cannot get its
source operands and, because it is a cc-dependent regOp, a nonabortable
RegOp, or a BRCOND Op, this causes shifting of this OpQuad and the
one or two below it to be inhibited as discussed earlier. If an older Op, say
in OpQuad4, is producing some of the required register operand value,
but not all of it, the scheduler needs to wait for the OCU to commit the
older Op. But, if it cannot get to the bottom of the scheduler to be com-
mitted because the scheduler cannot shift, then the scheduler and OCU
are deadlocked.

For example, suppose the Op that gets stuck in OpQuad3 or
OpQuad4 requires all four bytes of the AX register as one of its source
operands. Let’s assume that two of these bytes are modified by an Op
lower down in the scheduler, one of the remaining required bytes is modi-
fied by a different Op lower down in the scheduler, and the final required
byte is in the architecture register file. The K6 does not support being able
to source or forward some of the bytes from one Op entry and some of the
bytes from another Op entry and some of the bytes from the architectural
register file. In general, all required bytes must be forwarded from just one
source. In this case, the scheduler will have to wait until the OCU can
commit to two Ops lower down in the scheduler, so that all of the required
bytes can be obtained from the architectural register file. But, since the
scheduler cannot shift, these Ops will never get committed.

Another, but more subtle example, is the deadlock that might arise
within a single OpQuad. even if it is already in OpQuad5 of the scheduler.

300 chapter 3: The K6 3D Microarchitecture

REGISTER RENAMING

Suppose one of the later Ops in the OpQuad is partially dependent on the
results of an earlier Op in the same OpQuad. Unless the OCU can commit
the earlier Op so that the required operand can be obtained from the
architectural register file, the dependent Op will never be able to execute.

To resolve such potential deadlock situations, the OCU is able to com-
mit whichever Ops in an OpQuad that can be committed, instead of hav-
ing to wait for all of the Ops to be able to be committed. Further, the OCU
is able to commit Ops from both OpQuad4 and OpQuad5 (the bottom
two rows of the scheduler).

Since these deadlock situations arose from the fact that the scheduler
cannot provide a set of required register bytes from a collection of
sources—if four bytes of a register are required, the scheduler cannot get
one byte from one place, one byte another place, and the other two bytes
from a third place—an alternative solution would be to provide the
resources to allow the scheduler to do this. This approach, however, proves
to be much more costly (somewhat in speed and very much in size) than
providing the OCU the flexibility just described.

Programs are written under the assumption that their constituent instruc-
tions will execute sequentially. For architectures that support the out-of-
order execution of instructions, this assumption is not true and certain
conflicts may arise that need to be avoided to ensure proper program
behavior. Since the issues discussed in this introductory section are appli-
cable to the x86 instruction set architecture and the K6 3D microarchitec-
ture, the term command is used in this section to mean either an x86
instruction or a RISC86 operation. In general, a command either:

1. requires and “reads” zero, one, or more operand values to be
operated upon from some form of storage such as registers or
memory.

2. produces one or more result values and “writes” them into some
form of storage such as registers or memory.

There are potential conflicts between various combinations of reading
operand values and writing result values from and to common storage
locations when they are allowed to occur out of their sequential program
order. There are four basic combinations of reading and writing of
operand and results values from and to the registers and memory
locations for two commands.

Register Renaming 301

Table 3.11

PoTeENTIAL CONFLICTS WHEN READING/WRITING OPERAND/RESULT VALUES

1st
command

2nd
command

Notation or
Terminology

Example of
Potential Conflict

Read

Read

RAR

Read After Read

In this case, both commands use the same result,
produced by some previous command. There is
no conflict and the two commands can be exe-
cuted in any order.

Read

Write

WAR

Write After Read

In this case, the 1st command reads a result pro-
duced by some previous command from a spe-
cific storage location and then the 2nd
command writes to the same storage location. A
conflict exists if the 2nd command writes a new
result to the storage location in question before
the 1st command reads the older, previous result
value from it.

Write

Read

RAW

Read After Write

In this case, the 2nd command uses the result
produced by the 1st command. A conflict exists
if the 2nd command reads the result’s storage
location before the 1st command has written its
result to the storage location in question as the
2nd command will be reading the wrong result
value—the result produced by some other com-
mand.

Write

Write

WAW

Write After Write

In this case, the 1st command writes its result
value to a specific storage location and then the
2nd command writes its result to the same stor-
age location. A conflict exists if the 2nd com-
mand’s write occurs before the Ist command’s
write as the storage location is left with the
wrong result. Subsequent reads to the storage
location will read this wrong value.

IMPLICATIONS FOR PIPELINE OPERATION

Pipeline operation, can be affected by the presence of these conflicts as
execution will be stalled until such conflicts, when they exist, are resolved.
As Hennessy and Patterson point out in the last reference cited in the fol-
lowing “Historical Comment and Suggested Readings” inset, commands
that use registers and have a potential Write-After-Read conflict or a
potential Write-After-Write conflict can execute out of order if the regis-
ters are renamed (see Section 4.1 of the Hennessy and Patterson text). It is

302 cChapter 3: The K6 3D Microarchitecture

therefore relatively important that a high-performance method of sup-
porting register naming be an integral part of the processor’s core.

HistoriICAL COMMENT AND SUGGESTED READINGS

Pipeline Design

There is a range of terminology used to describe the conflicts that arise in the design of pipelines and the
techniques used in both processor design and compilers to resolve them. They have been called, among
other things, “dependencies” or “hazards” in various architecture-and compiler-related work. For a treat-
ment of the issues from an architecture point of view, see Peter M. Kogge’s book, The Architecture of Pipe-
lined Computers, McGraw-Hill Book Company, 1981, and Harold Stone’s book, High-Performance
Computer Architecture, 3rd Edition, Addison-Wesley Publishing Company, 1993. Kogge’s book gives a rich
history of the resolution of these conflicts in pipelined computers. His discussions of Thorton’s score-
boarding technique used in the CDC6600 and Tomasulo’s algorithm used in the IBM 360/91 are quite
interesting.

For a compiler-related treatment of these issues see: “Local Microcode Compaction Techniques,”
Dave Landskov, Scott Davidson, Bruce Shriver, and Pat Mallet, ACM Computing Surveys, Vol. 12, No 3,
September, 1980; “Microcode Compaction: Extending the Boundaries,” Dave Landskov, Josh Fisher and
Bruce Shriver, International Journal of Computer and Information Sciences, Vol. 13., No. 1, February, 1984;
“Microcode Compaction: Looking Backward and Looking Forward,” Josh Fisher, David Landskov and
Bruce Shriver, Proceedings of the National Computer Conference, NCC ‘81, AFIPS Press, Chicago, Illinois,
May, 1981.

Since pipelining is typically an integral part of current microarchitectures, there is an extensive
Ey treatment of the issues involved in classifying and resolving these conflicts in this literature as
—/)/) well. See, for example, the article by Wen-Mei Hwu, Richard E. Hank, David M. Gallagher,
Scott A. Mahlke, Daniel M. Lavery, Grant E. Haab, John C. Glyllenhaal and David 1. August,
“Compiler Technology for Future Microprocessors,” Proceedings of the IEEE, Vol. 83, No. 12, 1995, pp.
1625-1640. You can find the full text version of this article on the CD-ROM. See also Mike Johnson’s,
Superscalar Microprocessor Design, Prentice-Hall, 1991; and John Hennessy and Dave Patterson’s Computer
Architecture: A Quantitative Approach, 2nd Edition, Morgan Kaufmann Publishers, Inc., 1996.

An architecture’s instruction set accesses a set of registers that are
used for storing values associated with general registers, status flags,
and other architectural state-related information. This set of registers
is often called the architectural register set or architectural register
file®® (see the section titled “Architectural and Microarchitectural
Registers” beginning on page 88). The values stored in it at any
instant in time are called the architectural machine state or instruc-
tion set architecture machine state. The microarchitecture typically

35 Although separate register files are often used for each of the various types of
state, e.g., a separate register in the case of status flags distinct from the archi-
tectural register file for general registers.

Register Renaming 303

has an additional number of registers used to store additional
microarchitectural machine state, (i.e., operand values, status flags,
and state information that is used exclusively in the microarchitecture
and not explicitly visible to the instruction set architecture). Further,
the microarchitecture typically has a different number of physical reg-
isters, most often a larger number, that are used to store uncommitted
as well as committed values in these architecture and microarchitec-
ture registers. Before proceeding in this section, we recommend you
consider the following review:

Suggested Review

It might be useful at this point for you to review the following sections in
Chapter 2 that are particularly relevant to the issues in register renaming:
the section titled “Architectural and Microarchitectural Registers” begin-
ning on page 88, the section titled “Register Number and Name Map-
pings” beginning on page 91, and the section titled “Special Registers
and Model Specific Registers” beginning on page 94.

From the sections identified in the above “Suggested Review” inset, we
recall that the K6 3D has twenty-four 32-bit integer registers in the integer
architectural register file. The K6 3D also has twenty-four 32-bit integer
renaming registers. The twenty-four integer registers in the integer archi-
tectural register file consist of eight registers that correspond to the x86
architecture 32-bit-general purpose registers (EAX, EBX, ECX, EDX, EBP,
ESP, ESI, and EDI) and sixteen microarchitecture scratch registers (t0
through t15). The twenty-four renaming registers are located in the sched-
uler’s twenty-four Op entries—one per entry. The K6 3D also has nine
MMX/3D 64-bit architecture registers and twelve MMX/3D 64-bit renam-
ing registers. The nine architectural registers consist of eight that corre-
spond to the x86 architecture MMX 64-bit registers (MMO through MM?7)
and one microarchitecture scratch 64-bit register (MMt1).

Register mapping is the process of associating one set of registers with
another set of registers. The mapping can be static (bound before execu-
tion) or dynamic (done at execution time). If the process is dynamic, (i.e.,
“renaming” (re-mapping) occurs during execution, it is called register
renaming.

In the K6 3D, both the x86 architectural registers (e.g., AX-DI, MMO-
MM7, CE ZFE SE OF PE and AF) and the microarchitectural registers
(e.g., t0-t15, MMtl, ECE, and EZF) are renamed to physical registers.
Thus, in the context of the K6 3D, register mapping is the process of asso-
ciating the set of x86 architectural registers and the set of K6 3D microar-
chitectural registers with specific physical registers which actually store the
register values. As this process is dynamic, it is appropriate to call this pro-

304 chapter 3: The K6 3D Microarchitecture

cess register renaming. The renaming is such that each x86 architectural
register and each K6 3D microarchitectural register having a valid value
has a corresponding physical register mapped to it.

Register renaming is often accomplished through the use of tags that
are used to identify the various registers. The tags can be thought of as reg-
ister numbers or register identifiers. When an architectural or microarchi-
tectural register identifier is presented to the mapping mechanism (e.g., a
mapping table), the current corresponding physical register identifier is
output. We will discuss two types of register renaming schemes, explicit
and implicit.The mappings must be complete, i.e., each architectural reg-
ister having a valid value must have a corresponding microarchitectural
register mapped to it at each point in time when a valid value is associated
with the architectural register.

ExpLiCIT REGISTER RENAMING

Some architectures implement an explicit register renaming scheme. In
such schemes there is an explicit mapping or translation of architectural
registers into physical registers. These schemes employ a translation or
mapping mechanism that:

1. maintains a list of which physical register numbers are currently
not in use and thus available to be allocated.

2. assigns a physical register number to be associated with an archi-
tectural number; results that are to be held in the architectural reg-
ister are held in the associated physical register.

3. produces or outputs the physical register number associated with
a given architectural register number.

Such schemes often require additional information such as an indication
of the validity of the data value a register contains. A copy of the mapping
information is typically required to be able to restore the machine state
when an exception, abort, or mispredicted branch is encountered. We will
now discuss two basic approaches that are used to implement explicit
renaming schemes.

Suggested Review

It might be useful at this point for you to review several pipeline dia-
grams shown in Chapter 2 (Figure 2.12 on page 159, Figure 2.14 on page
163, Figure 2.15 on page 164, Figure 2.18 on page 167, and Figure 2.21
on page 175) and the text that accompanies them, as well as the scheduler
diagram Figure 2.9 on page 130 and its related discussion.

Register Renaming 305

Using One Pool of Registers

One type of approach used in explicit register renaming schemes is to have
a general pool of physical registers that can be used to hold both commit-
ted and uncommitted values in the registers of the architectural/microar-
chitectural register set. A tag associated with each of the physical registers
points to the specific architectural or microarchitectural register that it is
currently assigned to. Similarly, there is a tag associated with each architec-
tural or microarchitectural register pointing to the physical register that it
is mapped to. At a specific instant in the instruction stream, the set of val-
ues of all such tags is the current mapping of the architectural and microar-
chitectural register numbers onto the physical register numbers. This
means that the physical registers identified hold the latest or current values
for the architectural and microarchitectural registers identified. At that
specific instant in time, some of the other physical registers may be free
while others might be holding older values of various architectural and
microarchitectural registers.

The tags are located in a centralized resource, say a mapping register
or renaming table. Copies of older versions of mapping information are
also required to be able to restore the machine state when an exception or
a mispredicted branch is encountered. If there is a 1-to-1 correspondence
between each operation and a corresponding register modification (i.e.,
each operation modifies at most one register), the number of physical reg-
isters required is roughly (X + Y + Z) where:

1. Xisthe number of architectural registers.
2. Y is the number of microarchitectural; registers.

3. Zisthe number of speculative copies of architectural and microar-
chitectural register values (i.e. computed register values that are
not yet committed).

In the explicit mapping approach, when instructions are decoded the
architectural register identifiers or numbers used in the instructions must
be translated to the current corresponding physical register identifiers.
The current corresponding physical register numbers are used in the inter-
nal operations associated with the decoded instructions. The mapping
information is modified in the decoding process and in the commitment
process. For example, assume the following instruction is decoded:

AX <— AX + BX

(i.e., the value contained in AX is added to the value contained in BX and
the result replaces the original value contained in the AX). Assume that the
mapping information indicates that the current values of the architectural
registers AX and BX are in physical Register 3 and Register 7, respectively.

306 cChapter 3: The K6 3D Microarchitecture

Assume that physical Register 24 is currently free and unused. During the
decode process a physical register is allocated to hold the result of the add
instruction so that the previous value of AX is not immediately lost when
the operation is speculatively executed. In this example, physical
Register 24 is assigned to hold the result of the addition and the mapping
information is modified to reflect this assignment. The resulting operation
will read physical Register 3 and Register 7 for its two source operands and
then put the result of the addition into physical Register 24.

At this point, the most recent value of AX is held in physical
Register 24 and its previous value is held in physical Register 3. The next
instruction that references AX will read from physical Register 24 and not
from physical Register 3 as the mapping information has been modified to
reflect this. When a mispredicted branch or an exception occurs, all fol-
lowing instructions that have been decoded will need to be flushed out of
the machine. Correspondingly, the mapping information needs to be
restored to a set of mappings corresponding to the point where execution
will be restarted. If the example instruction had been executed specula-
tively and a mispredicted branch occurred such that the instruction
should not have been executed, the mapping information would have to
be restored to reflect that the current value for AX is in physical Register 3
and not physical Register 24. When a register is committed (i.e., its results
are made permanent in the architectural register file), the mapping infor-
mation needs to reflect that the most recent value of the register is the cur-
rent value and any registers that were holding older values are now free to
be reallocated as new instructions are decoded.

Using Two Pools of Registers

A variation of the approach just described is now given. Instead of having
just one general pool of physical registers you might have two pools. One
pool is a set of registers which is used as a committed architectural/microar-
chitectural register file. The other set is used to hold register values until
they are committed, i.e., an uncommitted register set.>® As with the preced-
ing approach, architectural register numbers are converted into physical
register numbers at decode time and then the mapping information is
updated. Operations can reference either (or both) the committed and
uncommitted register files.

When a register value is committed, the value needs to be written
from the uncommitted register file to the committed register file. In terms
of the previous example, after the add operation executed, Register 24 in
the uncommitted register file was holding the new value of AX. At the time

36 The term register set is used to reflect the fact that these registers do not form a
register file in the conventional sense of one register per register address.

Register Renaming 307

of commitment, the value from this register is written to the AX register in
the committed architectural register file. At this point, Register 24 in the
uncommitted register file is also freed up to get reallocated as new instruc-
tions are decoded.

IMPLICIT REGISTER RENAMING

In contrast to such explicit renaming schemes, the K6 uses an implicit reg-
ister renaming scheme. This implicit scheme is similar to the immediately
preceding scheme (Using Two Pools of Registers) in having two pools of
physical registers, committed and uncommitted register files. We will first
explain how this is done for integer instructions and then for MMX and
3D instructions.

The scheduler uses forty-eight physical registers when processing the
(up to) twenty-four Ops that can be in the scheduler at any point in time.
The registers consist of two register groups, twenty-four committed state
registers and twenty-four renaming registers. The twenty-four general regis-
ters consist of eight registers that correspond to the x86 general-purpose
registers—(i.e., EAX, EBX, ECX, EDX, EBP, ESP, ESI and EDI), and sixteen
microarchitectural scratch registers for use within OpQuad Sequences.
These twenty-four registers are located in the Architectural Register File,
shown in Figure 2.2 on page 69. The twenty-four renaming registers corre-
spond to the twenty-four DestVal fields in the scheduler, one DestVal field
per scheduler Op entry as discussed in the section titled “The DestVal field
plays an important role in the K6’s implicit renaming strategy. The OpQuad
Expansion Logic circuitry used to initialize the DestVal field and the sched-
uler circuitry logic associated with dynamic field DestVal is given in the fol-
lowing pseudo-RTL description:” beginning on page 210. The renaming
registers hold result register values while they are not yet committed. We
repeat, for your convenience, part of a “Historical Comment and Suggested
Reading” inset titled Reorder Buffer on page 134:

308 chapter 3: The K6 3D Microarchitecture

Excerpt from an Earlier
Historical Comment and Suggested Reading

Reorder Buffer

Processors that support speculative and out-of-order execution typically
have operations completing execution before they are ready to be com-
mitted. The results of such operations are not committed (i.e., produc-
ing permanent state change) until it is safe to do so. The collection of
storage elements that holds the results of the as-yet-uncommitted opera-
tions is often called a reorder buffer, for it is from this buffer that the
instructions which have been executed out of order will be committed in
an in-order fashion. A reorder buffer also supports the use and forward-
ing of results of completed operations as source operands for other
dependent operations. The K6 is an example of a microprocessor in
which its reorder buffer (i.e., included in the scheduler’s centralized
buffer functionality) also serves as an environment to support register
renaming. Its renaming registers hold result register values until they are
committed. It holds these values in the DestVal field of the appropriate
Op entries in the scheduler.

As seen in the first portion of this chapter, each scheduler Op entry holds
one RISC86 operation which can modify at most one register. At this
point, in contrast to earlier sections, we are talking about general registers,
i.e., excluding “status flag” registers. Fields Src1Reg, Src2Reg, and Src-
StReg in the Op entry hold the register numbers identifying the registers
for the first source operand Srcl, the second source operand Src2, and the
store data operand (which exists only for StOps) of the Op. The register
result of the operation is stored in the Op entry’s 32-bit DestVal field.*”
The DestVal field is effectively the Op entry’s register result renaming reg-
ister. The architectural register identity of the renaming register within the
Op is specified by value in the DestReg field of that Op (see the section
titled “Static Field DestReg[4:0]” beginning on page 201). The DestVal
field could also be called the local implicit renaming register. Since there can
be up to twenty-four Ops outstanding in the scheduler at any time, each
having a DestVal field, the K6 has twenty-four local implicit renaming reg-
isters.

37 This is for the integer case. The MMX and 3D cases will be examined shortly.

Register Renaming 309

The Basic Scheme

As was seen earlier in this chapter, when Ops are committed the value in
the Op entry’s local renaming register is written into the architectural reg-
ister file, as was done in the Using Two Pools of Registers explicit renaming
schemes just discussed. The K6 3D design exploits the following features
of the microarchitecture that were discussed in Chapter 2:

1. the3-bitarchitectural register numbers are trivially converted to 5-
bit microarchitectural register numbers effectively implementing a
fixed mapping between x86 registers and eight corresponding K6
microarchitectural registers.*®

2. the K6 has twenty-four microarchitectural registers (eight corre-
sponding to x86 architectural registers) and the others are scratch
registers (for use within instruction OpQuad sequences).

3. the twenty-four microarchitectural registers are renamed using
forty-eight physical registers.

The implicit renaming scheme is based on the fact that the scheduler con-
tains a physically ordered list of Op entries and thus a physically ordered
list of locally implicit renaming registers. Renaming is achieved by dynam-
ically determining from where the required source register operand values
are supplied. These values can be supplied from scheduler Op entries or,
by default, the architectural/microarchitectural register file. Starting from
the Op entry that requires a register operand value, a scan is made down
the scheduler toward the bottom row of the scheduler (i.e., toward the
older Op entries) looking for the first Op that modifies the required regis-
ter and the required bytes of that register. Essentially, the scan compares
the value in the Op’s SrclReg, Src2Reg, or SrcStReg field, as appropriate,
with the value in the DestReg field of the older Ops. If a match occurs,
(i.e., such an Op is found), it will be the supplier of the operand value, as it
is the most recent older modifier of the required register. If such an Op is
not found, then by default the architecture/microarchitecture register file
is the supplier of the required register operand value.

Assume an Op is found. If the State field of that Op entry indicates the
Op has already completed execution, then the value in that Op entry’s
DestVal field (i.e., its renaming register) can be read out onto the appro-
priate operand bus and used as the required source operand value. If
instead the State field indicates that the Op is currently completing execu-
tion, then it is possible to “bypass” the desired operand value off of the
appropriate result bus. If the State field indicates that the Op entry has not

38 See the section titled “Architectural and Microarchitectural Registers” begin-
ning on page 88.

310 cChapter 3: The K6 3D Microarchitecture

yet started execution or is not finished completing execution, then an
operand value is not yet available. In any case either:

1. during the operand scan/selection process, an Op is identified as a
source or supplier for each of the required source operand register
values.

2. if the scan cannot find any older relevant Op entries, then by
default the architectural/microarchitectural register file is the
supplier of the required register operand value. This means that
what is used is, in fact, the oldest and committed value for the
required register.

Once the register operand values are available and supplied and the appro-
priate execution unit is available, the Op is executed and the register result
value gets loaded into the Op entry’s DestVal field.

THE MMX AND 3D REGISTERS

As mentioned earlier, the K6 3D has twenty-four 32-bit integer registers in
the architectural/microarchitectural register file and twenty-four 32-bit
integer renaming registers. The latter registers correspond to the twenty-
four Op entries within the scheduler.

The MMX/3D instructions operate on 64-bit values and share usage
of the eight architectural MMX registers. In contrast there are nine 64-bit
MMX/3D registers in the architectural/microarchitectural register file and
twelve 64-bit renaming registers. The nine architectural registers consist of
eight that correspond to the x86 architecture MMX registers, plus one
microarchitectural scratch register. Before indicating where the twelve
renaming registers are located, let’s first discuss why there are twelve of
them.

Recall from Figure 2.3 on page 81 that the RUX and RUY can execute
any combination of MMX and/or 3D instructions that do not involve the
simultaneous use of the same shared execution logic in the two pipelines.
Further, the decoders can decode up to two MMX or 3D instructions per
cycle. These instructions each produce zero or one MMX or 3D RegOps
for a maximum possible of two MMX/3D RegOps in an OpQuad. Simi-
larly, each instruction may produce up to one LdOp. From an architec-
tural perspective, each instruction can produce Ops with at most one
register result. Consequently, each instruction, although able to produce
up to two Ops, only requires up to one MMX/3D renaming register. (The
case of a “LdOp;RegOp” combination is finessed by taking advantage of
the fact that the LdOp register result is only used by the RegOp and that
the two Ops are guaranteed to execute in sequential order. This allows one
physical renaming register to be used by both Ops without actual conflict.)

Register Renaming 311

If two MMX/3D instructions are decoded, the first pair of Ops in the
OpQuad corresponds to the first MMX or 3D instruction and the second
pair of Ops in the OpQuad corresponds to the second MMX or 3D
instruction. Since the K6 3D requires only one MMX/3D renaming regis-
ter per instruction, the scheduler contains one MMX/3D renaming regis-
ter for the first pair of Ops in an OpQuad and a second MMX/3D
renaming register for the second pair of Ops in an OpQuad. Given that
there are six OpQuads in the scheduler, this means a total of twelve MMX/
3D renaming registers are needed.

In the basic implicit renaming scheme just discussed, the scan for
source operands examines the DestReg fields to look for a match with each
of the SrcReg fields in the Op that require a source operand. The MMX/
3D renaming registers are located within the scheduler itself according to
the following algorithm. There is a 32-bit DestVal per Op entry and a 64-
bit MDestVal per pair of Op entries. There is no physical sharing or reuse
of the integer DestVal fields to hold MMX/3D register values.

But, how are these registers identified, i.e., what are their register
numbers? Recall that the static fields Src1Reg[4:0], Src2Reg[4:0], and Src-
StReg[4:0] hold the register numbers that identify registers which respec-
tively hold the first source operand Srcl, the second source operand Src2,
and the store data operand of an Op, while the static field DestReg[4:0]
holds a register number identifying the destination register of the Op.
Each of the register number fields are five bits wide which means that
thirty-two microarchitectural registers can be uniquely identified. A
design decision was made that of the thirty-two possible registers, twenty-
four of them were to be used for the twenty-four integer (micro)architec-
tural registers and that the remaining eight would be used to identify eight
of the nine MMX/3D architectural registers. The register number for the
ninth register, the MMX/3D scratch register MMt1, was chosen to be the
same register number as that of the integer register t1. This results in the
constraint that MMt1 and t1 cannot be used in such a way that both are
“live” at the same time, holding both an integer value and an MMX value
for use by following integer and MMX/3D Ops.

The Basic Implicit Renaming Scheme Revisited

The MMX and 3D instructions do not deal with partial register modifica-
tions as do many of the x86 instructions. The bottom line is that the same
exact scan process (and, in fact, the exact same logic) is used in renaming
the MMX and 3D registers as was described earlier, taking into account
that partial register modifications cannot occur. A scan to locate an MMX/
3D operand will result in the 64-bit operand value located in the
“MDestVal field” of two adjoining Op entries being driven onto the
appropriate operand bus if a match is made on the DestReg field of either

312 cChapter 3: The k6 3D Microarchitecture

Op entry. If no match results, the operand value is located in the MMX/3D
architectural register file.

The handling of operand scan and selection and forwarding for inte-
ger and MMX/3D register values is unified within the scheduler—the
same scheme and, in fact, the same scheduler logic and generated control
signals function for handling both. This is enabled by having the twenty-
four integer and nine MMX/3D registers use the same 5-bit register identi-
fier space and by the appropriate setting of fields (such as the source and
destination byte marks), and by the pair-wise OR’ing of per-Op-generated
DestVal read/write/etc. control signals to produce the associated per pair
of Ops MDestVal control signals.

DesiecN NoOTE

FPU Register Renaming

The K6 renaming scheme does not apply to the floating-point unit. As
discussed in the section titled “The Execution Units” beginning on page
77, the floating-point unit is essentially the core of the FPU from the
Nx586 and is considered a “mini” microprocessor with a simple inter-
face to the scheduler. It has its own Op queue, floating-point Op
decoder, register file and register renaming scheme, control logic,
dependency checking, and abort handling.

DIFFERENCES BETWEEN THE IMPLICIT AND EXPLICIT REGISTER RENAMING
SCHEMES

There are a number of different issues that can form the basis of discussing
differences between the implicit and explicit register renaming schemes.
Among them are: the complexity of the solution, dependency checking,
operand forwarding, dealing with partial register modifications, the
amount of registers and logic required, and the scalability and flexibility of
the scheme. There are a variety of approaches taken to implement renam-
ing schemes. To do a good classification would be difficult because of the
number of variables involved; however, some coarse comparisons can be
made.

Complexity of the Solution

Let’s consider what has to be done in any renaming scheme somewhere
around instruction decode time, or shortly thereafter, if multiple decodes
are supported. Multiple decodes means, in general, that multiple register
renamings will be required. Since there may be data dependencies among
instructions, the multiple renamings may be interdependent. If an explicit
renaming scheme is being used, some mechanism is required to reflect

Register Renaming 313

these dependencies in the mapping information and to accommodate
them during the multiple decode process itself as well as during an abort
cycle. No such mechanism is required in the K6 3D’s implicit renaming
scheme.

On the other hand, when it comes time to actually obtain an operand,
explicit schemes are somewhat simpler. If Register 5 is needed, there’s only
one other Op in the machine that can be modifying Register 5. In an
explicit renaming scheme, each older modifier of an architectural register,
say AX, looks like it is modifying a different physical register. Suppose the
value in AX is required. In the explicit scheme where there is one pool of
registers, there is one physical register mapped into the AX register at any
point in time, say Register 5, and that is the required register. That value
may be a committed value or not but there’s only one such required regis-
ter. In the two pools scheme, either there is some register that contains a
new value for the AX register, say Register 7 (and there is only one of these
at most) or, if no such register exists,”” then the value for AX must be in
the architectural register file. In either scheme, there is only one supplier
for the required value and there is no need to distinguish between poten-
tially many modifiers of a register as is required in the K6 3D.

The K6’s implicit scheme is realized within the framework of a cen-
tralized scheduler buffer, not within a framework of distributed reserva-
tion stations. It is not clear how easily it extends to a distributed
environment. Explicit schemes are, however, implemented in both cen-
tralized and distributed instruction window environments. Also note that
handling of partial register results is relatively straightforward with the
K6 3D’s implicit scheme. This can be trickier and more involved with
explicit schemes.

Resources Required

In an explicit scheme there needs to be some mechanism for keeping track
of which physical registers are free and which are mapped to specific archi-
tectural registers for holding speculative, uncommitted results and what
those mappings are. Multiple copies of such mappings need to be retained
to accommodate aborts back to the architectural register state correspond-
ing to just before or after any of the recent, still speculatively executed
instructions. The specifics of what is needed depend, of course, on the
particular explicit scheme employed and its implementation. In the K6,
the renaming registers are contained within the scheduler Op entries.
Therefore, no lists need to be maintained to identify free registers. The
renaming registers are available to Ops as they are loaded into the first row

39 That is, neither Register 7 nor any other register holds a value for AX.

314 chapter 3: The K6 3D Microarchitecture

SUMMARY OF THE
CHAPTER

of the scheduler. Further, no mappings or multiple copies of mappings are
required due to the way aborts are handled.

The number of registers required to do register renaming is basically
identical for both approaches. As identified earlier, a total X+Y+Z registers
are required. In the explicit scheme, additional registers are required for
the various copies of the mapping information (current table and history
tables) and logic to do the mapping, multiple decodes, abort cycle han-
dling, etc. In the centralized buffer, implicit scheme, no additional infor-
mation is required for such mapping information. Logic is required to do
the scan, but no special logic is required to handle multiple decodes or
abort cycles.

A detailed examination of three main aspects of the microarchitecture of
the K6 3D in more detail—its scheduler, its operation commit unit, and its
register renaming scheme—has been given in this chapter. As specific
microarchitectural concepts were introduced, pseudo-RTL descriptions
were given for typical chunks of logic that could be used to implement
these concepts. Hopefully, the combination of “diagram, text, and pesudo-
RTL descriptions,” augmented by independent simulations by the reader,
helped bring about an understanding how a contemporary superscalar
microprocessor—with its multiple execution units, predecode logic, mul-
tiple decoders, scheduler, operation sequences, branch resolution logic,
operation commit unit, register renaming scheme, and on-chip L1-Cahce
and L2-Cache—might be designed and implemented. We intended
Chapters 1 and 2 to provide a detailed and coherent context for the reader
to study and understand microarchitecture elements and their impact on
the overall design of a microprocessor. We now begin the second part of
this book in which we attempt to provide a detailed and coherent treat-
ment for understanding a wide range of platform-related and systems-
related issues.

	The K6�3D Microarchitecture
	The Scheduler: An Expanded Description
	Loading the Scheduler
	Shifting OpFields from Row to Row
	Pseudo-RTL Descriptions
	Static Field Storage Element Shifting Operation
	Dynamic Field Storage Element Operation
	The LdEntry Signals: Shifting the OpQuads
	Static and Dynamic Fields
	An Op Entry’s Static Fields in More Detail
	Static Field Type[2:0]
	Static Field Imm
	Static Fields Src1Reg[4:0], Src2Reg[4:0], & SrcStReg[4:0]
	Static Field DestReg[4:0]
	Static Fields Src1BM[1:0], Src2BM[1:0], & Src12BM[2]
	Static Field SrcStBM[2:0]
	Static Field OpInfo[12:0]

	An Op Entry’s Dynamic Fields in More Detail
	Dynamic Field State[3:0]
	Abort Handling (revisited)
	Dynamic Field Exec1
	Dynamic Field DestBM[2:0]
	Dynamic Field DestVal[31:0]
	Dynamic Field StatMod[3:0]
	Dynamic Field StatVal[7:0]
	Dynamic Fields OprndMatch_XXsrcY
	Dynamic Field DBN[3:0]

	The OpQuad Fields in More Detail
	OpQuad Field Emcode
	OpQuad Field Eret
	OpQuad Field FaultPC[31:0]
	OpQuad Field BPTInfo[14:0]
	OpQuad Field RASPtr[2:0]
	OpQuad Field LimViol
	OpQuad Field OpQV
	OpQuad Field FPOP
	OpQuad Field ILen0[2:0]
	OpQuad Fields Smc1stAddr, Smc1stPg, Smc2ndAddr, and Smc2ndPg

	The Scheduler Pipeline
	Op Issue Stage Logic Overview
	Issue Selection Phase
	Operand Information Broadcast Phase

	Operand Fetch Stage Logic Overview
	Operand Selection Phase
	Operand Transfer Phase

	LdOp-StOp Ordering Logic Overview
	Status Flag Handling Logic Overview
	Status Flag Dependent RegOp Logic Overview
	Branch Resolution Logic Overview
	Global Control Logic Overview
	Self-Modifying Code Support Logic Overview
	Issue Selection Logic
	The Selection Algorithm
	Scan Chains

	Operand Information Broadcast
	Operand Selection Logic
	Operand Transfer Logic
	Completion Of Operand Transfer
	Displacement Operand & Immediate Value Forwarding
	Displacement Operand Forwarding
	Immediate Values Forwarding
	Store Data Operands

	RegOp Bumping
	Load/Store Ordering Logic
	LdOp-StOp Ordering Determination and Control Logic
	The Relative Age Determination Process

	Scheduler Op Entry Fields Read Out During Operand Transfer
	Global Control Logic
	RegOp Bumping
	Control of All Execution Unit Operand Input Multiplexers
	Validity Determination for Each Operand Value Being Transferred
	Generation of the HoldXX0 Signals

	Status Flag Handling Logic, Status Flag Dependent RegOp Logic, Branch Resolution Logic, and Nonab...
	The Fetching of Status Flag Operand Values for CC- Dependent RegOps and BRCOND Ops
	CC-Dependent RegOp Synchronization
	BRCOND Op Resolution Logic
	Nonabortable RegOp Execution Synchronization Logic

	Self-Modifying Code Support Logic

	The OCU: An Expanded Description
	Commitment Constraints
	FAULT Ops and LdStOps With Pending Faults
	Debug Traps and Sequential and Branch Target Limit Violations
	Aborts for Mispredicted BRCOND Ops
	The Timing of Result Commitments
	Memory Writes
	The Timing of Aborts
	General Register Commitment
	Multiple Simultaneous Full and Partial Writes
	Status Flag Commitment
	StOps and Memory Write Commitment
	The Commitment Process
	Commitment Criteria
	Handling CIA and CDA Ops
	Memory References Crossing Alignment Boundaries
	The OCU’s Write Commit Logic

	Memory Read Fault Handling
	FAULT Op Commitment
	LDDHA and LDAHA Op Commitment
	Sequential and Branch Target Segment Limit Violation Handling
	Mispredicted BRCOND Op Handling
	OpQuad Retirement
	Abort Cycle Generation
	Avoiding Deadlock

	Register Renaming
	Implications for Pipeline Operation
	Explicit Register Renaming
	Using One Pool of Registers
	Using Two Pools of Registers

	Implicit Register Renaming
	The Basic Scheme

	The MMX and 3D Registers
	The Basic Implicit Renaming Scheme Revisited

	Differences Between the Implicit and Explicit Register Renaming Schemes
	Complexity of the Solution
	Resources Required

	Summary of the Chapter

