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Chapter 2
A Microarchitecture Case Study

e pointed out in Chapter 1 that the first half of this book
presents a description of the microarchitecture of the AMD
K6 3D microprocessor. In attempting to balance between

giving you enough detail and too much detail, we will give a layered
description of the microarchitecture. In this chapter we discuss the
K6 3D’s superscalar design and its multiple execution units, instruction
buffers, predecode logic, multiple decoders, scheduler, branch resolution
logic, operation commit unit, on-chip L1-Cache and L2-Cache, and other
aspects of its microarchitecture. We follow this overview with detailed
discussions of three of its main elements—its out-of-order, speculative
scheduler, its operation commit unit, and its register renaming scheme in
Chapter 3.

This chapter is written for all audiences (university professors and
students, practitioners, and technical management). However, there are
some subsections that have details that will be of more interest and use to
practitioners and those in universities. The road map for this chapter
identifies these sections.

ROAD MA P OF CHA PTER 2

Section Audience

All major headings in the chapter All

The following more detailed subsections:
Register Number and Name Mappings
Special Registers and Model Specific Registers
Formats for Decoder Ops
LdOps and StOps perform memory accesses and 
related operations. They have the following format in 
a decoder OpQuad:
RegOp Field Descriptions
SpecOp Field Descriptions
LIMM Op Field Descriptions

Practitioners, Univer-
sity Professors and Stu-
dents

W
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AN OVERVIEW OF THE

K6 3D
MICROPROCESSOR

In this section, we give an overview of how the K6 3D microprocessor
works: how it fetches instructions and how they are predecoded and then
decoded, how multiple internal operations result from this decoding pro-
cess, how these operations go through a substantial expansion process
before they are loaded into its centralized scheduler, how its pipelines are
controlled and what type of work they do at each stage, how the decoding
of instructions and the execution of the resulting operations are decoupled
from one another, what types of caches the processor has on-chip and how
they are organized, how operations are issued, and how and when pre-
dicted branches are ultimately resolved. The explanation of the particular
design approaches taken within the K6 3D requires knowing a bit about
the microarchitecture’s internal operation set and the internal representa-
tion of operations within the scheduler, so some detail of both of these is
also presented.

After completing this overview, you should be well positioned to
understand the more detailed discussions of the scheduler, operation
commit unit, and register renaming given in Chapter 3. Recall that our
intent is to give you enough detail to allow you to simulate some impor-
tant portions of the microarchitecture and associated platform and sys-
tems devices. You can gain a much greater understanding of how these
chunks of the design actually work by doing such simulations. Such
knowledge is basic to understanding the complex mix of cost and perfor-
mance trade-off involved in taking the microarchitecture and producing a
chip from it within a very aggressive time-to-market constraint.

A RANGE OF DESIGN APPROACHES

As stated in Chapter 1, one view of the K6 3D is that it is a high-perfor-
mance CISC-on-RISC microprocessor. The CISC-component is the x86
instruction set architecture and the underlying RISC-component is
known as the Enhanced RISC86 Microarchitecture. The most important
technical implication of this constraint is that the K6 3D must be fully x86
binary code compatible, including the MMX multimedia extensions to the
x86 instruction set architecture. 

SUGGESTED READINGS

Complete Description of the x86 Instruction Set Architecture

For a complete description of the x86 instruction set architecture see the three-volume The Intel Architec-
ture Software Developer’s Manual: Basic Architecture, Intel Order Number 243190; Instruction Set Reference,
Order Number 243191; and the System Programming Guide, Order Number 243192. These references also
describe the x87 (floating-point) instruction set architecture and the MMX extensions.
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The K6 3D also supports AMD-developed instruction set extensions to
the MMX instructions, called the 3D instructions, which support high-
performance 3D graphics, audio, and physics processing. The resulting
microprocessor has a decoupled superscalar microarchitecture that uses
many advanced design approaches targeted at achieving high perfor-
mance. Some of the techniques that are employed in the K6 3D design are:
instruction predecoding, multiple x86 instruction issue in a single clock
cycle, internal single-clock RISC-like operations, superscalar operation
(concurrent use of multiple execution units to execute up to six RISC-like
operations per clock cycle), out-of-order execution, data forwarding,
implicit register renaming, speculative execution, and the use of in-order
retirement to ensure precise interrupts 

The K6 3D uses a two-level, dynamic branch direction prediction tech-
nique that is integral to its ability to execute instructions speculatively. The
branch direction prediction logic makes use of a branch history table, a
branch target cache, and a return address stack, all of which combine to
achieve a predicted address hit rate of better than 95%. These and other
design techniques, such as employing a six-stage pipeline, enable the K6
processor to fetch, decode, issue, execute, complete, and retire multiple
x86 instructions per clock. The material in this introduction provides a
general overview of the K6 3D microprocessor and will be discussed in
more detail in Chapter 3.

Video Clips on CD-ROM

Greg Favor, Chief Architect of the K6 3D addresses
the following two questions on two related video
clips, “What were the principle design objectives cho-
sen for the K6 3D microprocessor?” and “What are
the key microarchitectural features incorporated into
the K6 3D?”

DESIGN NOTE

K6 3D Code Optimizations

The coding techniques for optimizing peak performance of the K6 3D
include many of those recommended for optimizing the performance of
the Intel Pentium and Pentium Pro microprocessors. They also include
optimizations specific to the K6 3D’s implementation of the MMX and
3D instruction set extensions. The use of the K6 3D code optimizations
can result in higher delivered performance than off-the-shelf software
non optimized code.
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A FAMILY OF MICROPROCESSORS

The K6 is a family of microprocessors. The initial member of the family,
called the K6 MMX, was introduced (in May 1997) at clock speeds of 166-
MHz, 200-MHz, 233-MHz, and 266-MHz, had 8.8 million transistors and
was designed in a 0.35-micron process resulting in a 162-mm2 die-size.
These chips have a 66-MHz processor bus. Shrinking to a 0.25-micron
process and architectural and microarchitectural enhancements (e.g., the
inclusion of the 3D instructions) grew the chip to 9.3-million transistors,
yet the die size shrank to 81 mm2. This later member of the K6 family,
called the K6 3D, supports the 3D instruction set extensions. The K6 3D,
extended to have a 256-Mbyte L2-Cache on-chip, is called the K6 3D and
it is this processor that is discussed in detail in this book. From time-to-
time reference will be made to the earlier versions of the K6 family that did
not support the 3D instruction set or did not have the L2-Cache on-chip,
but the references make clear when this is done. These processors will sim-
ply be referred to as the K6 and will be used to describe features that are
applicable to both the K6 and the K6 3D.

The characteristics of some of the members of the K6 Family are sum-
marized in the following table. Each family member extends the micro-
processor in the row above it.

Table 2.1 K6 FAMILY MEMBER S

Processor Clock Bus Processa Die-Size TCb Comments

K6 MMX

166-MHz 66-MHz 0.35 162-mm2

8.8

original release

200-MHz 66-MHz 0.35 162-mm2 higher clock

233-MHz 66-MHz 0.35 162-mm2 higher clock

266-MHz 66-MHz 0.35 162-mm2 higher clock

300-MHz 66-MHz 0.25 68-mm2 K6 MMX shrink

K6 3D
300-MHz 100-MHz 0.25 81-mm2

9.3
K6 with 3Dc & MMXd

350-MHz 100-MHz 0.25 81-mm2 higher clock

K6 3D
350-MHz 100-MHz 0.25 135-mm2

21.3
K6 3D with L2-Cache on-chip

400-MHz 100-MHz 0.25 135-mm2 higher clock

a in microns
b transistor count in millions
c also called “AMD-3D Technology”
d a superscalar dual-pipeline implementation of the x86 MMX instruction set extensions
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The K6 MMX was initially implemented in a 0.35-micron CMOS process
and then in a 0.25-micron CMOS process, using five layers of metal, shal-
low trench isolation, and tungsten local interconnect. C4 solder bump
flip-chip technology is used to assemble the die into a ceramic pin grid
array (PGA). The high-performance and small die sizes of these micropro-
cessors are achieved using high-speed custom and macro blocks and
placed-and-routed blocks of standard cells. The initial 0.25-micron pro-
cess version of the K6 MMX can operate at a clock speed of 300-MHz, has
a 100-MHz processor bus and its chip sets support AGP (Advanced
Graphics Port), USB (Universal Serial Bus), and the IEEE 1394 high-per-
formance serial bus (a.k.a. Firewire), all of which are presented in detail in
Chapter 5. A die photograph of a recent version of the K6 and an overlay
on top of the photograph showing the approximate placement of various
K6 components is given in Figure 2.1.

.

Technical Presentation on CD-ROM

A presentation by Greg Favor, Principal Architect of the K6 3D, on the evolution of the K6
family entitled, “The AMD-K6 MMX Enhanced Processor Product Roadmap,” can be found
on the CD-ROM.

Articles on CD-ROM

To learn more about some of the detailed implementation issues of an early version of the
K6 3D processor, see “Circuit Techniques in a 266-MHz MMX-Enabled Processor,” by Don
Draper, Matt Crowley, John Holst, Greg Favor, Albrecht Schoy, Jeff Trull, Amos Ben-Meir,
Rajesh Khanna, Dennie Wendell, Ravi Krishna, Joe Nolan, Dhiraj Mallick, Hamid Partovi,
Mark Roberts, Mark Johnson, and Thomas Lee. This article, appeared in the November
1997 issue of the IEEE Journal of Solid-State Circuits. To learn more about some of the
detailed implementation issues of the 0.35-micron version of the K6, see “An x86 Micropro-
cessor with Multimedia Extensions,” by Don Draper, Matthew P. Crowley, John Holst, Greg
Favor, Albrecht Schoy, Amos Ben-Meir, Jeff Trull, Raj Khanna, Dennie Wendell, Ravi
Krishna, Joe Nolan, Hamid Partovi, Mark Johnson, Tom Lee, Dhiraj Mallick, Gene Frydel,
Anderson Vuong, Stanley Yu, Reading Maley, and Bruce Kaufmann 1997 ISSCC Digest of
Technical Papers. You can find the full test versions of both of the above articles on the com-
panion CD-ROM. 

Microprocessor Fabrication Process Mini-Tutorial on CD-ROM

This video clip, in which Bill Siegle, AMD’s Chief Scientist, addresses several questions
related to the steps involved in the fabrication of contemporary microprocessor chips, effec-
tively becomes a mini-tutorial on the fabrication process.
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Figure 2.1 K6 DIE PHOTOGRA PH AND OVER LAY

K6 3D BLOCK DIAGRAM

Figure 2.2 is a high-level block diagram of the K6 3D microarchitecture.
We will give an overview of its operation first, followed by more detail
about each of the elements shown in this figure.
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Figure 2.2 K6 3D BLOCK DIAGRAM
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We will, from time to time as appropriate, use the term bus cycle when
referring to external data transfers and processor cycle when referring to
operations internal to the microprocessor. There is typically a 3X ratio
between these two cycles in the K6.

X86 instructions are stored in the main memory. During each bus
cycle, up to eight bytes of x86 instructions are fetched from main memory
or the on-chip L2-Cache and loaded into the on-chip L1 Instruction Cache
(the L1 I-Cache) during a cache fill. While they are being loaded into the
L1 I-Cache, the x86 instruction bytes are predecoded, using predecoded
logic, to assist in later, rapid identification of x86 instruction boundaries.

During each processor cycle, the L1 I-Cache or the Branch Target
Cache (BTC) places 16 x86 instruction bytes into a 16-byte instruction
buffer which directly feeds the instruction decoders. The multiple instruc-
tion decoders (two short decoders, a long decoder, and a vector decoder),
taken as an aggregate, will be referred to as the decoders. The decoders,
using a combination of the predecoded information and the x86 instruc-
tion bytes in the instruction buffer, produce and load four RISC-like oper-
ations, called RISC86 operations, into the scheduler of the execution
engine. RISC86 operations are also called RISC86 Ops, Ops, or merely operations.
Our usual term will be Ops. Each cycle, the decoders decode up to two x86
instructions to produce and load a set of up to four RISC86 operations
into the scheduler.

RISC86 Ops are RISC-like, fixed-format, internal Enhanced RISC86
microarchitecture instructions. Taken together, they form the “RISC86
operation set.” Generally, all execute in a single clock cycle; register opera-
tions have a one-or two-cycle latency and load and store operations have a

HISTORICAL COMMENT

Peter Kogge’s Insightful Book

The x86 instruction set architecture began with the Intel 4004 micropro-
cessor, designed in 1969. Architectural innovations such as the use of
pipelining, superscalar, speculative, and out-of-order execution were
used in a number of mainframe computers at that time. Although these
design techniques were not used in early generations of x86 micropro-
cessors, recent members of the x86 family have employed all of them. See
Peter M. Kogge’s insightful book, The Architecture of Pipelined Comput-
ers, McGraw-Hill Book Company, 1981, for a detailed technical discus-
sion and an interesting and reasonably complete history of the evolution
of these design techniques in many important pre-microprocessor archi-
tectures that helped shape many of the current microarchitectural design
approaches.
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two-cycle execution latency. RISC86 Ops can be combined, as required,
into sequences of Ops to perform every function of the x86 instruction set.

Some x86 instructions are decoded (translated) into as few as zero Ops
(e.g., a RISC86 NoOp) or one Op (e.g., a RISC86 register-to-register add
Op). More complex x86 instructions are decoded into several Ops. A more
detailed treatment of the operation set is given later in this chapter and
Chapter 3. There are six types of Ops: 

When a particular discussion is applicable to both LdOps and StOps, the
terms LdStOp or LdStOps will be used, as appropriate. The following sim-
ple example gives a series of x86 instructions and corresponding decoded
RISC86 Ops using the resources shown in Figure 2.2.

DESIGN NOTE

Enhanced RISC86 Microarchitecture

The Enhanced RISC86 microarchitecture and its underlying RISC86 opera-
tion set are optimized for execution of the x86 instruction set architecture,
while adhering to the architectural principles of fixed length encoding, reg-
ularized fields, and a large register set, common in most RISC architectures.

Table 2.2 TYPES OF RISC86 OPS

Types of Ops Mnemonic

memory load operations LdOps

memory store operations StOps

integer register operations, MMX register opera-
tions, and 3D register operations

Integer, MMX, and 
3D RegOps

floating-point register operations FpOps

branch condition evaluations BrOps

special operations (such as load immediate con-
stant into a register)

SpecOps
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:

L1–CACHE,
L2– CACHE,

STORE QUEUE,
AND SYSTEM INTERFACE

The execution engine interfaces to the on-chip 64-Kbyte L1-Cache. This
cache is split into the 32-Kbyte L1 I-Cache mentioned earlier and a 32-
KByte L1 Data Cache (L1 D-Cache). Split caches, such as these, are sometimes
referred to as Harvard Architectures. One of the first references to this term can be
found in Cragon, H. G., “The Elements of Single-Chip Microcomputer Architec-
ture,” Computer, Vol. 13, No. 10, October 1980, pp. 27-41. 

Both caches are 2-way set associative with a 64-byte line size and 32-
byte subblocking. There are 256 sets in each cache and each set contains
two ways (or lines). Cache lines are fetched from main memory or the on-
chip Level-2 Cache (L2-Cache). using a burst bus transaction of four
octets (or four quadwords in x86 terminology). Bus transactions are dis-
cussed in detail in Chapter 4.

The L2-Cache is a 256-Kbyte unified cache, is 4-way set associative,
and has a 64-byte line-size with 32-byte subblocking. The L2-Cache
employs a true LRU replacement algorithm. A store queue is used in con-
junction with the L1 D-Cache. Abortable state changes are supported by
the scheduler and the store queue through the general technique of tem-
porarily storing (a) register and status results in the scheduler entries and
(b) memory write data in store queue entries until the associated Ops are
committed and retired.

EXAMPLE CODE FRAGMENT

x86 instruction Type of Op Comment

MOV CX,[SP+4] LdOp
The MOV instruction is decoded into a Load Op that requires 
data to be loaded from memory using the Load Unit.

ADD AX,BX RegOp
The add instruction is decoded into an ALU Add Op that can be 
sent to either Register Unit X or Register Unit Y.

CMP CX,[AX] LdOp, RegOp

The CMP (compare) instruction is decoded into two Ops. A 
Load Op requiring data to be loaded from memory using the 
Load Unit followed by an ALU Sub Op that would be sent to 
either Register Unit X or Register Unit Y. Static flag values pro-
duced by the Sub Op reflect the result of the comparison.

JZ TA BrOp Conditional branch to “TA” (Target Address) based on Zflag = 1
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As will be seen in more detail later, the L1 I-Cache supports single cycle
accesses. Both of the K6 3D’s L1-Caches are interfaced through the system
interface to the L2-Cache. The L1-Cache and L2-Cache are key to the scal-
ability and performance of the K6 as the core frequencies increase. 

As mentioned earlier, during each processor cycle, the L1 I-Cache can
place x86 instruction bytes into a 16-byte instruction buffer which directly
feeds the decoders. The decoders produce and load four Ops into the
scheduler’s centralized buffer. The four Ops taken together are called an
OpQuad. The scheduler is the heart of the K6 microarchitecture. It con-
tains the logic necessary to manage out-of-order, speculative execution,
data forwarding, implicit register renaming, and the simultaneous issue,

DEFINITIONS

Abortable and Nonabortable

Abortable refers to changes that can be speculatively performed and later
backed out of. Nonabortable changes cannot be backed out of once they
are performed,

HISTORICAL COMMENT AND DESIGN NOTES

Cache-Related Issues

In order to increase the access bandwidth, the L1 D-Cache is pipelined. It supports simultaneous loads
and stores in a single clock. Bank conflicts are eliminated by performing loads first, followed by stores in a
pipelined manner. Each access takes one clock cycle of time; the start of store accesses is offset by half a
cycle from the start of load accesses.

Write performance is enhanced using a full write-back policy. Write-back caches are also called copy
back, store in, nonstore through, or swapping caches in the literature. When data are written to a specific
cache line, its “modified” (or “dirty”) bit is set to indicate this. The cache line is actually stored in main
memory only when the cache line is replaced. The intent is to reduce the overall traffic on the bus.

In contrast to the K6 3D, the K6 does not have an on-chip L2-Cache. The K6 has full support for an
external (off-chip) L2-Cache, including a means for inhibiting the normal operation of its on-chip L1 I-
Cache and L1 D-Cache (which are identical to the K6 3D’s L1-Caches). This capability allows designers to
disable the on-chip L1-Caches while testing the external L2-Cache. A complete description of the K6’s L1-
Caches and L2-Cache support can be found in the AMD-K6 MMX Processor Data Sheet which is on the
companion CD-ROM. This also means that the system interface, shown in Figure 2.2 on page 69 and Fig-
ure 2.22 on page 180 for the K6 3D, is somewhat different for the K6.

Cache coherency is maintained using the MESI protocol. More will be said about the L1 and L2 caches
later.
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execution, and retirement of multiple Ops per cycle. The scheduler’s cen-
tralized buffer can hold up to twenty-four Ops. This is equivalent to six to
twelve x86 instructions. The scheduler will be discussed in substantial
detail in this book because of its importance and unique design.

SUPERSCALAR DESIGN Superscalar processors contain a number of execution units that can oper-
ate in parallel. The K6 3D is such a processor. It has six specialized execu-
tion units that can operate in parallel and are shown in Figure 2.2 on page
69: the Store Unit (SU), Load Unit (LU), Register Unit X (RUX), Register
Unit Y (RUY), Floating-Point Unit (FPU), and the Branch Resolving Unit
(BRU). As will be seen, RUX and RUY can execute integer, MMX, and 3D
instructions.

The non-3D versions of the K6 actually have seven execution units.
These microprocessors have a separate MMX unit that overlaps with the
operation of RUX. More will be said later about the differences between
the versions of the K6 that support the 3D instructions and those which do
not, as appropriate throughout this book.

We would like to summarize some of the notations used so far. The follow-
ing sets of terms, listed in alphabetical order for convenience, are used as
synonyms in the text and the companion CD-ROM:

1. branch resolving unit and BRU.

2. decoders and instruction decoders.

HISTORICAL COMMENT AND SUGGESTED READINGS

x86 Instruction Set Architecture MMX Extensions

Intel publicly released many details of its MMX extensions to the x86 instruction set architecture in March,
1996 in a rather extensive San Francisco news release, “Intel Releases MMX™ Technology Details to Soft-
ware Community to Drive New Multimedia, Game, and Internet Applications.” This news release can be
found on the Developers’ Insight CD-ROM, Intel Corp., April 1997, Reference SKU #273000, Intel Cor-
poration, 5000 West Chandler Blvd. CH6-413, Chandler, AZ 85226. These extensions consist of new
instructions and data types aimed at increasing the performance of x86 processors in multimedia applica-
tions. Implementations of the instructions can make use of SIMD (single-instruction stream, multiple-
data stream) techniques to process multiple 8, 16, or 32-bits in a 64-bit data path to achieve highly parallel
performance in compute-intensive multimedia code. The instruction set extensions consist of 57 new
instructions that support addition, subtraction, multiplication, multiply-accumulates, logical or arith-
metic shifts, and several other operations that can be executed on all three sizes of data. See MMX™ Tech-
nology Technical Overview and the MMX™ Technology Developers’ Guide, both which also are on the
Developers’ Insight CD-ROM cited above. Another source for related material is the Carole Dulong,
David Bistry, Mickey Gutman and Mike Julier book, The Complete Guide to MMX Technology, McGraw-
Hill, 1997.
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3. instruction(s) and x86 instruction(s.)

4. K6 3D, K6, K6 microarchitecture, and RISC86® microarchitec-
ture.

5. L1 I-Cache and L1 Instruction Cache.

6. L1 D-Cache, L1 Data Cache, and L1 Dual-Ported Data Cache.

7. operation(s), Ops, RISC86 operation(s), and RISC86 Op(s).

8. 3D Ops.

9. Register Unit X and RUX.

10. Register Unit Y and RUY. 

HISTORICAL COMMENT AND SUGGESTED READINGS

K6 3D Technology

K6 3D Technology consists of a set of extensions to the x86 instruction set architecture. Most of these new
instructions can be viewed as being floating-point analogs of the MMX instructions discussed in the pre-
ceding “Historical Comment and Suggested Reading” inset. Whereas MMX instructions operate on
packed sets of 8-bit, 16-bit, and 32-bit fixed point or integer values (within 64-bit wide MMX registers),
the 3D instructions operate on packed pairs of 32-bit single-precision IEEE-compatible floating-point val-
ues (also within the same 64-bit wide MMX registers). In both cases these are “single instruction stream
multiple data stream” or “SIMD” type instructions.

The 3D instruction set extensions were developed with the goal of greatly accelerating floating-point
intensive computations, many of which contain substantial parallelism and thus an opportunity to benefit
from SIMD floating-point instructions (in contrast to existing scalar x87 instructions within the x86
instruction set architecture). From an application software perspective, the goal was to greatly accelerate a
range of multimedia algorithms, particularly in the area of 3D graphics and games. With the increasing
use of 3D graphics, hardware accelerators are becoming more popular. These accelerators focus on
backend graphics processing, i.e., the triangle/pixel rendering stages of the 3D graphics processing pipe-
line. Given this, the front-end stages of the graphics pipeline are becoming the performance bottleneck.
These stages, which perform geometry transform, clipping, and lighting computations are all floating-
point intensive and benefit substantially from the use of 3D instructions. In addition, as games and other
multimedia applications evolve toward increasingly more accurate and physics-based modeling of 3D
worlds and the interactions between objects in these worlds, the need for even greater levels of floating-
point performance continues to grow. Ultimately it is expected that physics-based modeling and
simulation computations will equal and surpass the traditional 3D graphics processing pipeline in the
amount of floating-point computations and performance that is required. Other areas, such as audio and
speech processing, and artificial intelligence/neural network algorithms, will also add to this.

An AMD application note describing the MMX extensions and related optimization, AMD-
K6 MMX Enhanced x86 Code Optimization, can be found on the companion CD-ROM, as
well as a application note related to K6 3D K6 3D optimizations, AMD-K6 3D Processor Code
Optimization.

REPORT
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The decoders place four Ops in the scheduler’s centralized buffer each
cycle. The buffer’s size, matched to the typical execution lifetime of Ops,
allows the decoders to operate largely independently of the execution
units. Such a buffer is often called an instruction window, which we for-
mally define below.

The scheduler’s issue logic examines the Ops in the buffer, selecting
appropriate ones subject to dependencies and resource constraints. It is
capable of issuing up to six Ops, out-of-order, each cycle, independently of
the decoders. The execution engine can also execute them out-of-order,
independently of the decoders. A microprocessor is said to have a decou-
pled decode/execution microarchitecture when the decode of instructions
takes place independently of the issuing and execution of operations.
Thus, the K6 is a decoupled decode/execution superscalar processor.

After completion, Ops are committed in-order by the Op Commit
Unit (OCU), shown in Figure 2.2 on page 69. The scheduler effectively
serves as a re-order buffer to ensure precise exceptions and x86 compati-
bility.

Historical Comment, Definition, and Suggested Readings

Instruction Windows and Reservation Stations

An instruction window allows a scheduler to optimize the execution of operations by issuing them to the
appropriate execution units as the units are available and as various dependencies allow. There are two
basic ways to implement instruction windows: centralized or distributed. 

Distributed instruction windows, typically called reservation stations, are located with each functional
unit. The reservation stations at the functional units can be (and often are) different in size from one
another. Although their individual sizes are smaller, the aggregate size of the reservation stations is typi-
cally larger than the size of the single instruction window to achieve the same amount of instruction look
ahead. 

Centralized instruction windows provide the storage for both the operands and results of the func-
tional units. The K6 scheduler buffer may be viewed as a type of centralized instruction window. More will
be said about this later. Note that we have been using the terminology “x86 instruction” and “RISC86
operation.” We will use this terminology consistently throughout this book. The K6’s scheduler’s buffer
can be thought of as providing either an instruction window or an Op window since x86 instructions are
decoded into RISC86 Ops. We will use the term centralized buffer or buffer when referring to the K6’s Op
window.

The first article that the authors are aware of that introduced the use of reservation stations was
the insightful and seminal article by R. M. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM Journal of Research and Development, Vol. 11, January 1967,
pp. 25-33. The full text version of this article is on the companion CD-ROM. Similarly, the first

article we are aware of which uses a form of centralized instruction window is James E. Thornton’s article,
“Parallel Operation in the Control Data 6600,” Proc. AFIPS Fall Joint Computer Conference, Part. II, 1964,
pp. 33-40, in which the scoreboard of the CDC 6000 is described.
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As is seen later, we use the terms retired, committed, and removed in a par-
ticular way in this book. Retiring an operation does not imply the results
of the operation are either permanent or non permanent. We will use the
term committed to mean that the results of an operation have been made
permanent and the operation retired from the scheduler. Retiring means
removal from the scheduler with or without the commitment of operation
results, whichever is appropriate. Timing-wise, commitment and retire-
ment often happen simultaneously. We will use the term removed to mean
the operation is retired from the scheduler without making permanent
changes. 

THE EXECUTION UNITSAs we mentioned when discussing the K6 3D block diagram, we said it has
six specialized execution units that can operate in parallel: the Load Unit
(LU), Store Unit (SU), Register Unit X (RUX), Register Unit Y (RUY),
Floating-Point Unit (FPU), and the Branch Resolving Unit (BRU).

DEFINITIONS

Decoupled Decode and Execution
Decoupled Execution and Commitment

A microprocessor is said to have a decoupled decode/execution microarchitecture
when the decode of instructions takes place independently of the issuing and exe-
cution of operations.

However, microprocessors that support out-of-order execution have an
equally important decoupling. In such processors, results are often produced out-
of-program-order as the various operations may issue out-of-order and may take
different amounts of time to complete. The process of commitment (i.e., making
permanent changes in the architecture’s state) is decoupled from the execution of
the operations. This allows the facility that commits the results to re-order them
in program order. A microprocessor is said to have a decoupled execution/com-
mitment microarchitecture when the execution of operations takes place inde-
pendently of the commitment of the results of these operations.
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The LU and the SU are pipelined execution units. Before summarizing
their functionality, we need to review some aspects of x86 address calcula-
tions. 

Given this brief background in the text inset, we can return our dis-
cussion of the LU. The LU performs data memory reads. When the LU
unit receives its operand values, it first performs the general calculation,

base  register + scaled  index register + displacement

yielding the x86 architecturally defined logical address, adds this to the
segment base address to produce the architecturally defined linear address

X86 ADDRESS CALCULATIONS

Physical, Virtual and Logical Addresses

The x86 instruction set architecture defines a word as two bytes or six-
teen bits. A double word is four bytes or thirty-two bits. The phrase
“double word” is often abbreviated as “dword.” The x86 architecture
treats physical memory as a linear array of bytes. Each byte has a unique
address which is known as its physical address. Since the x86 instruction
set architecture uses byte addressing, memory is organized and accessed
as a sequence of bytes. No matter if one or more bytes are being accessed
in the x86’s address space, a byte address is used to locate the first byte of
the set of bytes to be accessed. 

Programs that execute on the x86 use a two-part address which is
translated, or mapped, into physical addresses. The translation is done
by an address translation mechanism and the two-part addresses are
often called virtual addresses because these addresses do not correspond
directly to a physical address, but correspond indirectly to one through
the address translation mechanism. Virtual addresses are sometimes
called logical addresses. The virtual-to-physical mapping mechanism also
provides for both memory protection and the determination of a valid
address (i.e., that an address is present in memory). 

The two-part virtual address consists of a 16-bit segment selector
and a 32-bit offset. The x86 employs a two-stage mapping mechanism to
translate the two-part selector and offset virtual address into a physical
address. The virtual address is first translated via a segmentation
mapping mechanism into a 32-bit linear address. The linear address is
then translated into a 32-bit physical address via a page mapping
mechanism. Thus, the two well-known virtual memory mapping
techniques—segmentation and paging—are used. For the specific
segmentation and paging techniques defined for the x86 instruction set
architecture, see “Programming the 80386,” by John H. Crawford and
Patrick P. Gelsinger, Sybex, 1987.
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which is checked against the segment limit. The linear address is also
translated to a physical address by the LU using the data translation looka-
side buffer, i.e., data-TLB or D-TLB. The physical address is sent to the
store queue and to L1 D-Cache in parallel. Typically data is received from
the L1 D-Cache and, assuming a cache hit occurs, the data coming out of
the L1 D-Cache is driven onto the LU’s result bus. However, if the address
matches a store queue entry then the store queue entry takes priority over
a hit in the cache and data for the store queue entry is driven onto the LU’s
result bus. Both the L1 D-Cache and store queue “hit” analyses are based
on the comparison of physical addresses received from the data-TLB, even
though the D-Cache indexing is based on linear address bits.

We will see later that the LU is pipelined. The LU’s pipelined design
has the advantage of limiting the penalty for misaligned data loads to a
latency of one cycle longer. In the x86 instruction set architecture, a
misaligned access occurs either when an 8-byte (a quadword) access is
made to an address that is not on an 8-byte boundary, or when a word or a
double word access is made to an address that is not on a 4-byte boundary.
Misaligned accesses are discussed in more detail later in this chapter, see
“Faults, Traps, Abort Cycles, and the Pipelines” on page 168. Data are
available from the LU after only two clocks or three clocks in the case of a
misaligned access.

The SU performs address calculations for all store operations as well as for
the load effective address and push operations. Logical and linear address
calculations and translation to a physical address finish by fetching the
memory write data from a register. Upon completion, the SU creates an
entry in the store queue to hold the memory write address and data infor-
mation. The store queue serves to buffer memory writes until they can be
committed into the L1 D-Cache. Forwarding of write data from a store
queue entry to dependent LdOps is supported. We will learn later that
these entries are not valid until the very next cycle after the StOp execution
completes. We will also learn the SU is also pipelined

DESIGN NOTE

Linearly Indexed and Physically Tagged L1 Cache

Both the L1 I-Cache and the L1 D-Cache are linearly indexed and physi-
cally tagged. The L2 Cache is physically indexed and physically tagged.
These concepts will be discussed later.
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The RUX (Register Unit X) supports all integer ALU operations—multi-
plies, divides (signed and unsigned), shifts, and rotates. It can also per-
form MMX and 3D operations. The RUY (Register Unit Y) can operate on
the basic word and double word integer ALU operations—ADD, AND,
CMP, OR, SUB, XOR, zero-extend and sign-extend operations. It can also
perform MMX and 3D operations. In fact, RUX and RUY share arith-
metic resources to execute some of the MMX operations and all of the 3D
operations. The relationship between RUX and RUY and the integer,
MMX, and 3D operations that each register unit supports is shown in Fig-
ure 2.3. The K6 3D has two pipelines for executing integer, MMX, and 3D
RegOps. 

Generally speaking, RUX and RUY are symmetric pipelines. This
means that any Op can issue to either pipeline. The one exception is that
some of the integer Ops can only be executed by the RUX pipeline as
shown in Figure 2.3.

DESIGN NOTE

Memory Aligned and Register Aligned Data

Data stored in the L1 D-Cache and store queue are memory aligned.
This means that byte[0] of the 64-bit wide bus always carries bytes where
the lower three bits are zero, so they are effectively memory byte
addresses. However, data that ends up on the result bus must be register
aligned. If a one-byte read is being done, the one valid byte must be on
the low byte of the bus, if a two-byte read is being done, then two valid
bytes must be on the lower two bytes of the bus, and so on. The K6
employs byte rotators to convert (or map) between these two align-
ments. See Figure 2.16 on page 165 and Figure 2.19 on page 168.
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Figure 2.3 RUX AND RUY EXECUT ION UNITS
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Leaving these Ops aside, the scheduler can issue an Op to either pipe-
line. Duplicate resources for an Op are either available or they are not
available, (e.g., there are two integer ALUs and two MMX adders, but there
is only one MMX multiplier). An Op that has duplicate resources available
to it can proceed down either pipeline irrespective of what operations may
be processing down the other pipeline. In particular, there can be two such
Ops simultaneously in execution, one proceeding down each of the two
pipelines. Ops that have only one copy of the execution logic available can
proceed down the appropriate pipeline. Two such Ops can proceed down
both pipelines but cannot start to execute simultaneously which means
that one of the OPs incurs a one-cycle pipeline stall.

3D instructions can be considered to be a floating-point analog of the
integer MMX instructions. Their primary purpose is to provide high-per-
formance floating-point vector operations to enhance performance on 3D
graphics-oriented applications. The 3D instructions that operate in a vec-
tor fashion operate on two sets of 32-bit single-precision floating-point
numbers in parallel. The FPU, in contrast, operates internally on a single
pair of floating-point numbers that have an 80-bit representation in accor-
dance with the IEEE floating-point standard (see IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard No. 754, 1988). The 3D float-
ing-point operations are realized in RUX and RUY. All non-3D floating-
point operations are executed in the FPU. More will be said shortly about
the last of the six execution units, the BRU (Branch Resolving Unit), and
the branch direction prediction logic which are shown in Figure 2.3 on
page 81.

Historical Comment and Suggested Readings

The K6 Floating-Point Unit

The FPU, in all members of the K6 family of microprocessors, is a direct descendant of the FPU-core that
appeared in the NexGen Nx586 microprocessors, which was designed to be instruction set architecture
compatible with the Intel x87 floating-point unit. (The x87 instruction set architecture is the instruction set
architecture of the x87 floating-point unit.) Thus the K6 family of microprocessors uses some concepts native to
the Nx586, such as tags (see the Nx586 Databook cited below). There are a number of important design
implications that arise from the decision to use this core. For example, the FPU operates out of its own
register file with its own rename registers. The x87 has two 80-bit operands coming in and one 80-bit
result coming out in addition to architecturally defined floating-point flag bits that reside in the architec-
turally defined floating-point status word register. Further, floating-point operations may also modify an
architecturally defined top-of-stack pointer field. See Nx586 Processor Databook, NexGen Inc., Prelimi-
nary, December 6, 1994, Order # NxDOC-DB001-03-W.
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LATENCIES

A brief word about latencies. In the K6 3D, register operations fall into one
of three categories: those that have a latency of one cycle, those that have a
latency of two cycles, and those (like divide) that have a latency of more
than two cycles. In general, all integer operations and all of the non multi-
ply MMX instructions have a single cycle latency. MMX multiply opera-
tions have a two-cycle latency. All of the 3D operations have a two-cycle
latency. Subject to dependencies and execution resource contention, two
RegOps can start execution each clock regardless of whether they are one-
cycle and/or two-cycle operations. For example, a 3D multiply and a 3D
add can begin execution each clock cycle. At most one two-cycle latency
Op, for which there are not duplicated execution resources (such as an
MMX multiply), can be initiated in each cycle. One of the Ops of a pair of
Ops wanting to start execution must be delayed if the Ops use a shared
execution resource. This results in a delay of one cycle. Back-to-back two-
cycle latency Ops that use different execution resources (such as an MMX
multiply and a 3D add) can be initiated in the same cycle, one in the RUX
pipeline and one in the RUY pipeline. It is important to know instruction
latencies when examining instruction dependencies.

The details of the inputs and outputs of RUX and RUY on the operand
and result buses in Figure 2.3, as well as the inputs and outputs for each of
the execution units shown in Figure 2.2 on page 69, will be discussed in
later sections of this chapter. Briefly, for example, RUX and RUY take their
inputs from the register operand buses, execute the required Ops produc-
ing register and status flag result values, and drive them out onto the cor-
responding register result and status flag buses. It is up to the scheduler to
keep track of which result and status flag values are scheduled (or marked)
to actually be modified.

STATUS FLAGS, FAULTS, TRAPS, INTERRUPTS, AND ABORT CYCLES

The x86 instruction set architecture supports a register called the EFLAGS
register that contains a number of x86 status and control flags (see for

Example Code Fragments on CD-ROM

The following two application notes on the CD-ROM
contain a number of examples of the timings and
latencies of the execution behavior of several code
fragments as a function of decode constraints, depen-
dencies, and resource constraints, “AMD-K6 3D Pro-
cessor Code Optimization,” and “AMD-K6 MMX
Enhanced Processor x86 Code Optimization.”

REPORT
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example, Intel’s publication, the Intel Architecture Software Developer’s Manual,
Volume 3: System programming Guide for a complete listing of all x86 status and
control flags, exceptions, and interrupts). The values of these flags are used to
control various functions in the processor. The x86 instruction set archi-
tecture defines a set of arithmetic status flags and a set of processor control
flags. The x86 instruction set architecture also defines and supports excep-
tions and interrupts, both of which typically result in a transfer of control
outside of the currently executing instruction stream. X86 exceptions
occur when an unusual or invalid situation is detected during the execu-
tion of an instruction. There are two types of x86 exceptions defined, x86
faults and x86 traps. The difference between x86 faults and x86 traps is
that an instruction is either aborted (x86 fault) or completed (x86 trap)
before the processing of the exception. An interrupt is defined by the x86
instruction set architecture as an event external to the processor. There-
fore, interrupts occur asynchronously to the execution of instructions
within the processor; i.e., an interrupt has no relation to the specific
instruction executing when the interrupt is recognized. X86 exceptions
and interrupts are handled at instruction boundaries; that is “in between”
two instructions versus within an instruction. Some x86 exceptions and
x86 interrupts are given in the following table: 

In particular, note that the x86 instruction set architecture treats an
instruction breakpoint as a fault and a data breakpoint as a trap.

It is important to know which execution units can set status flags,
which can cause exceptions or traps, and how status flags, faults, traps,
and interrupts are treated. We will always use the preface “x86” to identify
an architectural status flag, fault, trap, or interrupt, such as an “x86 trap.”
Without this modifier, these terms will always be referring to the K6 3D
microarchitecture. Furthermore, we typically will not use the word “excep-
tion” but rather use “fault” or “trap” or both, as appropriate. All x86 faults,
x86 traps, and x86 interrupts are ultimately handled by microarchitectural

SAMPLE OF X86 FAULT AND TRA P EXCEPT IONS

x86 Exception Name Type
Divide Error  Fault

Instruction Breakpoint Fault

Data Breakpoint Trap

Segment Not Present  Fault

Page Fault  Fault 

General Protection  Fault
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fault and trap handling mechanisms. Interrupts will be discussed later in this
chapter.

Only integer RegOps can produce status flag values. At the microar-
chitecture level, the K6 3D has eight status flags—the six x86 instruction
set architecture visible flags and two flags for use within sequences of Ops
used in the implementation of complex instructions. All integer RegOps
that have a defined behavior for status flags also have the option of modi-
fying the status flags.

A fault or trap at the microarchitectural level causes an abort cycle that
then leads to the execution of a sequence of Ops which ultimately turns
the abort action into an architecturally defined exception. The only execu-
tion units that can produce faults are the LU, the SU, and the FPU. In
other words, RegOps can never fault: only LdOps, StOps, and FpOps can
fault. RegOps can modify status flag values. The microprocessor must sup-
port the x87 architecturally defined floating-point flag bits that reside in the archi-
tecturally defined floating-point status word register.

An abort cycle causes the invocation of a fault handler to determine what
caused the fault or trap and act appropriately. Traps are handled somewhat
differently than faults. When an x86 trap occurs (such as a data breakpoint
trap), information associated with it is loaded into the scheduler and asso-
ciated with the Op that caused it. Then, when that Op is going to be com-
mitted, the Op Commit Unit recognizes that a trap has been detected and
sets a pending trap flip-flop. In effect, traps are accumulated as pending
traps until the end of an x86 instruction is reached. The Op Commit Unit
can recognize that it is retiring the last of all of the Ops associated with a
given instruction. If there are any pending traps at the end of the commit-
ment of an instruction, a “fault” is recognized at the beginning of the next
instruction which, in turn, causes an abort cycle.

 

upper and lower portions of the 

 

processor
It is useful to think of the microprocessor consisting of an upper por-

tion and a lower portion when explaining the abort cycle. This is shown in
Figure 2.4 where the two portions are shaded differently. When an abort
cycle is required, the following sequence of actions could occur to

DESIGN NOTE

Microarchitectural Faults and Traps

In addition to supporting all of the x86 architectural exceptions and
interrupts, the K6 3D supports some microarchitectural faults and traps
which are:

    Fault/Trap                  Type
    Fault Op                   Fault
    Self-Modifying Code Check  Trap
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complete the Ops in the scheduler that should be completed, with the non
completed Ops being discarded:

1. let all Ops older than the Op that initiated the abort cycle commit
and retire by allowing them to naturally progress down to the bot-
tom row of the scheduler’s buffer. The commitment of this Op and
all younger Ops is inhibited.

2. when all older Ops have been committed, the entire machine, i.e.,
both the upper portion and the lower portion, can then be flushed.

3. after the flushing has been completed, instruction fetching and de-
coding can begin at the appropriate point.

This sequence is a direct result of a cost/performance trade-off. It allows
for a simplified scheduler design. Several things are happening at the same
time that need to be understood to appreciate this statement. On the one
hand, the scheduler does not require logic in each entry to determine
whether or not the associated Op should be flushed. When the flushing
action occurs, all Ops in the scheduler will be marked “invalid.” In this
design approach, we will learn that a potential latency of one to two cycles
in the flush action has been accepted while a simplification in the sched-
uler circuitry has been achieved. 

DESIGN NOTE

Restarting the Upper Portion of the Processor

Restarting the upper portion of the processor does not affect the opera-
tion of the L1 I-Cache, therefore it is not included in the upper portion
shown in Figure 2.4 on page 87. Likewise, restarting the lower portion
does not affect the L1 D-Cache, so it is not part of the lower portion. If,
for example, the L1 I-Cache (or the L1 D-Cache) is processing a “miss,”
then it is irrevocably committed to the processing of the miss.
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Figure 2.4 UPPER AND LOWER POR T IONS OF THE PROCESSOR
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Importantly, for a BrOp-related abort, the K6 modifies the above
sequence to reduce the flush performance penalty. The upper portion of
the machine can be flushed while the older Ops are being completed. If
Ops are generated before the lower portion of the machine can accept
them (e.g., the lower portion of the processor may be in the process of
invalidating the younger Ops in the scheduler), then these Ops are held
until they can be consumed (see the OpQuad Buffer in Figure 2.8 on page
127.) The point is that since the fetch, decode, and execution of the Ops in
the execution units are decoupled, the process of fetching and decoding
the required instructions can be overlapped (done concurrently) with the
completion and flushing of the appropriate Ops. More will be said about
this in the section titled “Handling Faults, Traps, and Precise Interrupts”
beginning on page 175.

ARCHITECTURAL AND MICROARCHITECTURAL REGISTERS

X86 instructions obtain their operands from and place their results in
either the architectural registers or main memory. The execution units, in
turn, must access these operands and produce the required results.

The K6 3D must support all of the registers defined by the x86 instruction
set architecture. These registers include:

1. eight 32-bit integer general purpose registers.

2. six 16-bit segment selector registers and associated segment de-
scriptor registers.

3. one 32-bit (EIP) instruction pointer register.

DEFINITIONS

Architectural and Microarchitectural Register Files

An architecture has a set of registers accessible by its instruction set for
storing values associated with operand values, status flags, and other
architectural state-related information. This set of registers is often
called the architectural register set or architectural register file. The values
stored in it at any instant in time are called the architectural machine state
or instruction set architecture machine state. The microarchitecture typi-
cally has a different number of registers, most often a larger number, that
are used not only to store the architectural machine state but also to
store microarchitectural machine state, i.e., operand values, status flags,
and state information that is used exclusively in the microarchitecture
and not visible to the instruction set architecture.
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4. x87 floating-point unit registers (a stack of eight 80-bit internal
floating-point registers, a 16-bit status word register, a 16-bit con-
trol word register, and a 16-bit tag word register).

5. eight 64-bit MMX registers which, from an instruction set archi-
tecture perspective, are aliased with the eight FPU stack registers.

6. one 32-bit EFLAGS register.

7. five 32-bit control registers.

8. eight 32-bit debug (breakpoint) registers.

9. memory management registers, namely the x86 Global Descriptor
Table Register, the Local Descriptor Table Register, the Interrupt
Descriptor Table Register, and the Task Register.16

The K6 3D supports the 3D registers associated with the 3D instruction
extensions to the x86 instruction set architecture. The 3D registers are con-
ceptually and physically one and the same as the MMX registers identified
in the above list. In addition, the K6 3D supports a number of special
registers which are described in the section titled “Special Registers and
Model Specific Registers” beginning on page 94.

Integer Registers

The K6 has twenty-four 32-bit integer registers in the integer architectural/
microarchitectural register file plus it has twenty-four 32-bit integer
renaming registers. The twenty-four registers in the integer architectural/
microarchitectural register file consist of eight architecture registers that
correspond to the x86 32-bit general purpose registers (EAX, EBX, ECX,
EDX, EBP, ESP, ESI, and EDI) and sixteen microarchitecture scratch regis-
ters (t0 through t15). The twenty-four renaming registers are located in
the scheduler’s twenty-four Op entries—one per entry.

The x86’s 32-bit integer architectural register set supports addressing,
for byte operations, of either of the lower two bytes of half of some, but
not all, of the registers. Based on a register size specification, the 3-bit reg-
ister numbers within x86 instructions are interpreted as either high (H) or
low (L) byte registers or as word or double-word registers. The relation-
ship between these interpretations is seen in the following table. 

16 For example, the Global Descriptor Table Register holds the 32-bit base 
address and 16-bit segment limit for the currently active Global Descriptor 
Table.
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The integer microarchitecture register set also supports similar addressing
of the lower two bytes of half of these scratch registers: registers +1
through +4 and registers +8 through +11. This is similar to the way in
which byte addressing is supported in the x86 instruction set architecture
registers.

The x87 Floating-Point Registers

As noted above, the x86 floating-point unit has eight 80-bit internal float-
ing-point registers, a 16-bit status word register, a 16-bit control word reg-
ister, and a 16-bit tag word register. The eight data registers are 80-bits
wide registers and comply with the IEEE floating-point standard extended
precision format. As such, the x87 instruction set architecture views them
as 80-bit registers. The K6 FPU does its own local register renaming for all
of its registers.

MMX and 3D Registers

The x86 MMX register set consists of eight 64-bit registers which the
MMX instructions access directly using the register names MM0 through
MM7. Although the eight MMX registers are defined in the x86 instruc-
tion set architecture as separate registers, they are aliased to the eight regis-
ters in the FPU data register stack. The MMX registers are mapped onto
the lower sixty-four bits of the x87 registers, with the upper sixteen bits
defined to effectively be all ones. The 3D instructions, being floating-point

Table 2.3 X86 GENERAL PUR POSE REGISTER NAMES AND SIZES 

32-Bit Name
(dword)

16-bit Name
(word)

8-bit Name
(high order 

byte)

8-bit Name
(low order 

byte)

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

EDI DI — —

ESI SI — —

ESP SP — —

EBP BP — —
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analogs of the MMX instructions, also use and share the MMX registers
with the MMX instructions. Subsequently, we will call these registers the
MMX/3D registers.

There are nine MMX/3D 64-bit architecture/microarchitecture regis-
ters and twelve MMX/3D 64-bit renaming registers. The nine architec-
tural/microarchitectural registers consist of eight that correspond to the
x86 architecture MMX 64-bit registers (MM0 through MM7) and one
microarchitecture scratch 64-bit register (MMt1).

REGISTER NUMBER AND NAME MAPPINGS

X86 instructions specify general registers via a 3-bit register number. In
the microarchitecture, the K6 adds two leading 0’s to the x86’s 3-bit regis-
ter number to form a 5-bit internal architecture/microarchitecture register
number. Table 2.4 gives the correspondence between these 5-bit numbers
and the various integer, MMX/3D, and scratch registers. The interpreta-
tion of a register number as either an integer or an MMX/3D register is,
obviously, based on the instruction that is accessing the register. The uses
of reg, regm, MMreg, and MMregm are explained in Chapter 3.

DESIGN NOTE

Number of MMX Registers

The K6 has six 64-bit MMX renaming registers which reflects its single-
pipeline implementation. The K6 3D, which also supports the 3D
instruction set extensions to the x86 instruction set architecture, has
twelve 64-bit MMX/3D renaming registers, which reflects its dual-pipe-
line implementation.

A presentation by Lance Smith, giving an overview of a non-
3D version of the K6, is entitled, “The AMD-K6 Processor:
Microarchitecture Overview and Product Update,” and can be
found on the CD-ROM.
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Table 2.4 REGISTER NUMBER/NAME CORRESPONDENCE

Register
Number

32-bit 
Register
Name

1-Byte 
Register
Name

64-bit 
MMX/3D

Register Name

00000 EAX AL MMreg

00001 ECX CL MMreg

00010 EDX DL MMreg

00011 EBX BL MMreg

00100 ESP AH MMregm

00101 EBP CH MMregm

00110 ESI DH MMregm

00111 EDI BH MMregm

01000 t1 t1L MMt1

01001 t2 t2L —

01010 t3 t3L —

01011 t4 t4L —

01100 t5 t1H —

01101 t6 t2H —

01110 t7 t3H —

01111 t0/_a t4H —

10000 t8 t8L —

10001 t9 t9L —

10010 t10 t10L —

10011 t11 t11L —

10100 t12 t8H —

10101 t13 t9H —

10110 t14 t10H —

10111 t15 t11H —

11000 reg reg MM0

11001 reg reg MM1
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architectural/microarchitectural 

 

register file
The combination of the integer architectural/microarchitectural register
file and the MMX/3D architectural/microarchitectural file will be called
thet Architectural Register File and is shown in Figure 2.2 on page 69. The
K6 3D’s implicit renaming scheme is discussed in Chapter 3. The microar-
chitectural and renaming registers just discussed are not the only microar-
chitectural registers in the K6 3D. There are additional special registers
that the scheduler, OCU, and execution units use in many aspects of their
work. We will now describe these special registers as some of them are ref-
erenced in the pseudo-RTL descriptions that appear in Chapter 3. You
may want to skim this section now, but revisit it from time to time when
reading Chapter 3. 

11010 reg reg MM2

11011 reg reg MM3

11100 regm regm MM4

11101 regm regm MM5

11110 regm regm MM6

11111 regm regm MM7

a  The “t0” and “_” mnemonics are synonymous. “_” is used when an operand 
or result value is a “don’t care.” t0 is like the “traditional” RISC R0 register.

DESIGN NOTE

Register Size Specification

In the section titled “Formats for Decoder Ops” beginning on page 142,
we will learn that the register size, from an Op perspective, is specified by
either the ASz or DSz field of the Op. ASz is used for base and index reg-
isters in LdStOps. DSz is used for the data register in LdStOps and the
source operand and result or destination registers in RegOps. The
scratch integer register set supports addressing of the lower two bytes of
half of these registers: t1-t4 and t8-t11.

Table 2.4 REGISTER NUMBER/NAME CORRESPONDENCE (CONT)

Register
Number

32-bit 
Register
Name

1-Byte 
Register
Name

64-bit 
MMX/3D

Register Name
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SPECIAL REGISTERS AND MODEL SPECIFIC REGISTERS

The special registers shown in the RUX pipeline of Figure 2.3 on page 81
are not accessible from x86 instructions. They are accessible only through
special RegOps in OpQuad Sequences. What are OpQuads? The instruc-
tion decoders, during a decode cycle, always produce a group of four Ops
which is called an OpQuad (see Figure 2.6 on page 115). What are OpQuad
Sequences? A sequence of OpQuads fetched from an on-chip ROM (called
the OpQuad ROM) is called an OpQuad Sequence. Only the hardware
decodes of common/simple instructions produce a single OpQuad.
OpQuad sequences result from the decode of more complex instructions.
OpQuads and OpQuad sequences are discussed in considerably more
detail in the section titled “OpQuad Sequences” beginning on page 137. 

HISTORICAL COMMENT, DEFINITION AND SUGGESTED READINGS

Register Renaming

Register mapping is the process of associating specific microarchitectural (physical) registers with spe-
cific architectural (virtual) registers. The mapping can be static (bound before execution) or dynamic
(done at execution time). If the process is dynamic, i.e., the “renaming” (re-mapping) occurs during
execution, it is called register renaming. The mappings must be complete, i.e., each architectural register
having a valid value must have a corresponding microarchitectural register mapped to it at each point in
time when that valid value is associated with the architectural register. Register renaming can be used
to remove various types of dependencies (in particular, write-after-read and write-after-write dependen-
cies).

Although register renaming has been used recently by a number of microprocessor vendors including
Intel and AMD, its use is not new with microprocessorssee, for example, the 1967 Tomasulo article ref-
erenced below. At the same time though, microprocessors did not begin employing this technique until
over 20 years after being used in mainframes. According to Peuto:

“The MIPS R2000 in 1986 was the first microprocessor to implement a simple pipeline with branch
prediction favoring the branch-taken path. This pipeline was adopted for the 80486 in 1989. Register
renaming and instruction scheduling, both concepts from the 360/91, were used by Intel for Pentium
Pro in 1995, after several RISC micro-processors had already adopted them.”

For a detailed discussion concerning a register renaming scheme, see R. M. Tomasulo, “An
Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of Research and
Development, Vol. 11, January 1967, pp. 25-33. A copy of this article is the companion CD-
ROM. See also: Mike Johnson, Superscalar Microprocessor Design, Prentice Hall. 1991 and

David A. Patterson and John L. Hennessy, Computer Architecture: A Quantitative Approach, 2nd Edition,
Morgan Kaufmann Publishers, Inc. 1996. A related article, “The Microprocessors Follow Mainframe
Path,” by Bernard L. Peuto, in Microprocessor Report, April 21, 1997, is also on the CD-ROM,
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The special registers are used for a variety of purposes including internal
configuration, debugging, and the processing of traps. Although the spe-
cial registers are not meant for general use, some of them contain informa-
tion that is made available to BIOS and operating system implementers via
reads and writes to what are termed model-specific registers. 

 

scratchpad memorySome of the special registers reside physically within the RUX, others are
external to the RUX in other execution units, other blocks of the machine,
or in a special scratchpad memory. In general, when the special registers
external to the RUX and in other blocks of the machine are read in an
OpQuad Sequence, two reads are required. The first read loads a tempo-
rary internal RUX register from the external unit. The second read delivers
the data to its destination from this temporary register. 

The following codes will be used in the “Access” column in the tables
that follow:

Video Clip on CD-ROM

Greg Favor, Principal Architect of the K6 3D,
addresses the following question in this video clip,
“Why do you translate x86 instructions into RSIC86
Op sequences?”

SUGGESTED READINGS

Model-Specific Registers

Discussions of the K6 3D and K6 model-specific registers and the instructions that access the
data in them, RDMSR (Read Model-Specific Register) and WRMSR (Write Model Specific
Register), can be found in the AMD K86 Family BIOS Design Application Note on the CD-
ROM.

REPORT

INTER PRETATION FOR THE ACCESS COLUMN

Access Interpretation
R Read-only special registers

W Write-only special registers

R/W Readable and writable special registers

E/W
Write-only special registers; readable copy maintained 
in scratchpad memory
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Additionally, all “Reserved” bits are read as zero and should be written
with either a zero for forward compatibility with software use of these bits.
Some x86 architectural registers (e.g., some of the CRxx, DRxx, and TRx
registers plus other registers such as TR and data segment selector regis-
ters) are maintained only in scratchpad memory and are thus R/W
scratchpad memory locations. Special registers in scratchpad memory are
read using a single LdOP versus one or two RegOPs. Such registers are not
included in the tables that follow. 

Table 2.5 SR0, GENERAL CONTROL AND STATUS REGISTER

Bit Name Function Access

0:1 CPL Copy of architectural current privilege level (CPL) R

2 IOS I/O sensitivity status R

3 V86 V86 mode = EFlags.VM && CR0.PE R

4 REAL Real Mode = !CR0.PE R

5 EWBE External write buffer empty R

6 BusBsy
Indicates if there are any active/asserted internal 
requests for bus cycles in the processor system bus

R

7 PMSP
POP memory base = SP (from OpQuad Sequence 
environment)

R

8 FLUSHP FLUSH# request pending R

9 SMIP SMI# request pending R

10 INITP INIT request pending R

11 NMIP NMI request pending R

12 INTRP INTR request pending R

13 STPCLKP STPCLK request pending R

14 VME Virtual Mode Extension R/W

15 PVI Protected Virtual Interrupt R/W

16 ClrFLUSHP Clear FLUSH# edge latch W

17 ClrSMIP Clear SMI# edge latch W

18 ClrINITP Clear INIT edge latch W

19 ClrNMIP Clear NMI edge latch W

20 ClrISTF Clear INTR/STPCLK# temporary mask flag W

21 ClrBSNTF Clear IBrkPt/SMI#/NMI temporary mask flg W
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The K6 3D implements various test and debug modes to enable the func-
tional and manufacturing testing of systems and boards that use the pro-
cessor. In addition, the debug features of the processor allow designers to
debug the instruction execution of software components. Some of these
test and debug features, which were discussed in Chapter 1, are: 

1. built-in self-test (BIST) which is invoked after the falling transition
of the x86 RESET signal and runs internal tests that exercise most
on-chip RAM and ROM structures, e.g., the L1-Cache, and the
TLBs.

2. a tri-state test mode that causes the processor to float its output
and bidirectional pins.

3. a boundary-scan test access port (TAP)—which supports the IEEE
standard that defines synchronous scanning test methods for com-
plex logic circuits, such as boards containing a processor. The Joint
Test Action Group (JTAG) test access function is defined in the
IEEE Standard Test Access Port and Boundary-Scan Architecture,
IEEE 1149.1-1990, IEEE Press.

4. an L1-Cache Inhibit—a feature that disables the processor’s inter-
nal L1 instruction and data caches.

5. debug support—consists of all x86-compatible software debug
features, including the debug extensions.

Boundary-scan testing uses a shift register consisting of the serial inter-
connection of boundary-scan cells that correspond to each I/O buffer of
the processor. This register chain, called a Boundary Scan Register (BSR),

22 NF NMI mask flag R/W

23 RIF Halt instruction fetch W

24 SMIACT System management mode active R/W

25 FERR Floating-point error pending R/W

26 StopClk Allows an OpQuad sequence to stop clock R/W

27 HaltClk Allows an OpQuad sequence to stop clock R/W

28 IGNNE Ignore CR0.NE R

29 RBGO RAM BIST go/initiate W

30 RBDN RAM BIST done status R

31 RBPF RAM BIST pass/fail status R

Table 2.5 SR0, GENERAL CONTROL AND STATUS REGISTER (CONT)

Bit Name Function Access
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can be used to capture the state of every processor pin and to drive every
processor output and bidirectional pin to a known state. You will see
support for these features in a number of the fields of various special regis-
ters, such as the two BIST-related bits in SR0. 

The contents of the SR1 register are defined in Table 2.6.

The contents of the SR2 Instruction Page Fault Register are defined as fol-
lows:

Table 2.6 SR1, FAULT CONTROL AND STATUS REGISTER

Bit Name Function Access

2:0 FID Fault ID from the OCU R

3 TSA TS access fault R

4 ClrDTF Clear x86 debug trap pending flag W

5 ClrSSTF Clear x86 single-step trap pending flag W

6 FPF FpOp fault R

7 EF OpQuad Sequence fault R

10:8 IPFI Instruction page fault information R

11 DlyPG Delay new CR0 PG bit effect W

14:12 DPFI Data page fault information R

15 BIM Burn-In Mode R

19:16 DBN x86 Data Break Point debug status R

23:20 IBN x86 Instruction Break Points debug status R

26:24 SubOpcd
Sub-Opcode (MODR/M[5:3] from OpQuad 
Sequence Environment)

R

28:27 OCPL Old CPL (from OpQuad Sequence Environment) R

29 RBD RAM BIST Disable R

30 SSTF x86 single-step trap pending flag R

31 SDM Select Direct Mapped R

Table 2.7 SR2, INSTR UCT ION AND PAGE FAULT REGISTER

Bit Name Function Access

31:0 — Logical address of last instruction fetch page fault R
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The contents of the SR3 Data Page Fault Register are defined as:

The contents of the SR4 Fault PC Register are as follows: 

The contents of the SR5 register follow. The SR5 Configuration Register in
RUX is write only. There is a readable shadow copy of it kept in the
scratchpad memory. An OpQuad Sequence always updates these copies
together to keep them in synchronization. There are additional debug fea-
tures only available via special debug packages used during “silicon”
debug. These are in contrast to the test and debug features mentioned on
page 97 which are publicly accessible.

Table 2.8 SR3, PAGE FAULT REGISTER

BIT NAME FUNCTION ACCESS

31:0 — Logical address of last operand page fault R

Table 2.9 SR4, FAULT PC REGISTER

BIT NAME FUNCTION ACCESS

31:0 — Logical address of last operand page fault R

Table 2.10 SR5, CONFIGURAT ION REGISTER ( IN RUX)

Bit Name Function Access

0 L1ICD L1 I-Cache disable E/W

1 L1DCD L1 D-Cache disable E/W

2 L1CI L1 Cache inhibit (TR12.CI) E/W

3 DE Debug extension enable (CR4.DE) E/W

4 PSE Page size enable (CR4.PSE) E/W

5 WAD Write allocate disable E/W

6 PDD Power down disable E/W

7 NPFCD NP freeze clock disable E/W

8 SMO Strong memory order E/W

9 VSMO Very strong memory order E/W

10 SMCD Self-Modifying Code trap disable E/W

11 BPTD Branch Prediction Table disable E/W

12 BTBD Branch Target Buffer disable E/W
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The copy of the SR13 Instruction Decode Control Register in RUX is write
only. There is a read/write shadow copy of it kept in the scratchpad mem-
ory. With the exception of setting SetVEC1, an OpQuad Sequence always
updates these copies together to keep them in synchronization. Just as
with SR5, these are additional debug features used during silicon debug.
The contents of the SR13 register are defined as follows:

13 ROBD RegOp bumping disable E/W

14 LCKD Lock disable E/W

15 STQFD STQ forward data disable E/W

16 DCERLR D-Cache enable random line replacement E/W

17 DCSLD D-Cache speculative load disable E/W

18 ICERLR I-Cache enable random line replacement E/W

19 WBCD Write back cache disable E/W

20 SLDD Speculative load disable E/W

21 DTBDM DTB direct mapped E/W

22 DCDM D-Cache direct mapped E/W

23 ICDM I-Cache direct mapped E/W

28:24 REGN Register number E/W

29 RUYD RUY disable E/W

30 BPTNT
When BPTD=1, BPTNT indicates prediction direc-
tion; 1 = not taken, 0 = taken

E/W

31 ICPFD I-Cache prefetch disable E/W

Table 2.10 SR5, CONFIGURAT ION REGISTER ( IN RUX) (CONT)

Bit Name Function Access

Table 2.11 SR13, INSTR UCT ION DECODE CONTROL REGISTER

Bit Name Function Access

7:0 SDD Short decode disable bit mask E/W

9:8 MDD Multiple decode disable E/W

10 LDD Long decode disable E/W

11 SetVEC1 Set “force HDD for one decode” W

12 ExtExcpVEC External OpQuad Sequence exception group E/W
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The SDD and SD2D bits, described in the following design note, are also
for silicon debug purposes—bypassing broken hardware and/or patching
the OpQuad Sequences for complex instructions.

13 ESCDD ESC (FPU) decode disable E/W

14 MMXDD MMX/3D decode disable E/W

15 SD2D OF opcode short decode disable E/W

31:16 ExtVEC External OpQuad Sequence decode group E/W

Table 2.11 SR13, INSTR UCT ION DECODE CONTROL REGISTER (CONT)

Bit Name Function Access

DESIGN NOTE

SDD and SD2D Bits

The SDD and SD2D bits are used in conjunction with the predecoding
logic discussed in the section titled “Predecoding Logic” beginning on
page 115. You may want to reread this design note after you have studied
that section. The SDD and Sd2D bits are used to prevent the marking of
an instruction as being able to be decoded by one of the short decoders.
When an instruction is inhibited from being short-decoded, it is either
long decoded or, in most cases, vector decoded. When it is vector
decoded, the vector decoder provides an OpQuad Sequence entry point
which, by default, is located in the on-chip OpQuad ROM but may be
forced to come from the off-chip memory. When the SDD and SD2D
bits are changed, the I-Cache and predecode cache should be flushed.
Each of the eight SDD bits control two rows of the one-byte x86 instruc-
tion opcode map. Thus, SDD[0] controls opcode rows 0 and 1, SDD[1]
controls opcode rows 2 and 3, and so on. The SD2D bit controls all
opcodes in the two-byte x86 instruction opcode map. Each of the 16 bits
in ExtVEC controls two rows in the x86 instruction opcode map. Specif-
ically, the low-order eight bits control the rows of the one-byte x86
instruction opcode map, and the high-order eight bits control the rows
of the two-byte opcode map. To have opcodes handled by external
OpQuad Sequence entry points, both the appropriate SDD/SD2D bit(s)
and the appropriate ExtVEC bit(s) have to be set. An OpQuad Sequence
should not update SR13 in the scratchpad memory when the SETVEC1
bit is set, since that bit is not “sticky” in the special registers internal to
RUX. 
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The contents of the SR16 MMX/3D Status Bits Register are defined as fol-
lows:

Reading SR16 clears both SR15.MMXD[7:0] and SR15.MMXSTC.
Registers SR17 and SR18 are associated with the Time Stamp Counter
(TSC) Bits; SR17 with TSC High and SR18 with TSC Low as seen in Table
2.13.

The copy of the SR21 Configuration Register RUX is write only. There is a
read/write shadow copy of it kept in the scratchpad memory. An OpQuad
Sequence always updates these copies together to keep them in synchroni-
zation. The contents of the SR21 register are defined as follows:

Table 2.12 SR16, MMX/3D STATUS BITS REGISTER

Bit Name Function Access

7:0 MMXD MMX/3D data register dirty bits R

8 MMXSTC MMX/3D store instruction committed R

31:9 Reserved — —

Table 2.13 SR17 AND SR18, T IME STAMP CONTROL REGISTER S

Bit Name Function Access

31:0 TSCL
Must synchronize read and write with TSCH to 
avoid overflow to TSCH.

R/W

63:32 TSCH
Must synchronize read and write with TSCL to 
avoid overflow from TSCL.

R/W

Table 2.14 SR21, CONFIGURAT ION REGISTER ( IN RUX)

Bit Name Function Access

0 Reserved — —

1 NAD NA# Disable E/W

2 SIE Stop Interrupt Enable E/W

3 FEEC Force External OpQuad Sequence Cacheable E/W

4 SSD String SMI Disable E/W

14:5 Reserved — —

15 INVC INValidate Caches E/W

16 WAE15M Write Allocate Enable 15M-16M E/W
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The contents of the SR24 NP Presence and Opcode Register are defined as
follows:

The contents of the SR25 NP Code Selector Register are defined as follows:

23:17 WAELIM[6:0] Write Allocate Enable Limit E/W

24 PDED Predecode Cache Disable E/W

31:25 Reserved — —

Table 2.14 SR21, CONFIGURAT ION REGISTER ( IN RUX) (CONT)

Bit Name Function Access

DESIGN NOTE

Upper Limit of Memory

The WAELIM[6:0] defines the upper limit of memory where write
allocates are allowed. This is done in 4M quantities as follows: Lower-
Limit = 0x0, UpperLimit = WAELIM[6:0] * 4M (max = 508 Mbyte).
Excluded areas are: 640K - 1M and, if WAE15M = 0, 15M -16M.

Table 2.15 SR24, NP PRESENCE AND OPCODE REGISTER

Bit Name Function Access

10:0 FpOpcd NP opcode register R/W

30:11 Reserved — —

31 NPNotPres NP Not Present R

Table 2.16 SR25, NP CODE SELECTOR REGISTER

Bit Name Function Access

15:0 FpOpcdSelNP Code pointer (selector part) R/W

27:16 Reserved — —

31:28 PrfxCnt
Prefix count from the OpQuad Sequence execution 
environment

R
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The contents of the SR26 NP Code Offset Register are defined as follows:

The contents of the SR27 NP Data Selector Register are defined as follows:

The contents of the SR28 NP Data Offset Register are defined as follows:

The contents of the SR29 NpCFG (FPU Configuration) Register are
defined as follows:

Table 2.17 SR26, NP CODE OFFSET REGISTER

Bit Name Function Access

31:0 FpCodeOffs NP code pointer (offset part) R/W

Table 2.18 SR27, NP DATA SELECTOR REGISTER

Bit Name Function Access

15:0 FpDataSel NP data pointer (selector part) R/W

31:16 Reserved — —

Table 2.19 SR28, NP DATA OFFSET REGISTER

Bit Name Function Access

31:0 FpDateOffs NP data pointer (offset part) R/W

Table 2.20 SR29, NPCFG (FPU CONFIGURATION) REGISTER

Bit Name Function Access

0
ClearBeforeEx-

ception
Clears the Before Exception (stack fix up) bit in NP E/W

1 Do Shared State
Allows “share-state” overlapping of p-ops which 
write their result one cycle after execution, with the 
following p-op (assuming dependencies are met).

E/W

2
Enable Hyper-

Flg
Enables NPPop[12] (hyper flag). When not set, has 
the effect of always asserting NPPop[12].

E/W

3 StoreExMode

Used when issuing a “dummy” store (i.e., emulating 
an FST which does not store to memory). Specifi-
cally, inhibits hardware checking of result precision 
and rounding.

E/W

5:4 Reserved — —

6 FastFXCH Enables single-pop FXCH mode E/W
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BRANCH DIRECTION

PREDICTION LOGIC AND

THE BRANCH RESOLVING

UNIT

Branches in x86 code fit into two categories: unconditional branches,
which always change program flow (that is, the branches are always taken),
and conditional branches, which may or may not divert program flow
(that is, the branches are taken or not-taken based on the evaluation of a
specified condition).

 

branch direction prediction 

 

logic
Because x86 programs are heavily saturated with conditional

branches, branch direction prediction logic is used to avoid execution
penalties associated with such changes in program flow. Up to 10% of
typical application code consists of unconditional branches and another
10% to 20% conditional branches. The K6 branch direction prediction
logic has been designed to handle this type of program behavior and to
reduce its negative effects on instruction execution, such as stalls due to
delayed instruction fetching and the draining of the processor pipeline. 

 

branch target addressThe K6 handles unconditional branches by redirecting instruction
fetching to the target address of the unconditional branch. Branch target
addresses are calculated on-the-fly using fast adders during the decode
stage (see the Branch Target Address Adders in Figure 2.2 on page 69). The
adders calculate all possible target addresses before the instructions are
fully decoded and the branch prediction logic then chooses the correct
branch target address.

 

branch history table

 

BHT
The branch target address for a conditional branch is not immediately

known, however, and the K6 uses a dynamic branch direction prediction
mechanism to predict the direction of the branch. Target address handling

7
false_depend-
ency_suppress

Enhancement to the share-state mechanism which 
eliminates false dependencies. See bit 1 below.

E/W

8 Disable0Cycle Disables handling of 0-cycle Ops in NP E/W

13:9 Reserved — —

14 mask_hyperterm
Disables hyper termination for the next p-op only. 
This bit then resets itself (internal to NP).

E/W

15 Reserved — E/W

16 Busy Force pending error (i.e., always hyper terminate) E/W

21:17 Reserved — E/W

22
UpperTSC-

Word
Upper 16 bits of 32-bit Tag/Status/Control store will 
be filled with inverse value of this bit

E/W

31:23 Reserved — E/W

Table 2.20 SR29, NPCFG (FPU CONFIGURATION) REGISTER (CONT)

Bit Name Function Access
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is similar for both conditional branches (and unconditional PC-relative
branches). That is, branch target addresses are calculated on-the-fly using
fast adders during the decode stage. As in the unconditional branch case,
the adders calculate all possible target addresses in parallel with the deter-
mination and selection of the correct target address. The processor then
chooses either the predicted target address or the sequential next instruc-
tion address adders, based on a prediction of the direction of the branch,
as the next address to continue instruction decoding from. The K6’s
dynamic branch direction prediction logic uses a two-level, adaptive,
branch direction prediction algorithm based on the contents of an 8192-
entry branch history table (BHT). The BHT is only used to predict the
direction of a conditional branch. It stores information about the direc-
tion of past conditional branches. It does not store predicted target
addresses, nor does it include information about unconditional branches.

 

branch target cache

 

BTC
A branch target cache (BTC) is used for both conditional and uncon-

ditional PC-relative branches. If a conditional branch is predicted to be
not taken, then the processor simply continues decoding and executing
the next sequential x86 instruction. When a conditional branch is pre-
dicted to be taken or the branch is unconditional, the BTC supplies the
first 16 bytes of target instructions directly to the instruction buffer.
Assuming the target address hits in this cache, this design approach can
avoid a 1-clock decode delay while the first or target I-Cache fetch takes
place.17 The BTC is organized as sixteen entries of sixteen bytes each.
Thus, the BTC works with the BHT and delivers instruction bytes directly
to the decoders to avoid the otherwise one-clock decode delay for taken
branches. The BHT direction prediction rate is estimated to be greater
than 95%. The BTC hit rate ranges from 40-60%. In total, the branch pre-
diction logic achieves a predicted branch prediction rate of greater than
95%.

 

return address stack

 

RAS
The K6’s branch direction prediction logic also employs a 16-entry

Return Address Stack (RAS) to minimize fetch and decode stalls associ-
ated with subroutine entry (CALL) and exit (RET) instructions. The RAS
is specifically designed to optimize subroutine call/return instruction pairs
by caching the return address of each call instruction and supplying it as
the predicted target address of the corresponding return instruction.

17  Notice the “BTC Hit” control of the instruction multiplexer in front of the 
instruction buffer in Figure 2.6 on page 115. We will, for the current time, take 
this control to mean: 

IF (the instruction being decoded is a branch) 
 AND (the branch is predicted taken) 

 AND (there was a “hit” in the BTC for the target address) 
THEN (select the output of the BTC) 
ELSE (select the output of the I-Cache and Predecode Cache)
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Software is typically constructed using subroutines that are invoked
from various places in a program. This is usually done to save space. The
subroutine is entered with the execution of a CALL instruction. At that
time, among other things, the processor pushes the address of the next
sequential instruction following the CALL instruction onto the RAS as
well as onto the architectural stack in memory. When the processor
encounters a RET instruction within or at the end of the subroutine, the
branch prediction logic pops the return address from RAS, as well as read-
ing from the stack in memory (for later prediction checking purposes),
and speculatively begins fetching from that location.

 

branch resolving unit

 

BRU
The Branch Resolving Unit BRU) is separate from the branch direc-

tion prediction logic shown in Figure 2.2 on page 69 and enables efficient
speculative instruction execution. The BRU gives the processor the ability
to execute instructions beyond conditional branches before knowing
whether the branch prediction was correct. To accomplish this, the K6
processor does not commit the results of the speculative executed instruc-
tions until all preceding conditional branch instructions have been
resolved by the BRU. Once the status flag values for evaluating a branch
condition are valid, the BRU resolves the conditional branch as either cor-
rectly or incorrectly predicted. 

If the prediction was incorrect, the processor discards the speculatively
executed operations to the point of the mispredicted branch instruction
and restores the machine state to that point; execution then continues
down the correct branch path.

If the prediction was correct, the BRCOND Op of the branch instruc-
tion is so marked and the result of this and the following instructions are
allowed to be committed. There are obviously no instruction execution
delays in this case. The BRCOND OP represents the branch condition or condi-
tion code to be evaluated by the BRU. Equivalently, the BRCOND Op represents
the branch condition evaluation operation to be executed by the BRU.
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THE L1 AND L2 CACHES

(REVISITED)
The K6 3D on-chip L1 I-Cache has a subblock organization as shown in
Table 2.21. Each 64-byte line is configured as two 32-byte subblocks. The
two subblocks share a common tag, but have separate pairs of cache
coherency protocol bits that are used to track the state of each cache sub-
block. There is some variability in cache-related terminology applied to
specific microprocessors. See, for example, Harvey Cragon’s book,
Memory Systems and Pipeline Processors, Jones and Bartlett Publishers,

Suggested Readings

Branch Prediction

Because of the importance of branch prediction in achieving high performance, there has been, and
continues to be, substantial work in this area. Some articles which, in part, review alternative approaches
and are, therefore, of general interest are: 

1. Y. N. Patt, W. M. Hwu, and M. Shebanow, “HPS, a New Microarchitecture: Rationale and
Introduction,” Proceedings of the 18th Annual Workshop on Microprogramming (Micro-18), 1985,
pp. 103-108.

2. Y. N. Patt, S. V. Melvin, W. M. Hwu, “Critical Issues Regarding HPS, A High Performance
Microarchitecture”, Proceedings of the 18th Annual Workshop on Microprogramming (Micro-18),
1985, pp. 109-116. 

3. T. Y. Yeh and Y. N. Patt, “Two-Level Adaptive Training Branch Prediction,” Proceedings of the 24th
Annual International Symposium on Computer Architecture (ISCA), 1991, pp. 124-134.

4. J. E. Smith, “A Study of Branch Prediction Strategies,” Proceedings of the 8th Symposium on
Computer Architecture, 1981, pp. 135-148.

5. D. R. Kaeli and P. G. Emma, “Improving the Accuracy of History-Based Branch Prediction,” IEEE
Transactions on Computers, April 1997.

6. J. K. F. Lee and A. J. Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”
Computer, Vol. 17, No. 1, 1984, pp. 6-22.

7. P. K. Dubey and M. J. Flynn, “Branch Strategies: Modeling and Optimization, IEEE Transactions
on Computers, Vol. 40, No. 10, 1991, pp. 1159-1167.

8. T. Y. Yeh and Y. N. Patt, “Branch History Table Indexing to Prevent Pipeline Bubbles in
Wide-Issue Superscalar Processors,” Proceedings of the 26th Annual International Symposium on
Microarchitecture, (Micro-26), 1993, pp. 164-175.

You can find the full text versions of the first five articles on the companion CD-ROM.
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1996, where he contrasts some of these differences. The line and subblock
organization of the L1-Cache is shown in Table 2.21.

The K6 uses the MESI cache coherency protocol. K6 3D I-Cache lines have
only two coherency states, valid and invalid, rather than the full four MESI
coherency states of the D-Cache lines. This is a result of the fact that the
K6’s I-Cache lines are read-only.
.

Table 2.21 LINE/SUBBLOCK L1 I-CACHE ORGANIZAT ION

Tag Byte 31 Byte 30 … Byte 1 Byte 0 MESI Bits Subblock 0

Address Byte 31 Byte 30 … Byte 1 Byte 0 MESI Bits Subblock 1

Suggested Readings

Cache Design

Proper cache design is absolutely central to achieving high performance in systems. Because of this, we
have included five articles on the CD-ROM that examine cache-related design, implementation, and per-
formance issues from a variety of perspectives.

1. A. J. Smith, “Cache Memory Design: An Evolving Art,” IEEE Spectrum, 1987.

2. M. Cekleov and M. Dubois, “Virtual-Address Caches,” IEEE Micro, 1997.

3. S. P. VanderWiel and D. J. Lilja, “When Caches Aren’t Enough: Data Prefetching Techniques,”
Computer, July 1997.

4. E. van der Deijl, G. Kanbier, O. Temam, and E. D. Granston, “A Cache Visualization Tool,”
Computer, July 1997.

5. D. Burger, J. R.Goodman and A. Kägi, “Limited Bandwidth to Affect Processor Design,” IEEE
Micro, November/December 1997.

An article which describes several memory consistency models and their relationship to performance, pro-
grammability, and portability is given in the article by Sarita V. Adve and Kourosh Gharachorloo, “Shared
Memory Consistency Models: A Tutorial,” in Computer, December 1996

You can find the full text versions of the above five articles on caches and the Adve article on the
companion CD-ROM.
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cache line replacement

 

cache subblock replacement
Two forms of cache misses and associated cache fills can take place in a
cache organized this way—a cache line replacement18 and a cache sub-
block replacement. In the case of a cache line replacement, the miss is due
to a tag mismatch. In this case, a new cache line is allocated, the required
32-byte subblock is filled from the L2-cache or external memory, and the
other 32-byte subblock within the cache line is marked as invalid. In the
case of a cache subblock replacement, the tag matches but the requested
subblock is marked as invalid. The required 32-byte subblock is filled from
the L2-cache or external memory, and the other subblock within the cache
line remains in its current state, i.e., its cache coherency bits are not
changed. In either case, L1 I-Cache fills are done on a subblock basis.

Definition and Suggested Reading

MESI Protocol

MESI = Modified, Exclusive, Shared, Invalid. MESI is a four state cache-
coherency protocol that is used in multiprocessor systems in which each
processor has one or more caches associated with it and cache consis-
tency must be maintained across these caches. See the article by J. Gal-
lant, “Protocols Keep Data Consistent” EDN, Vol. 36, No. 5, March 1991,
pp.42-50 and the International Standard ISO/IEC, ANSI/IEEE Std. 896.I,
1994 Edition, IEEE, New York, 1994.

18  Cache line replacements are also referred to as full-line cache misses.
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DESIGN NOTE

L1-Cache Design

The K6 L1-Caches are 32-Kbyte in size and organized as two-way set-associative. This means that the set
index is comprised of bits [13:6] of the address. Since the x86 architecture uses linear to physical transla-
tion, the physical address is available later than the linear. For timing and performance reasons, the set
index needs to use the untranslated bits to start the cache access in parallel to the linear-to-physical transla-
tion. In the x86 architecture, only bits[31:12] are translated. Bits[11:0] are identical in linear and physical
address spaces. Because of this the K6 3D uses bits [13:6] as the set index. Both ways of a set are physically
tagged with the full physical page address (bits [31:12]). Since bits [13:12] are linear, this means that a
particular physical cache line can reside in one of a group of 4-sets in the cache. This creates a potential
synonym (or aliasing) problem, since a cache lookup indexes into only one of the four possible sets. What
happens if the line in question resides in the other three possible sets? The K6 3D deals with this in hard-
ware by avoiding the creation of synonyms in the first place. The tag RAMs of the L1-Caches are designed
in a manner that allows all four possible sets to be read out simultaneously. If the line is found in one of the
4-sets, but it is not in the indexed set, it will be invalidated (possibly written back if dirty) and then
refetched from the L2 or external memory and put into the indexed set.

The K6 implements a hit-under-miss scheme for both the instruction and data caches. The instruction
cache can continue to supply hit data while processing a miss. There are no restrictions. If a new cache
access misses in the cache and there is already a pending miss, then the new cache miss is held up until the
first miss completes. The L1 D-Cache is similar in its behavior in that it can continue to supply hit data
while processing a fill. The only restriction is that the read operation that initiated the fill must have
received its data before subsequent read operations can access the cache. 

The above behavior provides sufficient performance with a reasonable effort in logic design and
implementation. There are more aggressive techniques that are completely nonblocking or nonblocking to
a certain depth. For example, if a read operation misses in the L1 D-Cache, the read is allowed to complete
without its data (allowing a younger read to advance into the cache lookup stage). The miss can be queued
up in a miss queue. The read that completed without its data needs to receive it at a later time when the fill
is ready to provide it. Multiple misses will result in more of these types of reads getting completed and
queued in the miss queue. While this is all “doable,” it creates complicated situations that are more difficult
to deal with. The additional effort was not considered worth the increase in performance.

In general many of the microarchitectural performance trade-offs were taken based on a K6 3D trace-
driven performance model that was accurate within a few percentage points to the K6 3D’s actual behavior.
If a particular feature provided a large enough percentage increase in performance, it was carefully consid-
ered and usually adopted.

In summary, both the I-Cache and the D-Cache are linearly indexed and physically tagged. Synonyms
and aliasing are handled in hardware. At most one synonym at a time is allowed in the caches. Both caches
maintain mutual exclusion with respect to each other and, as will be seen, this eases the way in which self-
modifying code is handled. The hit-under-miss cache-fill strategy is supported. The L2-Cache on the other
hand is physically indexed and physically tagged and thus is not concerned with synonyms and aliasing.
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cache prefetching The K6 performs cache prefetching for L1 I-Cache cache-line replace-
ments. Cache prefetching results in the filling of the required 32-byte sub-
block first, and a prefetch of the second subblock. However, the prefetch of
the 32-byte subblock that is not required is initiated in the forward direc-
tion only—that is, the second 32-byte subblock is fetched only if the
requested subblock is the first subblock within the cache line. From the
perspective of the external bus, the two subblock fills typically appear as
two 32-byte burst read cycles occurring back-to-back or, if allowed, as
pipelined bus cycles. The K6 3D prefetches both L1 I-Cache and L1 D-
Cache subblocks.

The sizes and associativities of the K6 3D’s TLBs were selected based
on academic studies as well as professional papers. Later, the sizes were
looked at in the K6 performance model to guarantee that the choices were
appropriate. Larger TLBs, with greater associativity, are generally impor-
tant in Windows 3.1, Windows 95, Windows NT, and Unix-like environ-
ments. The environments that are less stressful are older 16-bit DOS and
Windows code and Spec benchmarks.

The L2-Cache is 4-way set associative, with a total of 1K sets. Each set has
4 ways: Way 0, Way 1, Way 2, and Way 3. Each way contains one 64-byte
line. Each line has two 32-byte subblocks. Thus, the overall L2 Cache size
is 4*1K lines = 4*1K*64bytes/line = 256K Bytes. As noted earlier, the L2-
Cache is physically indexed and physically tagged. Bits [15:6] of the physi-
cal address determine the set number. The starting byte location within a
way is determined by bits [5:0] of the physical address. The L2-Cache uses
true LRU replacement within a set. An L2 instruction I-TLB was added to
the K6 3D to help out on the instruction TLB misses given the small size of
the L1 I-TLB.

Suggested Readings

 Processor Memory Mismatch Problem

An interesting article by Michael K. Milligan and Harvey G. Cragon, “Processor Implementa-
tion Using Queues,” IEEE Micro, 1995, discusses the evolution of instruction and branch target
queues and their relationship to interleaved memory and caches. The article also discusses the
use of queues to support variable-length instructions and reduce misalignment problems. The

article by Wen-mei Hwu and Thomas M.Conte, “The Susceptibility of Programs to Context Switching,”
shows the importance of analytical modeling and simulation in cache-related studies.
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THE INSTRUCTION BUFFER

AND INSTRUCTION

REGISTERS

The K6 can fetch up to sixteen x86 instruction bytes per clock from either
the on-chip L1 I-Cache or the Branch Target Cache as shown in Figure 2.6
on page 115. The fetched x86 instruction bytes along with their corre-
sponding predecode bits are placed into a 16-byte instruction buffer which
feeds two instruction registers that supply the decoders. Instruction Regis-
ter 1 supplies the vector decoder, the long decoder, and short decoder 1,
while Instruction Register  2 supplies short decoder  2.

 

instruction buffer

 

instruction register 1

 

instruction register 2

An instruction fetch retrieves sixteen bytes, 4-byte aligned, and all
within one 32-byte cache subblock. In the case of branch target fetches
after a BTC miss, generally 13-16 useful instruction bytes are retrieved,
depending on the byte offset of the target address within the first 4-byte
word. This is true except when near the end of a cache subblock. 

New instruction bytes are loaded into the instruction buffer as preced-
ing instruction bytes are consumed by the decoders. Instructions are
loaded and replaced in the instruction buffer with 4-byte granularity.
However, instructions can be consumed from the instruction buffer with
byte granularity. This means that the loading and reloading of bytes into
the instruction buffer is controlled with 4-byte granularity. This simplifies
control logic and eases certain speed-critical logic paths. When a control
transfer occurs, the entire instruction buffer is flushed and reloaded with a
new set of sixteen instruction bytes. 

The K6’s decode logic is designed to decode up to two x86 instruc-
tions per clock. The decode logic accepts x86 instruction bytes and prede-
code bits from the instruction buffer, locates the actual instruction
boundaries, and generates Ops from the x86 instructions. The Ops are
then loaded into a centralized scheduler that controls and tracks all aspects
of Op issue, execution, and commitment.
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Figure 2.5 INSTR UCT ION BUFFER, INSTR UCT ION REGISTER S 1 & 2, AND THE DECODER S
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.

Figure 2.6 INSTR UCT ION BUFFER INDEX 0 MULT IPLEXER

Some of the inputs and the control of this multiplexer use information
developed by the predecode logic shown in the high-level block diagram
of the K6 3D microarchitecture shown in Figure 2.2 on page 69. The pre-
decode logic is discussed in the very next section. This discussion includes
an explanation of both Figure 2.6 and Figure 2.6.

PREDECODING LOGICAs is well documented in the literature, decoding x86 instructions is par-
ticularly difficult; see Mike Johnson’s book Superscaler Microprocessor
Design, Prentice-Hall 1991. X86 instructions are variable-length (from one
byte to fifteen bytes long) and can have complex addressing modes. They
can be modified by one or more prefix bytes, which can appear before any
instruction and can affect the instruction’s execution. Instruction can have
a variable-size displacement field of zero, one, two, or four displacement
bytes. Instructions can also have a variable-size immediate field of zero,
one, two, or four immediate bytes. The displacement and immediate fields
are both optional and independent—that is, either one or both may be
present and they may be of different sizes within an instruction. A number
of fields in the first few bytes of x86 instructions are used to indicate

NOTATION

Shading in Figures

Elements of figures that are shaded, such as the “Instruction Buffer Index 0” in
the above figure, are shown in color on the companion CD-ROM. Both nota-
tions are used to indicate that the particular element is expanded in a following
diagram. For example, the signal “Instruction Buffer Index 0,” shown in the
shaded box in Figure 2.6, is actually the output of a 5-to-1 multiplexer, shown in
Figure 2.6.

Branch Target PC or Address from Return Address Stack

current Decode PC

Instruction 1 Predecode Pointer Bits

Instruction 2 Predecode Pointer Bits

Instruction 2 Decode PC = current Decode PC + LVDecILen

Instruction Buffer Index 0

A signal reflecting:
"Can a successful decode be done

and, if so,
for how many instructions and

what type of instructions are they?"
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whether or not other fields are present. All of this contributes to the diffi-
culty in determining the length of the current instruction which in turn
contributes to the difficulty in determining where the next x86 instruction
actually begins relative to the current instruction. 

The difficulties in decoding instructions and determining their
lengths notwithstanding, two primary goals in the design that have a direct
impact on performance are: (1) to be able to do multiple decodes per cycle
and (2) to make the cycle time as short as possible. The K6 supports the
decode of more than one x86 instruction per cycle and employs a prede-
coding technique to assist in this process. In essence, predecoding anno-
tates each instruction byte with information that later enables the
decoders to quickly locate the next instruction boundary and thus to effi-
ciently decode multiple x86 instructions simultaneously. The predecode
logic computes five predecode bits associated with each instruction byte.
This is shown in Figure 2.7. 

Figure 2.7 PREDECODER LOGIC
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PREDECODE BITS

 

Predecode CacheThe predecode bits provide a pointer to the first byte of the next instruc-
tion. The predecode bits are computed by determining the instruction
length and adding this to the low-order PC bits of the predecoded instruc-
tion. These bits are stored in a 20-Kbyte predecode cache, separate from
the K6’s L1 I-Cache. There are five predecode bits per instruction byte and
thus the 20-Kbyte for the 32-Kbyte L1 I-Cache. L1 I-Cache lines are filled
from main memory or from the L2-Cache using a burst transaction. Each
instruction byte is analyzed using the predecode logic on a byte-by-byte
basis as an L1 I-Cache line is filled. The analysis consists of assuming the
byte under consideration is the beginning of an instruction and then
determining the next instruction boundary based on this assumption.
Note that the predecode analysis logic in Figure 2.7 can use up to three
adjacent instruction bytes in its analysis.

The predecode logic produces six predecode bits per instruction byte.
One of the six does not need to be stored in the predecode cache as it can
be quickly and readily generated as data are read from the predecode
cache. Of the remaining five bits:

1. three bits represent the instruction length in the form of a pointer
to the first byte of the next instruction (a fourth bit having been
discarded).

2. one bit indicates if the instruction length is D-bit dependent.

3. one bit indicates if the instruction is a Mod R/M instruction or not
(this bit is only valid for short or long decodable instructions).

The three bits representing the instruction length are, essentially, the low
three bits of the linear or physical program counter (PC) of the next
instruction. The fourth and most significant bit (MSB) of the pointer is
actually generated when the predecode bits are used. This means, in real-
ity, that although five predecode bits are stored in the predecode cache, six
predecode bits are used during instruction decode.

 

unsuccessful predecodeIf for any reason the predecoder cannot compute the above five bits, it
will set the three bits of pointer information to the current instruction.
This means, effectively, that the computed instruction length is zero and
is, essentially, an unsuccessful predecode indication to the decoders.

COMBINATIONAL PREDECODE ANALYSIS LOGIC

Deciding if an instruction can be decoded by one of the short decoders is
done by comparing the lower bits of the instruction’s PC (program
counter) with the pointer produced by the predecode logic—i.e., the three
bits pointing to the first byte of the next instruction as described in the
next section. If they are different, the instruction has a length of one to
seven bytes (as implied by the difference between these two pointers) and
can be decoded by one of the short decoders. If they are equal, implying an



118 Chapter 2: A Microarchitecture Case Study

instruction length of zero, the instruction cannot be decoded by one of the
short decoders and must be decoded by either the long decoder or the vec-
tor decoder as appropriate. 

COMPARATIVE ANALYSIS AND SUGGESTED READINGS

Predecode Logic

In an interesting article, “Superscalar Instruction Issue,” IEEE Micro, Septem-
ber/October 1997, by Dezso Sima, he notes:

“Decoding in superscalar processors is a considerably more complex task
than in the case of scalar processors and becomes even more so as the
issue rate increases. Higher issue rates, however, can unduly lengthen
the decoding cycle or can give rise to multiple decoding cycles unless
decoding is enhanced. An increasingly common method of enhance-
ment is predecoding. This partial decoding takes place in advance of
common decoding, in which instructions are loaded into the instruction
cache. The majority of the latest processors use predecoding: the Pow-
erPC 620, PA 7200, PA 8000, UltraSparc, and R10000.”

An audio clip, giving an overview of the predecoding techniques
used in the K6 3D, can be found on the companion CD-ROM. 

Sima points out that a number of vendors use predecoding in
their microprocessor implementations for somewhat different reasons. How-
ever, there appears to be conflicting reports about Intel’s use of predecoding.
Consider the following analysis found in “Intel’s Long-Awaited P55C Dis-
closed,” by Michael Slater, Microprocessor Report, Vol. 10, No. 14, February 28,
1996, pp. 1-3:

“In the P54C, a tag bit is added to each byte as it is stored in the instruc-
tion cache to identify instruction boundaries. The P54C’s decoder
depends on this bit to feed the two instruction pipelines in a single cycle.
The P55C’s extra cycle allows instructions to be paired on the fly, elimi-
nating the need for the cache predecode bits and allowing instructions to
be paired even on an instruction-cache miss.”

continued on the next page.
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COMPARATIVE ANALYSIS AND SUGGESTED READINGS (CONT.)
Now contrast this with the following description found in “Centaur Gal-
lops Into x86 Market,” by Linley Gwennap, Microprocessor Report, Vol. 11,
No. 7, June 2, 1997, pp. 1-6:

“These caches are simpler than in other competitive chips. For exam-
ple, virtually all other Pentium-class processors have a dual-ported
data cache; to match its scalar core, the C6 has a single-ported data
cache, reducing die area. The C6 also has no predecode bits in the
instruction cache, a feature found in Pentium (but not Pentium/
MMX) and AMD’s K5 and K6. These extra bits cause the caches on
these chips to consume more die area than the same amount of cache
on the Centaur chip.”

So far, the following analysis of the P6 (a.k.a. the PPro) suggests that it
does not use predecoding, “Intel’s P6 Uses Decoupled Superscalar
Design,” by Linley Gwennap, Microprocessor Report, Vol. 9, No. 2, Febru-
ary 16, 1995, pp. 1-7:

“Part of the problem in a superscalar x86 processor is identifying the
starting point of the second and subsequent instructions in a group.
The K5 includes predecode information in its instruction cache to
hasten this process, but the P6 does not, to avoid both instruction-
cache bloat and the bottleneck of predecoding instructions as they are
read from the L2 cache.”

Predecoding is also used to assist in the attempts to obtain increased code
compaction. Here the predecoders are used, in part, to expand compressed
code. See, for example, “Embedded Vendors Seek Differentiation: Signal
Processing, Code Compression, ASIC Cores Enable Specialization,” by
Jim Turley, Microprocessor Report, Vol. 11, No. 1, January 27, 1997, pp. 1-6:

“Following on the heels of ARM’s Thumb, MIPS introduced MIPS-
16, a similar approach to compressing 32-bit instructions into 16-bit
words. Thumb has already begun showing up in products; chips
equipped with the MIPS-16 predecoder should roll out by mid-
1997.”

See also Deszo Sima, Terence Fountain, and Peter Kacsuk, Advanced Com-
puter Architectures, A Design Space Approach, by Addison-Wesley, 1997.

Copies of the Sima article appearing in IEEE Micro and the
four referenced Microprocessor Report articles which were
cited above are on the CD-ROM.
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The combinational predecode analysis logic shown in Figure 2.7 on page
116 accomplishes several things as it processes three adjacent instruction
bytes. It examines:

1. the instruction’s opcode byte to determine if: (a) the instruction is
a ModR/M instruction and (b) there are any immediate bytes and,
if so, how many.

2. the second byte, the ModR/M byte, and decodes the address mode
specified by this byte if the instruction is a ModR/M instruction.
This analysis will tell if: (a) there is an SIB byte and (b) there are
displacement bytes and, if so, how many.

3. the SIB byte, if one is present, to determine if there is a displace-
ment. This will occur only in certain ModR/M address mode cases.

In most cases the existence of a displacement and its size can be deter-
mined from the ModR/M byte. In a small number of cases, which are a
subset of when an SIB byte is present, the SIB byte must be examined as
well to determine if there is a displacement. These processing steps indi-
cate why the combinational predecode analysis logic must examine at least
three instruction bytes. In the most general case, however, up to four bytes
must be analyzed since the first instruction byte may have been a preface
or “0F” byte. If a “0F” byte is present, the predecode analysis logic looks at
the next byte as the “real” instruction opcode byte and then does the pro-
cessing indicated in the above three steps using three instruction bytes. If
the bytes required to do these steps are not available, the combinational
predecode analysis logic sets the three predecoder pointer bits to zero
(resulting in an “unsuccessful predecode” signal to the decoders).

DESIGN NOTE

Unsuccessful Predecode

An unsuccessful predecode signal is represented by generating a prede-
code pointer that points to the beginning of the predecoded instruction
(i.e., to the instruction’s PC). This implies an instruction length of zero.
Thus, the unsuccessful predecode signal is also being interpreted to
mean the instruction “cannot be decoded by a short decoder.” The short
decoders only operate on instructions that are less than or equal to seven
bytes in length. Therefore, if the combination predecode analysis logic
determines that an instruction requires more than seven bytes, it consid-
ers this an unsuccessful predecode as well, i.e., it is an instruction that
cannot be decoded by a short decoder.
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There are eight sets of predecode logic that get reused four times dur-
ing an I-Cache fill. Cache fills take place in the form of a burst or block
transfer of four octets. In the case where the last octet of the cache line is
being predecoded, the predecode logic for the last two bytes modifies its
behavior and recognizes that it is predecoding not just the last two instruc-
tion bytes of any octet, but the last two bytes of a cache line. The last octet
of a cache line is actually the first one to be read. More generally, the octets
are read in decreasing or reverse order. The logic takes into account the
fact that only one or two bytes are available for predecoding. If the prede-
code logic needs to examine more than the one or two bytes available to
determine the instruction’s length, then the three predecode pointer bits
are set to imply the instruction is not short-decodable.

While the average x86 total instruction length is less than four bytes,
when the predecode of an instruction detects a length greater than seven
bytes (e.g., the opcode byte plus a ModR/M byte plus a 4-byte displace-
ment value plus a 4-byte immediate value), the instruction’s length cannot
be represented by the three predecode bits. Consequently, the predecoder
logic sets the pointer bits to indicate the instruction is not short-decod-
able. In summary the combination predecode analysis logic has:

1. preface “0F” byte stripping logic.

2. three chunks of logic to look at the opcode byte and the ModR/M
and SIB bytes, if they are present. These chunks of logic each pro-
duce “partial length information,” The first clump of logic (for the
opcode) gives a “base instruction length.” The second and third
clumps of logic give a “ModR/M and SIB instruction length”—
which includes the ModR/M byte (if present) plus the SIB byte (if
present) plus the number of displacement bytes, if any. The overall
instruction length is the sum of these two lengths. That length add-
ed to the instruction’s address gives the address of the next instruc-
tion. The lower three bits of this address is the predecode pointer.

3. a chunk of logic to (a) determine how many bytes must be exam-
ined and if enough bytes are not available to indicate an unsuccess-
ful predecode and (b) determine if the instruction length is less
than or equal to seven and, if not, force the outputs to indicate an
unsuccessful predecode.

USE OF THE PREDECODE BITS

We now describe how the predecode bits are used during the instruction
decode cycle. The predecode bits are used as two of the five inputs to the
multiplexer shown in Figure 2.6 on page 115. The output of this multi-
plexer is used to align the first instruction as shown in Figure 2.6 on page
115. During the decode process, a number of things occur in parallel. For
example, for the first instruction, the predecode logic needs to compare its
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predecode pointer to the Decode PC to determine if that instruction can
be decoded by a short decoder. Similarly, for the second instruction, the
logic examines the predecode pointer for the first instruction and com-
pares that with the predecode pointer of the second instruction to deter-
mine if the second instruction can also be decoded by a short decoder.
Based on those two pieces of information, it can be determined: (a) how
many instruction bytes of the instruction buffer need to be “valid”, start-
ing from the Decode PC, for the first instruction, and (b) how many
instruction bytes of the instruction buffer need to be “valid,” starting from
the end of the first instruction, for the second instruction.

The instruction registers are blindly loaded at the beginning of the decode
cycle, (based on the predecode bits), and then everything is examined to
see whether one or ideally two instructions are, in fact, decodable. Fur-
thermore, all three decoders blindly operate in parallel before knowing
what kind of decode, if any, will be possible. If there is a valid instruction
in Instruction Register 1 and if it can be decoded by short decoder 1, then
short decoder 1 decodes it. Otherwise, the instruction will be sent to the
long decoder and see if that decoder can decode it. If so, the long decoder
continues processing the instruction. If the long decoder cannot decode
the instruction, than by default the instruction vector decoder will process
the instruction. A valid instruction will be decoded by short decoder 2
only if it can be decoded by a short decoder and short decoder 1 has
decoded a valid, short-decodable instruction.

 

“valid” signals:

 

SDEC0_V

 

SDEC1_V

 

LDEC_V

 

VDEC_V

Without giving a complete description of this control logic within the
decoders, we point out that there are four key control signals that get gen-
erated by this control logic called SDEC0_V, SDEC1_V, LDEC_V,
VDEC_V respectively, where the “V” stands for “valid.” The use of these
signals will aid us in understanding the use of the predecoder information. 

Logic within the decoders examines SDEC0_V first, if it is asserted
then one short decode can be done. If SDEC1_V is also asserted, then we
can do two short decodes, otherwise we’ll just settle for one. If SDEC0_V
is not asserted, then LDEC_V is examined. If LDEC_V is asserted, a long
decode can be done. Otherwise hopefully VDEC_V is asserted so a vector

DEFINITION

Decode PC

The term Decode PC refers to the pointer into the instruction buffer,
shown in Figure 2.6 on page 115, which points to the start of the instruc-
tion to be decoded. In particular, it refers to the low four bits of this
pointer.
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decode can be done. If it is not, then no instruction decode can be success-
fully done.

There is also “downstream” control logic that looks at SDEC0_V,
SDEC1_V, LDEC_V, and VDEC_V. One of the things that emerges from
this logic is the control of the 5-to-1 multiplexer shown in Figure 2.6 on
page 115, the output of which is the shaded box “Instruction Buffer Index
0” in Figure 2.6 on page 115. If no successful decode of any type can be
done, as was just hypothesized, then the control logic will select the cur-
rent Decode PC, the second input to the multiplexer, to re-circulate its
value. If instead a successful instruction decode can be done, then if at
most one short decode can be done, then the third multiplexer input will
be selected. If, in fact, two short decodes can be done, the fourth input is
selected. If no short decodes can be done, but either a long decode or a
vector decode can be done, the fifth input is selected. In the case of a
branch type instruction being decoded, then the first multiplexer input is
used in the following situations: PC relative jumps, calls, conditional
branches (as decoded by either short decoder), and the RET instruction.
In summary, the logic that controls the multiplexer must address the ques-
tions shown in Figure 2.6 on page 115, namely, “Can a successful instruc-
tion decode be done and, if so, how many instruction decodes and what
types of instructions are they?”

THE DECODERSDecoding of x86 instructions begins when sufficient instruction bytes
have been fetched into the instruction buffer. A single stage in the K6 3D’s
six-stage pipeline is used to decode up to two x86 instructions per cycle.
The K6 3D uses a combination of decoders to convert x86 instructions
into RISC86 Ops. As shown in Figure 2.2 on page 69, this combination
consists of three types of decoders—two short decoders (short decoder 1
and short decoder 2), one long decoder, and one vector decoder. However,
as shown in more detail in Figure 2.6 on page 115, another decoder, the
exception decoder, which we will learn about later, is also involved.

HISTORICAL COMMENT AND DEFINITION

Naming the Vector Decoder

The vector decoder uses “vector” to mean the “address of the location in
a ROM where a sequence of Ops begins.” We retain the name the K6
designers gave it for historical purposes. We will learn more about
OpQuad Sequences in the section titled “OpQuad Sequences and the
RISC86 Operation Set” beginning on page 137.
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Each decoder is specialized to handle a specific group of instructions. The
use of specialized parallel decoders: (a) significantly improves decode effi-
ciency thereby increasing the decode bandwidth, and (b) enables a shorter
clock cycle and thus a higher frequency of operation. The K6 processor
classifies short instructions as the most commonly used x86 instructions

COMPARATIVE ANALYSIS

Pentium II Micro-ops

Intel calls its internal Pentium II microarchitectural operations “micro-ops.” The Pentium II has three x86
instruction decoders that can operate in parallel. Two of them (the second and third decoders) handle only
“short instructions,” each of which produce a single micro-op. As a result, the Pentium II can multiple-
decode only very simple instructions. Other reasonably simple instructions such as “ADD reg,mem” can
only be decoded in a more limited manner. While this can be a good compromise in the context of new and
Pentium II-optimized code, this can be more problematic for decode performance on existing x86 code.

A different approach using two decoders and having each able to decode a larger subset of common
instructions was taken within the K6 3D design. This taken as an improvement of an prototype silicon
implementation of the processor with three moderately capable decoders able to decode a larger subset of
x86 instructions than the two Pentium II simple decoders, but not as large a subset as the final K6 3D
decoders. The K6 3D decoders also differ in being nearly symmetric. Most often, one-to-two Op instruc-
tions (principally with the exception of x87 floating-point instructions) can be decoded as either the first
or the second of a pair of instruction decodes.

What the K6 3D designers found, after analysis of the prototype silicon design and after continuing
analysis of a growing variety of instruction traces from PC applications and system software, was the fol-
lowing set of points:

1. a shorter cycle time (and thus higher frequency of operation) was possible by supporting decode of
only two versus three x86 instruction decodes.

2. the performance loss due to this change (as judged by instruction traces run through a very detailed
and accurate performance model of the design), was far less than the gain in frequency of operation.

3. it was possible to increase the subset of instructions that could be decoded by one of the K6 short
decoders without significantly impacting the cycle time. This was because the Op generation by the
decoders was not part of the most critical and thus cycle-determining timing paths through the de-
code logic.

4. significant architectural performance could be gained with just a moderate increase in the size of
the short decode instruction subset.

The end result of these realizations was the changeover (in going from the prototype to the final K6 3D
design), from having three moderately “simple” decoders to having two more-“sophisticated” decoders.
Unlike what is more commonly the case, the frequency of operation and the (net) architectural perfor-
mance of K6 3D were both significantly improved. Part of this, put differently, is that while the peak decode
rate was decreased, the average instruction decode rate was improved!
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and those that can be implemented using one or two Ops. These instruc-
tions constitute the majority of the x86 instructions and allow the K6 to
typically sustain two x86 instruction decodes per cycle. They are handled
by the short decoders. Less commonly used instructions, and instructions
implemented by three or four Ops, are handled by the long decoder.
Finally, x86 instructions that are the least common, the most complex
instructions, and instructions that require more than four Ops to be
implemented, such as string moves, are decoded using the vector decoder.

The above discussion about the use of the decoders can be expanded
in the context of the length of the x86 instructions that are decoded. Short
decoder 1 and short decoder 2 decode the most commonly used x86
instructions (e.g., moves, shifts, branches, calls, ALU, MMX, 3D, and FPU
instructions) into zero, one, or two Ops each. The short decoders only
operate on x86 instructions that are less than or equal to seven bytes in
length but can decode up to two such instructions per clock.

The commonly used x86 instructions that are greater than seven bytes
in length as well as less commonly used x86 instructions are handled by
the long decoder. The long decoder only performs one decode per clock
but generates up to four Ops. Both the short decoders and the long
decoder can decode instructions longer than seven or twelve bytes when
the extra length is due to prefix bytes. The prefix bytes are accumulated
and then factored into the one short, long, or vector decode that ultimately
occurs.

 

OpQuad sequencesAll x86 instructions that are not handled by either the two parallel
short decoders or the long decoder are decoded by the vector decoder
(e.g., complex instructions, serializing instructions, interrupts and excep-
tions, etc.) Short and long decodes are processed completely within their
respective decoders. Vector decodes, on the other hand, are started by the
vector decoder and then completed by RISC86 OpQuad Sequences
fetched from an on-chip OpQuad ROM. The vector decoder logic pro-
vides: 

1. the initial set of up to four Ops to set up or start execution of the
decoded instruction (this initial OpQuad is sometimes referred to
as the vector OpQuad).

2. a vector (or entry point address) to a sequence of additional Ops
stored in the on-chip OpQuad ROM.

No special types of RISC86 Ops are stored in the OpQuad ROM; it con-
tains the exact same types of Ops as those that are generated by the hard-
ware decoders.
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DECODER COMBINATIONS

All short-decodable integer instructions, as well as the MMX and 3D
instructions, can be decoded by either short decoder 1 or short decoder 2.
As stated earlier, all of the common, and a few of the uncommon, floating-
point x86 instructions are decoded by the short decoders. X86 floating-
point instructions are also known as ESC instructions. Such decodes gen-
erate a RISC86 FpOp and, optionally, an associated RISC86 floating-point
LdOp or StOp. Only the first short decoder, short decoder 1, can be used
to decode x86 floating-point instructions. This restriction allows the gen-
eration of, at most, one FpOp operation per clock, which matches the sin-
gle floating-point execution pipeline. Non-ESC x86 instructions can be
decoded simultaneously by the second short decoder, short decoder 2,
along with an ESC instruction decode in the first short decoder.

All of the x86 MMX and the AMD 3D extensions to the x86 instruc-
tion set are also decoded by the short decoders. MMX and 3D instruction
decodes generate a RISC86 MMXOp and, optionally, an associated
RISC86 MMX LdOp or StOp. Both short decoders can decode MMX and
3D instructions. There are no decoding pairing constraints between inte-
ger, MMX, and 3D instructions.

DECODER AND

SCHEDULER OPQUADS

A copy of the instruction buffer contents is sent to all of the decoders
simultaneously. However, only one of the three types of decoders is used
during any one decode clock. As mentioned earlier in this chapter, a group
of four Ops called an OpQuad is always produced as the output of the
short decoders, the long decoder, the vector decoder, and the OpQuad

Articles on CD-ROM

Chapter 4 in the AMD-K6 3D Processor Code Optimi-
zation Application Note, gives a series of tables show-
ing which decoder and Ops are use for various x86
instructions. This application note is on the CD-
ROM. 

DESIGN NOTE

Simultaneously Decoding ESC and MMX Instructions

Unlike the K6 3D, only the first short decoder, short decoder 1, can be
used to decode x86 MMX instructions in the K6. This restriction allows
the generation of, at most, one x86 MMXOp per clock and matches the
single-pipeline MMX implementation on the K6.

REPORT
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ROM. When decodes cannot fill a group with four useful Ops, the empty
locations of the group are filled with NoOps. For example, a long-decoded
x86 instruction that converts to only three Ops is padded with a single
NoOp operation and then passed to the scheduler’s buffer. Up to six
OpQuads, i.e., twenty-four Ops total, can be in the scheduler’s buffer at
any given time.

An OpQuad passes through the OpQuad expansion logic just before it
is loaded into the scheduler as shown in the following Figure 2.8. MUX A
and MUX B in this figure are the same as those that appear in Figure 2.6
on page 115.

Figure 2.8 DECODER OPQUADS AND SCHEDULER OPQUADS
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To distinguish between the OpQuads produced by the decoders and the
OpQuads produced by the OpQuad Expansion Logic, they will be referred
to as decoder OpQuads and scheduler OpQuads respectively. A decoder
OpQuad consists of four 38-bit Ops to form a 152-bit OpQuad. We will
learn in Chapter 3 that a scheduler OpQuad consists of a variety of static
and dynamic fields that total to 578 bits. OpQuads stored in the OpQuad
ROM are essentially 152-bit decoder OpQuads with an additional 14-bit
sequencing field associated with them for use with the OpQuad ROM
fetch control logic. When they are stored in the OpQuad ROM, these
ROM-based OpQuads have an internal 166-bit OpQuad format. How-
ever, only their decoder OpQuad component is ever sent to the scheduler.
Thus, in all cases, as is shown in Figure 2.8 only 152-bit decoder OpQuads
are sent to the OpQuad Expansion Logic to be expanded into 578 bit
scheduler OpQuads. The contents and formats of decoder OpQuads will be
discussed later in this chapter as will all of the resources shown in Figure
2.8. Scheduler OpQuads, as noted above, are discussed in Chapter 3.

Before leaving this section, we call your attention to the control signal
for the MUX B multiplexer in this diagram. There is some control logic
and a single bit of state in the scheduler that is used to distinguish between
the use of the hardware decoders and the use of OpQuad Sequences
fetched from the OpQuad ROM. We will identify these two states respec-
tively as the “hardware decoders are active” state and the “OpQuad ROM
fetch is active” state. Whenever the system is in “OpQuad ROM fetch is
active” state, it will remain in the state until the last OpQuad in the
OpQuad Sequence, as identified by action in the sequencing field of a
ROM-based OpQuad, has completed processing. When this occurs the
state will change to the “hardware decoders are active” state. The system
will remain in this state until a condition arises, such as a vector decode is
encountered or an exception abort is encountered, that require OpQuad
Sequences to be fetched from the OpQuad ROM. This will be discussed
later in this chapter.

THE SCHEDULER As mentioned earlier, the scheduler is the heart of the K6 microarchitec-
ture. It contains the logic necessary to manage out-of-order issue, specula-
tive execution, data forwarding, register renaming, and the simultaneous
issue, execution, and retirement of multiple Ops. Said differently, the
scheduler, shown in Figure 2.9 on page 130, contains logic to track Ops
throughout their lifetime, determine dependencies, schedule execution,
and commit architecture state. Whenever possible, the scheduler can
simultaneously issue Ops to appropriate execution units.
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One of the main components of the scheduler is its centralized buffer. The
main advantage of the scheduler and its centralized buffer is the ability to
examine the Ops associated with up to twelve x86 instructions at one time.
The scheduler examines the contents of the buffer in parallel and performs
dynamic scheduling of the Ops for optimized execution. Since the sched-
uler can issue the Ops out-of-order and speculatively, the corresponding
x86 instructions are executed out of order and speculatively. However, the
scheduler always retires the Ops in order; thus, the x86 instructions are
always retired in order. In total, the scheduler can issue up to six Ops and
retire up to four Ops per cycle.

The OCU (Op Commit Unit) is also shown in this figure. It is sepa-
rated from the scheduler’s resources by the dashed line to indicate that it is
not part of the scheduler. It has been included in the figure because it will
be discussed later in this section in terms of its interaction with the sched-
uler.

The scheduler’s buffer is logically structured as a FIFO (first-in, first-
out) queue. Younger Ops (later in the program order) enter at the top of the
buffer. Older Ops (earlier in the program order) are at the bottom of the
buffer. Ops enter the top of the buffer four at a time as a scheduler OpQuad
and are retired up to four at a time (again as a scheduler OpQuad) from the
bottom. For purposes of this discussion, the buffer will be thought of as
either having six elements (each element being a scheduler OpQuad) or
being six rows deep. The rows are numbered from 0 to 5, with 0 referring
to the top row (youngest Ops) and 5 referring to the last row (oldest Ops).
Each of the buffer’s six rows has four entries, one for each of the four Ops.
The entry for an Op is called the Op Entry associated with that Op. A row
of four Op entries corresponds to a scheduler OpQuad—the four entries/
row correspond to four Ops/row or one scheduler OpQuad/row.

The execution units do not have specialized reservation stations or
queues that are blocked if the execution unit itself is stalled. Rather, the
pending Ops are in the centralized buffer’s Op entries. Many Ops are
immediately eligible for execution when they are loaded into the top row
of the buffer, but may, in fact, be issued to appropriate execution units
from any point in the buffer. 

COMPARATIVE ANALYSIS

Combined Reservation Station and Reorder Buffer

The K6’s scheduler includes both centralized reservation station and
reorder buffer functionality. This is in contrast to other processor
designs, such as the Intel Pentium Pro, where these are separate struc-
tures.
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Figure 2.9 THE SCHEDULER AND ITS  CENTRAL IZED BUFFER
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Video Clip on CD-ROM

In this video clip, Amos Ben-Meir, Principal Designer
of the K6 3D addresses the following question, “How
does the K6 3D scheduler work?
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Each clock cycle:

1. new Ops can be loaded into the buffer.

2. existing Ops can be issued, advanced in their execution, and com-
pleted (with appropriate updating of their execution state).

3. old and completed Ops can be committed and removed from the
buffer.

All LdOps and StOps and most RegOps can execute from any row in the
buffer. However, some Ops (such as the evaluation of conditional
branches and RegOps that depend on status flags) are executed when the
Ops reach a particular row of the buffer. This simplifies and speeds up the
hardware by eliminating a design requiring the ability to support
execution of these “special” Ops in other rows. Scheduling delays are
minimized by selecting the row for executing such operations to be where
the necessary operands are likely to be available. For example, Ops that
depend on status flags (such as ADD-with-carry) are handled lower in the
scheduler at a point where older operations are likely to have completed
modification of the status flag values required for the completion of the
status flag- dependent operation.

 

The terms 

 

dispatches

 

 and 

 

issues

 

 

 

are used interchangeably in this 

 

book.

The scheduler issues (i.e., dispatches) the Ops to the execution units. The
Ops are selected and issued by the issue selection logic according to:

1. the type and availability of an execution unit—this means that dif-
ferent types of Ops can be executed out of order with respect to
each.

2. sequential program order. 

DESIGN NOTE

State and Position are Independent

The state of the Op is independent of its position in the buffer. However,
the longer an Op is in the scheduler, the greater the chance that the Op
will be issued and completed.

DESIGN NOTE

Execution of Status Flag-Dependent Ops

Additional circuitry that would allow execution of status flag-dependent
Ops higher in the scheduler’s buffer would provide minimal improve-
ment in Op execution rate because the necessary flags are unlikely to be
available when a status flag-dependent Op is in a higher row of the
buffer.
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The physical position of an entry in the buffer indicates the program order
of the corresponding Op. Each entry contains:

1. storage for the information required for the execution of the asso-
ciated Op and storage for the result values produced by the execu-
tion of the Op.

2. logic for directing the information to the correct execution unit
when required.

3. logic for detecting and handling register, status flag, and memory
dependencies.

The result values stored in an entry provide the register and status values
at the corresponding point in the program order. The buffer’s entries are
general in the sense that any entry can be used for any type of Op. There is
no need for separate, specialized queues for Ops destined for different exe-
cution units—the entries in the scheduler are not specialized according to
the type of Op that is to be executed.

The determination of dependencies between Ops and the generation
of operand forwarding controls takes advantage of the physical ordering of
the Ops within the buffer and also depends on the fact that all Ops reside
in this central, general entry buffer. Furthermore, as will be seen later, the
scheduling and execution of an Op is independent of the grouping of Ops
into rows.

The scheduler retains result values until the OCU determines that no
exception and no mispredicted branch precedes the associated operation.
After the execution of an abortable operation, the results of the operation
are kept in the associated scheduler entry and/or in a store queue. If the
OCU determines that the oldest executed operations would be generated
in a sequential execution of the program, the results are made permanent
by writing them to a register file, a status register, cache, or memory, and
the operation is retired. If the OCU determines that a result would not be
generated in a sequential execution of the program due to an exception or
mis-predicted branch at that point, the operation is retired without mak-
ing permanent changes.

DESIGN NOTE

Position in the Scheduler and Program Order

The physical position of an entry in the scheduler’s buffer indicates the
program order of the corresponding Op. The result values stored in an
entry provide the register and status values, produced by that specific
Op, at the corresponding point in the program order.
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Abortable state changes are supported by the scheduler and the store
queue through the general technique of temporarily storing (a) register
and status results in the scheduler and (b) memory write data in store
queue entries until the associated Ops are committed and retired. Perma-
nent state changes are made during Op commitment when it is safe and
definite for the changes to be made. While these new state values reside in
the scheduler and the store queue, they are forwarded to dependent Ops as
necessary. Nonabortable state changes, in contrast, occur immediately
during execution of certain special RegOPs and the responsibility or bur-
den is placed on the OpQuad Sequences containing these RegOPs to
ensure sufficient synchronization with surrounding operations.

Later it will be shown that the scheduler incorporates the functions of
a reorder buffer and implied register renaming. Explicit tags indicating the
program order of operation results are not used. The physical positions of
entries in the scheduler indicate the program order of the corresponding
operations. The result values stored in an entry provide the register and
status values of the “renamed” registers at the associated point in the pro-
gram order. Explicit register renaming is not required. Exactly how renam-
ing is accomplished will be discussed in Chapter 3. Briefly, the scheduler’s
use scan chains which, when directed in the proper physical direction
across the scheduler Op entries, locate preceding or older Ops that affect
desired register operands and status flags for subsequent operations. 

The following is a summary of the role each of the units identified in Fig-
ure 2.9 on page 130 play in the scheduler processes just described. Each
unit is discussed in detail in Chapter 3.

ISSUE SELECTION LOGIC

The issue selection logic is involved with the selection of the next Ops to
enter the LU, SU, RUX, and the RUY processing pipelines—i.e., four Op
selections occur every clock. Each cycle, based on the updated state infor-
mation in the scheduler as of the beginning of the cycle, the issue selection
logic performs a selection process to determine the next LdOp, the next
StOp, and the next two RegOps to be issued into the corresponding execu-
tion unit processing pipelines.

Audio Clip on CD-ROM

This audio clip gives a summary of the K6 3D’s sched-
uler’s functions.
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OPERAND SELECTION LOGIC

The operand selection logic is involved with determining:

1. the status of each value, i.e., whether a valid value is or is not avail-
able from the designated source.

2. where each of nine operand values actually needs to come from—
i.e., from which specific scheduler Op entry, architectural register,
or execution unit result bus.

Based on this information, the scheduler determines which Ops will be
able to advance in their respective execution pipelines and actually start
execution.

LOAD/STORE ORDERING LOGIC

Just as certain execution ordering must be maintained between Ops due to
register dependencies, a certain degree of execution ordering must be
maintained between LdOps and StOps due to memory dependencies. For

Historical Comment and Suggested Readings

Reorder Buffer

Processors that support speculative and out-of-order execution typically have operations completing exe-
cution before they are ready to be committed. The results of such operations are not committed (i.e., pro-
ducing permanent state change) until it is safe to do so. The collection of storage elements that hold the
results of the as-yet-uncommitted operations is often called a reorder buffer, for it is from this buffer that
the instructions which have been executed out of order will be reordered and committed in an in-order
fashion. A reorder buffer also supports the use and forwarding of results of completed operations as source
operands for other dependent operations. The K6 is an example of a microprocessor in which its reorder
buffer (included in the scheduler’s centralized buffer functionality) also serves as an environment to sup-
port register renaminga. As we will learn in Chapter 3, the K6’s renaming registers hold result register val-
ues in the DestVal field of the appropriate Op entries in the scheduler until they are committed. In the K6,
a single unified structure, the scheduler’s buffer, was designed to hold all information related to the pro-
cessing of an Op throughout its lifetime. All Ops enter the scheduler after being decoded (or fetched from
the OpQuad Sequence ROM) and remain there until the end of their life (i.e., until they are committed or
removed). Most out-of-order execution designs utilize separate structures for the functions of a reorder
buffer, reservation stations, and possibly other dispatch queues.

See, “Implementation of Precise Interrupts in Pipelined Processors,” by J. E. Smith and A. R.
Pleszkum, Proceedings of the 12th Annual International Symposium on Computer Architecture,
June 1985, pp. 34-44. You can find the full text version of this article on the CD-ROM.

a See the section titled “Register Renaming” beginning on page 300.
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example, LdOps cannot freely execute ahead of older StOps. There are two
chunks of logic, one associated with the LU pipeline and one associated
with the SU pipeline that deal with this ordering and determine when
given LdOps and StOps are independent of each other and thus can safely
be allowed to execute out of order with respect to one another. These two
chunks of logic are collectively referred to as the load/store ordering logic
in Figure 2.9 on page 130.

STATUS FLAG HANDLING LOGIC

There is a chunk of scheduler logic, called the status flag handling logic,
associated with the fetching and usage of status flag operand values. Two
relatively independent areas are involved: the fetching of status flag values
for status-dependent RegOps and the fetching of status flag values for the
resolution of BRCOND Ops.

STATUS FLAG-DEPENDENT REGOP LOGIC

 

cc-dependent Ops

 

cc-dep Ops
All status-dependent RegOps, which are referred to as condition code
dependent, “cc-dependent,” or “cc-dep” Ops, are executed by the RUX or
RUY execution units and require their status operand value with the same
timing as their register operand values. The status flag-dependent RegOp
logic is responsible for ensuring that this happens correctly.

BRANCH RESOLUTION LOGIC

As is shown in Figure 2.21 on page 175, a BRCOND Ops (BrOp) does not
require any actual execution processing. Instead, while a BRCOND Op is
outstanding and before it reaches the bottom row of the scheduler’s buffer,
it must be resolved as to whether the associated conditional branch
instruction was correctly predicted or not. This is done for each BRCOND
Op, in order, at a rate of up to one per cycle. When the above status flag-
handling logic obtains the appropriate status for the next unresolved
BRCOND Op, the appropriate set of status flag values is used to determine
if the condition code specified within the BRCOND Op is TRUE or
FALSE. If valid values for the required status flags are not yet all available,
then resolution of the Op is held up.

If the branch condition is FALSE, the BRCOND Op was incorrectly
predicted and an appropriate restart signal is immediately asserted to
restart the upper portion of the processor at the correct next program
address (i.e., the instruction fetch and decode portion—see Figure 2.4 on
page 87). The correct address is either the branch target address or next
sequential address, whichever was not predicted.

If the branch was correctly predicted, then nothing happens other
than BRCOND Op resolution processing advances on to the next
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BRCOND Op. The branch resolution logic (also called the BRU earlier) is
concerned with resolving these issues.

SELF-MODIFYING CODE SUPPORT LOGIC

The self-modifying code support logic is concerned with the detection and
handling of self-modifying code. Logically, in the scheduler, a detection of
self-modifying code is treated as a type of an instruction trap (see the sec-
tion titled “Handling Faults, Traps, and Precise Interrupts” beginning on
page 175). The store queue provides the physical address of the store it is
preparing to commit. It supplies “linear address” bits which are logically
also the “physical address” bits since these bits are only untranslated bits.
The bits are compared against the instruction addresses of each following
OpQuad. If any OpQuad addresses match, then there may be a write to an
instruction which has already been fetched, decoded, and is now in the
scheduler. This is a potential self-modifying code situation. Accordingly,
the scheduler is then flushed of these following OpQuads and the upper
portion is restarted to refetch and redecode the associated x86 instruc-
tions, starting with the instruction after the “modifying” instruction.

GLOBAL CONTROL LOGIC

Basically, the global control logic coordinates the overall operation of the
scheduler. For example, it issues the control signals to load the pipeline
registers and it controls the source operand input multiplexers for each of
the execution units.

OPQUAD EXPANSION LOGIC

This chunk of logic, which is shown in Figure 2.8 on page 127, expands
decoder OpQuads into scheduler OpQuads before they are loaded into the
top row of the scheduler. A description of what occurs during this expan-
sion process is given in Chapter 3.

DESIGN NOTE

False Self-Modifying Code Traps

Due to cycle-time constraints, the self-modifying code logic does not
compare all of the address bits. Therefore, an “address” match does not
necessarily mean that the code is self-modifying. It is possible for a false
self-modifying code trap to occur. Since the lower address bits are com-
pared, these false traps can only occur when the memory size exceeds
1Mbyte, and even then they are statistically rare. In this situation, the
processor is flushed as with normal trap handling, resulting in a small
and transient performance loss.
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OP COMMIT UNIT

The OCU operates in conjunction with the scheduler and generally oper-
ates on the Ops within the bottom two rows of the scheduler. During each
cycle the OCU examines each of the Ops within the bottom OpQuad and
tries to commit the results of as many of these Ops as possible. It is possi-
ble for the state changes of all four Ops to be committed in one cycle or for
this to take many cycles. If all the Ops of an OpQuad have been committed
or are being successfully committed, then the OpQuad is retired from the
scheduler at the end of the current cycle. Otherwise, as many changes as
possible are committed during the current cycle and the process is
repeated on successive cycles until all changes have been committed. In
some cases, the OCU will also look ahead into the second from the bottom
OpQuad to (a) start committing StOps while RegOps in the bottom
OpQuad remain to be committed, or (b) commit, in certain potential
deadlock situations, register results while the bottom OpQuad cannot yet
be retired from the scheduler. Thus the OCU’s principal function is to
commit the results of Ops and then to retire them from the scheduler. It
also handles mispredicted BRCOND Ops by initiating abort cycles for
them.

OPQUAD SEQUENCES

AND THE RISC86
OPERATION SET

The performance of a microprocessor that decodes CISC instructions into
RISC operations for execution on a RISC microarchitecture depends
greatly on the number of RISC operations produced from a single CISC
instruction. The decoding of the x86 instructions involves, in part, a map-
ping of variations of similar instructions into one or more Ops, (e.g., the
decoding of the many variations of an x86 ADD instruction into an ADD
Op.) A large number of the x86 memory addressing forms of a particular
instruction can be converted into load or store Ops (LdOps or StOps)
accessing memory in combination with a register-to-register Op (a
RegOp).

OPQUAD SEQUENCES

Instruction decoders in superscalar microprocessors such as the Pentium,
Pentium Pro, and the K6 often include one or more decoding pathways in
which x86 instructions are decoded by hardware logic and a separate
decoding pathway which uses an on-chip ROM memory for fetching an
OpQuad Sequence that corresponds to a complex or uncommon x86
instruction. OpQuad Sequences may also be initiated as a result of servic-
ing an exception or a trap. There is an important issue centered around an
OpQuad Sequence that realizes the semantics of an x86 instruction. X86
instructions are atomic entities in the x86 instruction set architecture. This
means that once they begin executing, they complete execution without
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any interruption. Thus, the x86 instruction’s OpQuad Sequence must also
be atomic—i.e., it must finish execution without interruption. To achieve
this, the hardware decoders are inactive when an OpQuad Sequence from
the OpQuad ROM is in the process of executing (see a related comment in
the section titled “Use of the Predecode Bits” beginning on page 121).

 

OpQuad ROM One problem with using the OpQuad ROM for storing OpQuad
Sequences is that the process of accessing a ROM is typically slower and
less efficient than hardwired decoding of instructions.19 Another problem
is that if a substantial number of x86 instructions are implemented by
OpQuad Sequences, a large OpQuad ROM is required for storing them.
Obviously, if the OpQuad ROM is large, there is increased circuit com-
plexity for deriving and applying the pointer (vector) into it to identify the
appropriate OpQuad sequence. Increased circuit complexity directly
relates to increased overhead, which reduces instruction decoding
throughput. Furthermore, a large OpQuad ROM increases the size of the
processor’s circuitry which, in turn, can reduce the manufacturing yields
and increase production costs.

The approach taken to resolve the issues surrounding the use of an
OpQuad ROM and OpQuad Sequences in the K6 was to design a RISC86
Op Set that would:

1. facilitate the decoding of as many x86 instructions as possible into
a small (i.e.,“minimum”) number of OpQuad Sequences.

2. permit more common x86 instructions to be decoded using hard-
wired logic, versus being implemented using OpQuad Sequences
stored in the OpQuad ROM.

19  It is interesting to note that the K6 has the same Op fetch/generation band-
width in either case, as will be shown later.

Historical Comment and Suggested Readings

Environment Substitution

Designers of some early microprogrammable machines recognized that a number of microcode sequences
used to emulate ISAs were quite similar, differing, for example, only in the specific registers manipulated.
To take advantage of this situation, the specific registers used in the microcode sequence were specified in
auxiliary registers whose values were “merged” with the microcode sequence as it was being executed.
Such implementations can be viewed as precursors to the K6’s OpQuad Template environment substitu-
tion and its use of dynamic fields (see, for example, the article by Gerald Jay Sussman, Jack Holloway, Guy
Lewis Steel, Jr., and Alan Bell, “Scheme-79—Lisp on a Chip,” in Computer, July, 1981, pp. 10-21). For a
description of a microarchitecture which dealt with some of these issues and proposed a “snooper” facility
for doing both microcode debugging and performance measurements see, B. D. Shriver, “A Description of
the Mathilda System,” Department of Computer Science, University of Aarhus, Denmark, April 1973.
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To achieve this, RISC86 Ops are relatively “powerful”—for example,
LdOps and StOps support (base + scaled index + displacement) address
computations within one Op and executing in one cycle. The K6’s
OpQuad ROM and its relationship to other resources (such as the instruc-
tion vector decoder and the exception vector decoder) is shown in Figure
2.6 on page 115. The relationship is shown in more detail in Figure 2.10.

Figure 2.10 OPQUAD ROM, VECTOR DECODER, AND EXCEPT ION DECODER

It is important to understand that all x86 instructions have a correspond-
ing OpQuad sequence in the OpQuad ROM. The hardware decoders can
be viewed as a performance enhancement over invoking every specific
OpQuad sequence when needed. The presence of the hardware decoders
also reduces the pressure to maximize the performance of the logic associ-
ated with implementing OpQuad sequences. 
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The K6’s RISC86 Op Set is highly regular with a fixed length and format
for each Op type. By comparison, conventional x86 instructions are highly
irregular, having greatly different instruction lengths and formats.
OpQuad Sequences, when required, are implemented in a small OpQuad
ROM and exploit the reuse of operation structures for variations that are
common among x86 instructions.

 

OpQuad templates

 

environment substitutions

 

OpQuad e

 

execution environment 

 

registers

 

force leading NoOps logic

The short decoders and the long decoder produce decoder OpQuads.
The instruction vector decoder produces an initial decoder OpQuad and
an entry point address to an OpQuad Sequence in the OpQuad ROM. The
OpQuad Sequence consists of a sequence of OpQuad templates. The envi-
ronment substitutions logic, shown in Figure 2.6 on page 115 and Figure
2.10 on page 139, processes various fields in the OpQuad templates and
outputs decoder OpQuads. An OpQuad Sequence environment is main-
tained in the OpQuad Execution Environment Registers in the instruction
vector decoder and includes default address and data sizes for the code
segment and the register numbers from the x86 instruction. The environ-
ment variables allow a section of an OpQuad Sequence to be re-used for
different x86 instructions by proper replacement of field values with envi-
ronmental variables appropriate for the code section and x86 instruction.
Importantly, the OpQuad ROM contains OpQuad Sequences where not
all of the Ops in the OpQuads are actually part of the implementation of
one specific x86 instruction. Such Ops are changed to NoOps by the Force
Leading NoOps logic as required for the x86 instruction being decoded.
The use of the execution environment substitution achieves encoding of
the x86 instruction set architecture functionality while substantially
reducing the number and size of the code sequences in the OpQuad ROM.
Correspondingly, this approach also reduces the size and cost of required
circuitry.

The exception vector decoder and the OCU produce entry point
addresses into the OpQuad ROM, but do not produce an initial vectoring
OpQuad as the hardware instruction vector decoder does. Concurrent

DESIGN NOTE

Indirect Register Names

The “reg” and “regm” mnemonics in Table 2.4 on page 92 represent indirect register names for the x86’s
32-bit integer registers (i.e., AX-DI or AL-BH). They are replaced, at Op decode time, by the current regis-
ter number (i.e., 00xxx) from the corresponding EmReg or EmRegM execution environment variable.
Similarly, the “MMreg” and “MMregm” mnemonics represent indirect register names for the x86’s 64-bit
MMX registers (i.e., MM0-MM7). They are replaced, at Op decode time, by the current register number
(i.e., 11xxx) from the corresponding EmReg or EmRegM environment substitution variable. As was seen
in Table 2.4, the indirect register names have multiple encoding. This is done to reduce decode logic.
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with an abort cycle, the OCU also vectors the machine to one of two possi-
ble OpQuad Sequence entry point addresses—either the “default” OCU
fault handler address or an “alternate” OCU handler address (see “A” in
Figure 2.10). The setting of these addresses is supported by the LDDHA
Op (load default handler address) and the LDAHA Op (load alternate han-
dler address). The default fault handler address is initialized by the proces-
sor reset OpQuad Sequence and the alternate handler address is specified
within OpQuad sequences for some x86 instructions and for some cases of
exception processing. Alternative handler addresses remain active from
execution of the LDAHA Op (a) until the end of the instruction or excep-
tion processing OpQuad sequence, or (b) until another LDAHA Op exe-
cutes. At this point, control for subsequent faults reverts to the default
fault handler addresses. 

There are a few additional resources in Figure 2.10 on page 139 that we
should explain to give you a more complete understanding of the decod-
ing process and OpQuad ROM work.

The Op Sequence and Action Fields

Every OpQuad must specify a branch, even if it is only a branch to the
next sequential instruction in the ROM. Branches in OpQuad sequences
are specified by a combination of the SpecOp Type field (discussed later in
Table 2.39 on page 155), the Op Sequence field and the action field, both of
which are shown in Figure 2.10. There is a single Op Sequence field and a
single action field for each OpQuad in the OpQuad ROM. The action field
specifies the type of branch. The branches may be conditional. Thus, in
addition to the Op sequence and action fields, the OpQuad may also con-
tain a BRCOND Op. If there is a BRCOND Op, then the OpQuad
sequence branch is considered to be a conditional branch. If it does not,
then the OpQuad sequence branch is considered to specify an uncondi-

DESIGN NOTE

Decoder OpQuads, Scheduler OpQuads, and OpQuad Templates

As was mentioned earlier and as shown in Figure 2.8 on page 127, the
decoder OpQuads produced by the decoders pass through the OpQuad
Expansion Logic to produce scheduler OpQuads prior to being loaded
into the scheduler’s buffer. When we use the term “RISC86 Ops,” we are
referring to the Ops in decoder OpQuads and the fields and formats of
these Ops. The differences between the contents of decoder OpQuads
and scheduler OpQuads is discussed in Chapter 3. The OpQuad ROM
stores OpQuad Templates that are changed into decoder OpQuads by the
environmental substitution logic. 
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tional branch. The exception to this is the OpQuad sequence subroutine
branch (BSR), discussed below, which is always unconditional, yet always
requires a BRCOND Op in the OpQuad to supply the return address in
the Return Address Field. You can have four Ops plus a branch in a single
OpQuad if the branch is unconditional, but only three Ops plus a branch
in an OpQuad if the branch is conditional (or is a BSR branch).

OpQuad Sequence Subroutines

An OpQuad sequence can branch to a subroutine in the OpQuad ROM by
executing the BSR branch described above. The Subroutine Return
Address Register represents a one-deep OpQuad Sequence return address
stack. This allows one level of subroutine nesting within OpQuad
sequences. Being only one entry, this allows extremely simple control logic
(for example, no actual top-of-stack pointer needs to be maintained, par-
ticularly in the face of mispredicted OpQuad sequence branch and excep-
tions). In practice this proves sufficient for most all OpQuad sequences
across the entire x86 instruction set architecture functionality. OpQuad
sequence subroutines need not return to the OpQuad following the caller. 

Initial Vector OpQuad Generation Logic

The Initial Vector OpQuad generation logic handles the generation of an
initial four Ops during an instruction vector-decode cycle (in parallel with
generation of a ROM entry point address of the appropriate instruction
OpQuad Sequence). During successive clock cycles, additional OpQuads
are supplied by the ROM. The initial vectoring OpQuad varies between
instructions. There are special cases for certain specific instructions, but
most are grouped into a small number of categories or cases. For each of
these general cases (e.g., for the register and for the memory forms of x86
mod R/M instructions), the Ops in the vectoring OpQuad primarily serve
to set up various immediate displacement, and/or effective memory
address values in scratch integer registers (via LIMM Ops). The fourth of
the four Ops is typically the address of the next sequential instruction. 

Address Latch

And finally in Figure 2.10 on page 139 there is the Address Latch. This latch
is simply a registered address input to the ROM. This holds the ROM fetch
address from the end of one clock cycle to the start (and completion) of
the fetch itself in the next cycle.

FORMATS FOR DECODER OPS

A decoder OpQuad consists of four 38-bit Ops. Decoder OpQuads can
contain LdOps and StOps, RegOps, SpecOps, and LIMMOps. The for-
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mats for these Ops are shown in Table 2.22 on page 143, Table 2.30 on
page 150, Table 2.38 on page 155, and Table 2.42 on page 158, respectively.
Although some of the fields are similar, there are a number of differences
among these Op formats. Having an understanding of these fields will
help you understand the mappings between the decoder OpQuads and
scheduler OpQuads that the OpQuad Expansion Logic implements. The
following diagram indicates how we will cover these topics:

The decoder Op formats are presented in this section. The scheduler
OpQuad formats are discussed in Chapter 3. Explanations of various
chunks of the OpQuad Expansion Logic exist in numerous pseudo-RTL
descriptions running throughout Chapter 3. We’ll begin by looking at the
format of LdOps and StOps. 

LDOP AND STOP FIELD DESCRIPTIONS

LdOps and StOps perform memory accesses and related operations. They
have the following format in a decoder OpQuad: 

We now describe each of the fields in this table: Type[3:0], ASz[1:0],
DSz[1:0], Data[4:0], Seg[3:0], Base[3:0], Index[3:0], ISF[1:0], LD, and
Disp8[7:0]. The Type[3:0] field specifies the specific type of LdOp or StOp
to be performed according to the following table: 

OpQuad
Expansion Logic

Decoder OpQuads Scheduler OpQuads

Chapter 3

Numerous Pseudo-

RTL Descriptions in

Chapter 3Chapter 2,

This Section

Table 2.22 DECODER OPQUAD LDOP AND STOP FOR MAT

37 36 35    32 31 30 29   26 25     24 23      22 21      17 16 15      12 11            4 3   0

0 1 Type ISF Seg ASz DSz Data LD Base Disp8 Index
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Historical Comment and Suggested Readings

 Expanding Microinstructions

The technique of expanding a “smaller” microinstruction into one or more “larger” microinstructions has
a long history of use in processor design. The Nanodata QM-1 is typical of two-level emulation systems.
The machine had both a control store for holding microinstructions and a nanostore for holding nanoin-
structions. The control store consisted of from 2K to 65K 16-bit words and the nanostore consisted of up
to 1K 342-bit words. A microinstruction (usually) consisted of a 6-bit opcode field and two 5-bit address
parts. Microprograms consisted of sequences of microinstructions. Microinstructions can be viewed as
pointers in nanostore. A nanoinstruction consisted of a 38-bit constant field and four 76-bit T-fields.
Execution progressed from the first T-field, then to the second T-field and so on and then returned to the
first T-field. A nanoinstruction could specify a branch to another nanoword specified by a 10-bit subfield
of the K-field. T-fields can be skipped. These features allowed a microinstruction to be realized by: (1) the
execution of one-to-four T-field operations in a single nanoinstruction, (2) a nanoprogram consisting of
the iterative execution of a single nanoinstruction, (3) a nanoprogram consisting of the successive execu-
tion of multiple nanoinstructions, (4) a nanoprogram combining nanoprograms of types 2 and 3. One
can view the 16-bit microinstructions being expanded in place into a set of 342-bit nanoinstructions dur-
ing the execution of a microprogram. Given this, there are two interesting features to mention in this his-
torical comment: (a) there could exist nanowords that were common to more than one microinstruction
and (b) one could essentially use some of the fields of a microinstruction as parameters to the nanopro-
gram. The QM-1, like other microprogrammable machines, made extensive use of residual data and con-
trol. This allowed microinstructions to set up an environment for execution by other microinstructions. In
the case of the QM-1, this meant for nanoprograms as well. Of interest is the fact that (a) the mapping of
microprogram-accessible registers’ host resources could be statically established upon entry to an emula-
tor or dynamically altered by reestablishing bus address mappings within microprograms, and (b) the
addresses of interrupt-specific nanoprograms were specified in a set of registers so they could be dynami-
cally changed by the nanoprogrammer (see, for example, the articles by Robert F. Rosin, Gideon Frieder,
and Richard H. Eckhouse, Jr., “An Environment for Research in Microprogramming and Emulation,” in
Communications of the ACM, Vol. 15, No. 8, August 1972, pp. 748-760, and by Michael J. Flynn and Robert
F. Rosin, “Microprogramming: an Introduction and a Viewpoint,” IEEE Transactions on Computers, July,
1971, pp. 721-731).

For an interesting discussion of various vertical, diagonal, and horizontal single-level and two-level
microinstruction formats for a variety of different processors see the book, Foundations of Microprogram-
ming, by Ashok K. Agrawala and Tomlinson G. Rauscher, Academic Press, 1976. A number of early papers
dealing with microcode verification can be found in Firmware, Microprogramming and Restructurable
Hardware, by Gerhard Chroust and Jorg R. Muhlbacher, North-Holland Publishing Company, 1980.
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The LDL Op is a synonym for LD which is used as the first of a pair of LD
Ops used to read an 8-byte segment descriptor. All LdStOps, except for ST,
STF, and STM, produce a result that is stored in a general register. LdOps
load a general register (the data register) with data from memory. For
CDA, CIA, TIA, and LEA StOps, the data register is loaded with the calcu-
lated effective (logical) address. In both of these cases, the register modifi-
cation size is based on the DSz field. For STUPD StOps, the base address
register is loaded with the calculated effective (logical) address (i.e., “store
and update”). The register modification size is also based on the ASz field
instead of the DSz field.

The ASz[1:0] field specifies the address calculation size (in bytes)
before and after the environment substitutions described above and
according to the table on the following page: 

Table 2.23 LDOP AND STOP TYPE[3:0] F IELD

Type[3:0] Op Symbol Type of LdOp or StOp to be Performed

0000 LD, LDL Load integer data

0001 LDF Load floating-point data

0010 LDST Load integer data with store check

0011 LDM Load MMX or 3D data

0100 CDAF(X) CDA (see below) plus flush cache line(s)

0101 LDPF Load Prefetch (prefetches a block)

0110 LDSTL Load integer data with store check, locked

0111 LDMSTL Load MMX or 3D data with store check, locked

1000 ST Store integer data

1001 STF Store floating-point data

1010 STUPD Store integer data and update base register

1011 STM Store MMX or 3D data

1100 CDA Check “data” effective address (segment and page protection)

1101 CIA Check “instruction” effective address (segment protection only)

1110 TIA TLB invalidate address (based on TLB index only)

1111 LEA Load effective address
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The DSz[1:0] field specifies the size of the data (in bytes) before and after the
environment substitutions described above and according to the following
two tables. The first table is for all LdOp and StOp operation Types other than
LDF, STF, LDM, and CDAF(X):

The second table is only for the LdOp and StOp operation Types LDF, STF,
LDM, and CDAF(X): 

Table 2.24 LDOP AND STOP ASZ[1:0] F IELD

ASz[1:0]

Address Calculation Size 
Before

Environment Substitution

Address Calculation Size 
After

Environment Substitution

00 Asize 2 Bytes

01 Ssize —

10 4 Bytes 4 Bytes

11 Dsize —

Table 2.25 DSZ[1:0] F IELD FOR LDSTOPS OTHER THAN LDF STF, 
LDM, & CDAF

DSz[1:0]

Data Size Before
Environment 
Substitution

Data Size After
Environment 
Substitution

00 1 Byte 1 Byte

01 2 Bytes 2 Bytes

10 4 Bytes 4 Bytes

11 Dsize —

Table 2.26 DSZ[1:0] F IELD FOR LDSTOPS LDF, STF, LDM & 
CDAF

DSz[1:0]

Data Size Before
Environment 
Substitution

Data Size After
Environment 
Substitution

00 FpDSize —a

a  LDF and STF only.

01 2 Bytes 2 Bytes

10 4 Bytes 4 Bytes

11 8 Bytes 8 Bytes
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The Data[4:0] field specifies the general register to be used by an Op. The
register field encodings can be found in Table 2.4 on page 92. If the Op is a
LdOp, the specified register should be thought of as a “destination” regis-
ter. If the Op is a StOp, it should be thought of as the “source” register of
the data to be stored. The Seg[3:0] field specifies the segment register to be
used by this Op for the “segment descriptor.”

The Base[3:0] field specifies the general register containing the base address
operand for this Op. The Index[3:0] field specifies the general register con-
taining the index address operand for this Op. The Base and Index register
fields only refer to the low half of the general register set, i.e., to AX-DI and t0-
t7. The mapping between the set of x86 architectural registers and the set of
microarchitectural physical registers is discussed in detail in Chapter 3.

Table 2.27 LDOP AND STOP SEG[3:0] FIELD

Seg[3:0] Register Description
0000 ES x86 architectural ES register

0001 CS x86 architectural CS register

0010 SS x86 architectural SS register

0011 DS x86 architectural DS register

0100 FS x86 architectural FS register

0101 GS x86 architectural GS register

0110 HS
microarchitectural temporary segment reg-
ister

0111 — reserved

100x TS

“descriptor table segment register” for 
accessing the x86 architectural global and 
local descriptor tables (GDT and LDT 
respectively)

1010 LS
“linear segment register” (i.e., the segment 
base = 0)

1011 MS

“special memory” memory segment regis-
ter (the special memory contains the 
“scratchpad” memory, as well as other spe-
cial address spaces—I/O, cache flush, and 
special bus cycles)

11xx OS
effective x86 architectural operand seg-
ment register
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Note the use of the scaled index in Figure 2.17 on page 166. The ISF[1:0]
field specifies the index register scale factor according to the following
table:

The LD (large displacement) field specifies what field is to be used as the
displacement according to the following table:

In order to understand what the choice means when LD = 1, we need to
revisit Figure 2.8 on page 127. A modified version of it appears as Figure
2.11, below. 

DESIGN NOTE

Expanded Segment Register Address Space

The segment register address space has been expanded to four bits,
allowing additional special microarchitectural segment registers to be
supported. The segment OS register is replaced when the environment
substitution occurs by 0xxx, where xxx is the register number from the
OpQuad Sequence environment.

Table 2.28 LDOP AND STOP ISF[1:0] FIELD

ISF[1:0] Index Register Scale Factor

00 1 X

01 2 X

10 4 X

11 8 X

Table 2.29 LDOP AND STOP LD (LARGE DISPLACEMENT) F IELD

LD Field to Use as the Displacement

0 Use the Disp8 field of this Op.

1
Use the 32-bit displacement from the 
appropriate decoder displacement bus
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Figure 2.11 DISPLACEMENT BUSES FROM DECODER

Whenever an instruction that specifies a long displacement is decoded by
either the short decoders or the long decoder, that 32-bit (or sign-
extended 16-bit) displacement is passed along with the decoder OpQuad
through a multiplexer similar to MUX A. In order to keep Figure 2.11 sim-
ple, this multiplexer is not shown. If one of the short decoders or the long
decoder is selected as the output of MUX A and if the decoder OpQuad is
selected as the output of MUX B, then the 32-bit displacement is either:

1. loaded into the displacement buffer if the corresponding decoder
OpQuad is loaded into the OpQuad buffer or 

2. immediately sent to the OpQuad Expansion Logic via the displace-
ment register if the corresponding decoder OpQuad is sent direct-
ly to the OpQuad Expansion Logic. 

If LD = 1, this 32-bit displacement is then used in the OpQuad expansion
and is stored in the DestVal field of the corresponding Op entry. The
Disp8[7:0] field specifies an 8-bit value which is sign-extended to 32-bits
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when used as the displacement, otherwise it is ignored. The LD field spec-
ifies whether to use the Disp8 field or not.

REGOP FIELD DESCRIPTIONS

RegOps perform register operations. They have the following format in a
decoder OpQuad.

We now describe each of the fields in this table: Type, Ext, RX, DSz, Dest,
Src1, SS, I, and Imm8/Src2. The Type field specified the type of RegOp
operation to be performed according to the encodings in the following
four tables. Table 2.31 is for ALU (arithmetic logic unit) type operations:

In the above table, Type[0] = 0 for all of the RegOp except for BAND for
which Type[0] = 1. 

Table 2.30 DECODER OPQUAD REGOP FOR MAT

37   36 35       30 29    26 25 24      20 21      17 16      12 11    10 9 8 7                   0

0   0 Type Ext RX DSz Dest Src1 — SS I Imm8/Src2

Table 2.31 REGOP TYPE[5:1] FIELD GENERAL AR ITHMETIC OPERAT IONS

Type[5:1] DSz Other Than 1 Byte DSz = 1 Byte cc-dep RUX Only

00000 ADD, INC, CADD ADD, INC — —

00001 MOV, OR, EOR OR, EOR — O

00010 ADC ADC X X

00011 SBB SBB X X

00100 AND, EAND, BAND AND, EAND — —

00101 SUB, ESUB, DEC, CSUB SUB, DEC, ESUB — —

00110 XOR, EXOR XOR, EXOR — —

00111 CMP CMP — —
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Table 2.32 is for Shift and MMX Ops. All MMX register operations share
one RegOp Type. The individual MMX operations are distinguished by a
separate MMX opcode (or operation type) that is passed to and decoded
by the MMX execution units at Op execution time.

In the above table, Type[0] = 0 for all of the Shift and MMX Ops except for
BLL and MMX for which Type[0] = 1. 

DESIGN NOTE

Interpretation of RegOp Type Field

As is seen in Table 2.31, the RegOp Type field is interpreted differently
based on the DSz field of the RegOp. One set of operations is imple-
mented by hardware for byte-size operations, and a different set for 2-
byte and 4-byte (i.e., 16-bit and 32-bit) operations. This distinction is
made at Op execution time, after the DSz field has been resolved into an
absolute Op size specification. 

The “cc-dep” column means that the RegOp is dependent on a condi-
tion code as described in Chapter 3. All RegOps with Type = xx01x are
treated by the hardware as being condition-code-dependent and are syn-
chronized by the status operand forwarding logic discussed in Chapter 3.
The “RUX Only” column means that the operation can only be executed in
the RUX pipeline; see Figure 2.3 on page 81. Finally, the BAND ALU Op
differs from AND Op in the generation of the CF status result.

The other RegOps sharing the same Type encoding only differ in the
value put into the EXT field as the status modification bits as described
later.

Table 2.32 REGOP TYPE[5:1] FIELD SHIFT  AND MMX OPERAT IONS

Type[5:1] DSz Other Than 1 Byte DSz = 1 Byte cc-dep RUX Only

01000 SLL, BLL SLL — X

01001 SRL SRL — X

01010 SLC, RLC — X X

01011 SRC, RRC — X X

01100 SLA SLA — X

01101 SRA SRA — X

01110 SLD, RLD RLS — X

01111 SRD, RRD, MMX RRS — —
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The third table is for other arithmetic RegOps:

DESIGN NOTE

Difference in BLL and SLL Op

The BLL Shift Op differs from the SLL Op in that the masking of the
shift amount is DSz-dependent.

Table 2.33 REGOP TYPE[5:1] FIELD FOR OTHER AR ITHMETIC REGOPS

Type[5:1]
DSz Other Than1 Byte
Type[0]= 0    Type[0]=1

DSz = 1 Byte
Type[0]= 0 Type[0]=1 cc-

dep RUX Only

10000 ZEXT8               SEXT8 — — X

10001 ZEXT16           SEXT16 — — X

10010 RDFLGS DAA                DAS X X

10011 MOVcc              MOVcc — X X

10100 MUL1S             MUL1U — — X

10101 MULEH            MULEL — — X

10110 DIV1                     DIV2 — — X

10111 DIVER               DIVEQ — — X

DESIGN NOTE

ZEXT8, SEXT8, ZEXT16, and SEXT16 RegOp

For the ZEXT8, SEXT8, ZEXT16, and SEXT16 RegOps, only the low one
or two bytes of the source operand is required to be valid, even if DSz is
two or four bytes. Further, for the ZEXT8 and SEXT8 RegOps, the
source operand register number is interpreted as specifying a byte regis-
ter. Note, the other source operand is not used by these Ops.
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The fourth and last RegOp Type table is for special RegOps:

The Ext[3:0] (Extension) field combines with or extends the meaning of
the Type field as follows:

Table 2.34 REGOP TYPE[5:1] FIELD FOR SPECIAL REGOPS

Type[5:1]
DSz Other Than 1 Byte
Type[0]= 0    Type[0]=1

DSz = 1 Byte
Type[0]= 0 Type[0]=1 cc-

dep RUX Only

11000 RDxxx                 RDxxx — — X

11001 RDFLG             BSWAP — — X

11010 RDSEG              RDSEG — X X

11011 — — — —

11100 WRDR                WRDL — — X

11101 WRxxx                WRxxx — — X

11110 WRIP               WRDLIP — — X

11111 CHKS                 WRDH — — X

DESIGN NOTE

Valid Source Operand Bytes for CHKS and WRDR

Only the low two bytes of the source operands are required to be valid
for the CHKS and WRDR RegOps, even if DSz is equal to four bytes.

Table 2.35 REGOP EXT[3:0] FIELD

Type of Ops Field 
Combination Used to Specify

MOVcc Type[0] Ext[3:0] a 5-bit condition code

RDxxx and 
WRxxx

Type[0] Ext[3:0] a 5-bit special register number

RDSEG Type[0] Ext[3:0]
a 5-bit segment descriptor register 
number

(other) Ops with 
SS = 1

Ext[3:0]
four status flag modification bits 
stored in the scheduler

(other) Ops 
with SS = 0

Ext[3:0] not used
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For the WRFLG WRxxx Op, the special register number specifies the x86
EFLAGS register. The low four bits of this register number is also identical
to the desired four status modification bits for loading the status flag bits
of EFLAGS, when SS = 1.

The DSz[2:0] field specifies the size of the data (in bytes) for the Op
according to the following table:

The Dest[4:0] field specifies which general register the Op will use to store
its results in (i.e., the destination register). The Src1[4:0] field specifies
which general register the Op will use to obtain its first operand from (i.e.,
the source register Src1). The SS field (Set Status field) specifies whether
the Op affects status flags. If it does, then the status modification bits in
the Ext field indicate which groups of flags are affected. The I field (Imme-
diate field) indicates if the second operand of the Op is an immediate value
or is obtained from a general register. It is interpreted in conjunction with
the Imm8/Src2 field according to the following table:

Lastly, bits [11:10] of a RegOp are unused and should be set to “00”.

Table 2.36 REGOP DSZ[2:0] F IELD

DSz[2:0]

Data Size Before
Environment 
Substitution

Data Size After
Environment 
Substitution

000 1 Byte 1 Byte

001 2 Bytes 2 Bytes

010 4 Bytes 4 Bytes

011 Dsize —

100 Asize —

101 Ssize —

110 — —

111 — —

Table 2.37 REGOP I ( IMMEDIATE) F IELD

I Field Imm8/Src2 Source for Second Operand

0 Imm8/Src2[4:0]
a general register to be the source 
register Src2

1 Imm8/Src2[7:0] an 8-bit immediate value that is
extended to the DSz size
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SPECOP FIELD DESCRIPTIONS

SpecOps perform a variety of special operations. They have the following
format in a decoder OpQuad:.

We now describe each of the fields in this table: Type, CC, DSz, Dest, and
Imm17. The Type field specifies the type of SpecOp to be performed
according to the following table:

As discussed in the section titled “The Op Sequence and Action Fields”
beginning on page 141, every OpQuad must specify a branch, even if it’s
only a branch to the next sequential instruction in the ROM. It was also
noted that branches in OpQuad sequences are specified by a combination
of the SpecOp Type field (discussed above) and the Op Sequence and
Action Fields shown in Figure 2.10 on page 139. 

Further, the OpQuad may or may not also contain a BRCOND Op. If
there is a BRCOND Op, then the OpQuad sequence branch is considered
to specify a conditional branch, otherwise it is considered an uncondi-
tional branch. The exception to this that was mentioned is the subroutine
branch (BSR), which is always unconditional, yet always requires a
BRCOND Op in the OpQuad to supply the return address (remember

Table 2.38 DECODER OPQUAD SPECOP FOR MAT

37      35 34    31 30            26 25 24 23   22 21      17 16                                                                0

1 0 1 Type CC — DSz Dest Imm17

Table 2.39 SPECOP TYPE[3:0] FIELD

Type[3:0] Op Symbol Type of SpecOp

00xx BRCOND Branch condition

0100 LDDHA Load default handler address

0101 LDDHAB Load binary default handler address

0110 LDAHA Load alternate handler address

0111 LDAHAB Load binary alternate handler address

1000 LDK Load constant

1001 FPOP Floating-point Op

1010 LDKD Load DSz-modified constant

1011 FPOPE
Floating-point Op from the OPQuad 
Sequence Environment

11xx FAULT Unconditional fault
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that OpQuad sequence subroutines need not return to the OpQuad fol-
lowing the caller). 

You can have four Ops plus a branch in a single OpQuad if the branch
is unconditional, but only three Ops plus a branch in an OpQuad if the
branch is conditional (or is a BSR branch). In tabular form, this discussion
can be summarized as follows:

The CC[4:0] field specifies the particular condition to be tested for in the
case of BRCOND SpecOps. CC[4:1] specifies the condition to be tested
according to the following table: CC[0] specifies whether the condition or
its complement is to be tested. CC[0] = 1 complements the condition.

MORE DETAILED ANALYSIS OF OPQUAD SEQUENCE BRANCH TYPES

Action Field BRCOND in 
OpQuad Branch Type

00 No BR

00 Yes BRcc

01 No Illegal

01 Yes BSR

10 No ERET

10 Yes ERETcc

11 No SRET

11 Yes SRETcc

Table 2.40 SPECOP CC[4:1] F IELD

CC[4:1] Mnemonic Condition to be Tested Usage

0000 True 1 Always TRUE

0001 ECF ECF OpQuad Sequence Carry Flag

0010 EZF EZF OpQuad Sequence Zero Flag

0011 SZnZF EZF | ~ZF
Early termination of string instructions 
due to debug trap or hardware interrupt

0100 MSTRZ ~EZF & ~IP & ~ (DTF | SSTF | MDD) String instruction exit condition

0101 STRZ ~EZF & ~IP & ~ (DTF | SSTF | MDD) String instruction exit condition

0110 MSTRC ~EZF & ~IP & ~ (DTF | SSTF | MDD) String instruction exit condition

0111 STRZnZF
~EZF & ~IP & ~ (DTF | SSTF | MDD) & 
ZF

String instruction exit condition
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The DSz[1:0] field specifies the size of the data (in bytes) for the SpecOp
according to the following table:

The Dest[4:0] field specifies the general register the SpecOp will use to
store its results (i.e., the destination register).

The Imm17[16:0] field is used as either (a) a 17-bit signed constant
(for LDK or LDKD SpecOps), (b) a 14-bit Op address (for BRCOND or
LDxHAx SpecOps), or (c) to specify a specific type of FpOp for FPOP
SpecOps.20 In the latter two cases, only bits [13:0] of this field are used.
Lastly, bits [25:24] of a SpecOp are unused and should be set to “00”.

1000 OF OF Overflow Flag

1001 CF CF Carry Flag

1010 ZF ZF Zero Flag

1011 CvZF CF | ZF
Used for “below or equal”, “not below 
or equal”, “above”, “not above” condi-
tions

1100 SF SF Sign Flag

1101 PF PF Parity Flag

1110 SxOF SF ^ 0F
Used for “less”, “not less”, “greater or 
equal”, “not greater or equal” condi-
tions

1111 SxOvZF (SF ^ 0F) | ZF
Used for “greater”, “not greater”, “less or 
equal”, “not less or equal” conditions

Table 2.40 SPECOP CC[4:1] F IELD

CC[4:1] Mnemonic Condition to be Tested Usage

Table 2.41 SPECOP DSZ[1:0] F IELD

DSz[1:0]
Data Size Before

Environment Substitution
Data Size After

Environment Substitution

00 1 Byte 1 Byte

01 2 Bytes 2 Bytes

10 4 Bytes 4 Bytes

11 Dsize —

20 Imm7 is not used for FPOPE SpecOps as the OpQuad sequence environment 
specifies the specific type of FpOp.
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LIMM OP FIELD DESCRIPTIONS

LIMM Ops perform a 32-bit load immediate operation. They have the fol-
lowing format in a decoder OpQuad.

Bits [37:36] indicate a LIMM Op; there is no further Type field.
ImmHi[15:0] and ImmLo[15:0] together specify a 32-bit immediate
value. Dest[3:0] is a 4-bit destination register specifier. Like LdStOp base
and index registers, this can only specify the low half of the full 5-bit regis-
ter space.

EXECUTION PIPELINES The LU, SU, RUX, and RUY execution units are all implemented as multi-
stage pipelines. The LU execution unit is a six-stage pipeline. The SU exe-
cution unit is a seven-stage pipeline. The RUX and RUY execution units
are either six- or seven-stage pipelines, depending on the type of Op being
executed. Each stage in the pipelines nominally requires one processor
clock cycle. An Op can be held up in one of the stages for stage-specific
reasons or because an Op is held up in the next consecutive pipeline stage.
For most Ops, the Op’s position in the scheduler is independent of the
Op’s stage of execution in one of the pipelines.

An overview of the design and implementation of the RUX and RUY
pipelines is given as an example of various microarchitectural characteris-
tics of the K6 3D that come into play in the design and implementation of
the execution unit pipelines. Both RUX and RUY have identical pipelines,
which we will call the RUX/RUY pipeline” or the “RegOp pipeline.” Fig-
ure 2.12 is used to describe the RUX/RUY pipeline for integer RegOps and
single-cycle MMX Ops.

Table 2.42 DECODER OPQUAD LIMM OP FOR MAT

37  36 35                                                                 21 20        17 16                                              0

1   1 ImmHi Dest ImmLo

DESIGN NOTE

Definition of a NoOp

Register t0 serves as a “bit bucket” for writes as it always returns “0” for
reads. A NoOp is defined as a LIMM Op into t0.
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Figure 2.12 INTEGER AND SINGLE-CYCLE MMX RUX/RUY PIPEL INE STAGES
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A pipeline consists of one or more pipeline stages. Figure 2.12 shows the
RegOp pipeline having six pipeline stages: two preliminary pipeline stages,
three intermediate or execution stages, and a results commit stage. More-
over, there is the normal buffering that one would find in between the
stages of a pipeline implementation. Results from one stage are captured
in pipeline registers or latches for use in the next stage. A typical connec-
tion between showing the pipeline register explicitly could have been rep-
resented by the following diagram. 

Op Issue
Stage

Operand Fetch
Stage

Execution
Stage 1

Commit
Stage

Operand
Selection

Phase

Operand
Transfer

Phase

Execution
Phase

Result
Transfer

Phase

Operand
Information

Broadcast
Phase

Op Issue
Selection

Phase

x86
Instruction

Fetch
Stage

x86
Instruction

Decode
Stage

The Preliminary Pipeline Stages

The Intermediate RUX/RUY Pipeline Stages for Integer and Single-Cycle MMX Ops

The Commit Stage

��
��
��
��
��

��
��
��
��
��
��
��



160 Chapter 2: A Microarchitecture Case Study

Figure 2.13 GENER IC PIPEL INE STAGES

Explicit representation of these registers, as well as other inputs and out-
puts to various pipeline stages, would have made Figure 2.12 (and the
other pipeline figures in this section) overly complex for the current dis-
cussion and therefore we did not show them. Each boundary between
adjacent stages represents as many pipeline registers as are needed to hold
and transfer information to the next stage. Some of these registers are
explicitly shown in more detailed figures for the LU and SU pipelines that
appear later in this section. The global control logic, shown in Figure 2.9
on page 130, is directly involved with controlling the loading of the pipe-
line registers.

We emphasize the buffering between the two preliminary pipeline
stages and the three intermediate stages and the buffering between three
intermediate stages and the commit stage by the dark vertical bars in the
Figure 2.12. We do this to draw your attention to the fact that the buffering
in between the preliminary pipeline stages and the intermediate pipeline
stages is part of the support for the decoupled decode/execution structure of
the microarchitecture. Similarly, the buffering in between the preliminary
pipeline stages and the commit stage is part of the support for the decou-
pled execution/commitment structure of the microarchitecture. Both of
these types of decoupling were discussed earlier in this chapter, see
“Decoupled Decode and Execution Decoupled Execution and Commit-
ment” on page 77.
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The x86 Instruction Fetch Stage, the x86 Instruction Decode Stage,
and the Commit Stage are common to all execution unit pipelines. During
the x86 Instruction Fetch Stage, up to 16 bytes of x86 instructions and
associated predecode bits are fetched from the L1 I-Cache into the instruc-
tion buffer. During the x86 Instruction Decode Stage the decoders decode
up to two x86 instructions out of the instruction buffer and form an
OpQuad that is loaded into the top row of the scheduler’s buffer.
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Historical Comment and Suggested Readings

Design and Implementation of High-Performance Pipelines

There is a rich history of the design and implementation of very high-performance pipelines. Indeed, the use of deep
pipelines (often termed superpipelines) is high on the list of design alternatives of both architects and microarchi-
tects. The basic elements in pipeline design are the chunks of logic to do the computation within each stage, the
mechanism to capture the outputs of one stage for use in the next stage, and the approach used to control the pipe-
line. Clock signals are typically used to synchronize the inputs to the stages and inhibit signals are used to halt the
flow within a pipeline.

The partitioning of the functions to be performed within the pipeline into specific stages, the subsequent con-
trol of the stages, and the pipeline’s interface to the memory and caching hierarchy are the most important parts of
pipeline design at the microarchitectural level. For excellent treatments of these and related issues see Harold Stone’s
book, High Performance Computer Architecture, 3rd Edition, Addison Wesley, 1993, pp. 143-148 and pp. 169-192.
Harvey Cragon’s book, Memory Systems and Pipeline Processors, Jones and Bartlett Publishers, 1996, pp. 294-309 and
Michael Flynn’s Computer Architecture, Chapters 4 and 7, Jones and Bartlett Publishers, 1995. Issues such as how to
deal with pipeline hazards (stalls), exceptions, and traps and how to support operand forwarding must factor into the
design of the pipeline. The overall objective is to achieve as simple a design as possible while meeting the cost/perfor-
mance goals.

The analysis to determine the number of pipeline stages to employ runs along the following line. The perfor-
mance of the pipeline basically rests on the designer’s ability to break up the functions to be performed into stages of
equal duration. The greater the number of stages in the pipeline means less work per stage. Less work per stage
means fewer levels of logic per stage. Fewer levels of logic means a faster clock. A faster clock means faster program
execution. For deep pipelines (i.e., those with many stages) this analysis must be tempered by the facts that: (a) a long
delay to both flush and fill the pipeline occurs, impacting the overall performance and (b) the memory and cache
hierarchy interface must match the higher performance of the pipeline. For short pipelines (i.e., those with few
stages) the analysis must be tempered by the facts that: (a) the stages are more complex and require more levels of
logic to implement, particularly during mispredicted branches and (b) the clock will be slower. Importantly, regard-
less of whether a short, intermediate, or deep approach is taken, the memory and cache interface needs to support
the total number of operand and results accesses required by the pipeline performance in a non conflicting way and
at the required rate and data bandwidth. It should not come as too much of a surprise that increasing the number of
stages does not always increase the overall performance of the processor. What this means is that the pipelines and
the memory and cache hierarchies must be designed together. However, this is not the end of the story. The actual
performance of the implementation of a pipeline can depend heavily on variations in logic circuit delays and in clock
skew. Thus, attention to the physical circuit interconnections, the electrical characteristics of the circuits, the effect of
loading on the components, and the techniques employed to distribute the clock signal must often be taken into con-
sideration,. The implementation solutions employed may very well impact the design of the pipeline at the microar-
chitectural level, (e.g., such implementation considerations might dictate whether or not pipeline latches are actually
used at specific stage boundaries or for all of the outputs at a given boundary). This is another example of where the
microarchitects and the logic designers must work closely together.

Additional readings: Peter M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill Book Company,
1981 and Harvey Cragon, cited above, both give brief but interesting histories of the use of pipelines in processors.
The LARC, co-designed by IBM and Univac and delivered to Lawrence Livermore Laboratory in 1959, had a four-
stage pipeline. Descriptions of a number of pipelined machines can be found in C. Gordon Bell and Allen Newell,
Computer Structures: Readings and Examples, McGraw-Hill Book Company, 1971, and Daniel P. Siewiorek, C. Gor-
don Bell, and Allen Newell, Computer Structures: Principles and Examples, McGraw-Hill, 1982.
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Op issue stage

 

operand fetch stage
The scheduler then controls the Op Issue Stage and the Operand

Fetch Stage for all LdOps, StOps, RegOps other than branch operations
(BrOps) and floating-point operations (FpOPs). During the Op Issue
Stage, which consists of an Op Issue Selection Phase and an Operand
Information Broadcast Phase, the scheduler scans the entries in its buffer
(instruction window) and issues up to six Ops to appropriate execution
units if an unissued Op for the type of execution unit is available.

Operands for the Ops issued during the Op Issue Stage are forwarded
to the execution units in Operand Fetch Stage which consists of an Oper-
and Selection Phase and an Operand Transfer Phase. For many types of
RegOp, the operation completes in the one clock cycle identified as Execu-
tion Stage 1, which, as seen in Figure 2.12 on page 159, consists of:

1. an Execution Phase in which the integer, MMX, or 3D execution
sub-units within the register execution processes the source oper-
ands of the RegOp (according to the type of RegOp being execut-
ed).

2. a Result Transfer Phase in which result values and status flag values
from one of the register execution sub-units are stored back in the
scheduler entry corresponding to the RegOp being executed.

Register and status flags result values, stored in the Op’s scheduler entry,
are subsequently committed to the architectural register file and the archi-
tectural status flag register if and when it is safe to do so. Internal microar-
chitectural state is also changed as appropriate. After an Op completes and
there are no preceding exceptions or mispredicted branches the following
actions occur during the Commit Stage:

1. the Op’s results can be committed.

2. the Op can be retired by moving the OpQuad containing the Op
out of the scheduler’s buffer, once all of the Ops within the
OpQuad are ready to be retired.

The register and status flag result values from an Op can be used by the
scheduler as operands for execution of dependent Ops between the execu-
tion completion and results commitment times of that Op. 

 

LdOp pipeline

 

StOp pipeline

 

BrOp pipeline

This brief introduction to the K6 3D pipelines and their operation will
be continued later in this and the next chapter. A diagram for 2-Cycle
MMX and 3D RegOps is given in Figure 2.14.

Diagrams for the LU pipeline (also called the LdOp pipeline), the SU
pipeline (also called the StOp pipeline), and the BRU pipeline (also called
the BrOp pipeline) are shown as Figure 2.15 through Figure 2.21 on page
175 respectively. 
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Figure 2.14 2-CYCLE MMX AND 3D RUX/RUY PIPEL INE STAGES

They are included here, with some brief remarks, to let you see some of the
differences in the various pipelines. Both the LU pipeline and SU pipeline
are shown in more detail immediately after their high-level pipeline dia-
gram. Further explanations of these figures are in Chapter 3.
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Figure 2.15 LU PIPEL INE STAGES

Both Figure 2.16 on page 165 and Figure 2.19 on page 168 contain a
shaded box which is labeled “Sources of Segment Base, Base, Index, and
Displacement.” The logic contained in this box is the same for both of
these figures and is shown separately in Figure 2.17. The logic identified as
“SLC” in Figure 2.16 refers to the Segment Limit Violation Check logic
which is discussed later in this section.
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Figure 2.16 THE LU INTER MEDIATE OR EXECUTION PIPEL INE STAGES

 

S = stage 

 

C = commit
We have introduced some textual abbreviations in Figure 2.16, Figure 2.19
on page 168, and Figure 2.20 on page 169 to reduce the visual clutter in
these three already crowded figures. Using Si to stand for stage and Ci to
stand for commit, we introduce the notation Si and Ci at the left-hand side
of these figures.
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Figure 2.17 SOURCES OF SEGMENT BASE AND L IMIT , SCALED INDEX,  AND DISPLACEMENT VALUES

The notations correspond in the following fairly obvious way:

The use of C1, C2, and C3 in Figure 2.20 on page 169 reflects the fact that
the overall Commit Stage for StOps is composed of several “stages.” We
will find this useful when discussing the operation of the store queue com-
mit L1 D-Cache Access logic. The registers shown in Figure 2.16, Figure
2.19, and Figure 2.20 in between the pipeline stages (i.e., S0, S1, S2, C, C1,
and C2) are the pipeline registers discussed earlier in this section.
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The three SU pipeline figures corresponding to the three LU pipeline fig-
ures follow:

Figure 2.18 SU PIPEL INE STAGES

DESIGN NOTE

Dual Ported TLB

The D-TLB shown in Figure 2.2 on page 69 and Figure 2.22 on page 180
is actually designed to be “dual ported,” i.e., to translate both a load
address and a store address per cycle. Thus it is shown in Figure 2.16 on
page 165 and Figure 2.19 on page 168 as logically consisting of two
TLBs, the Ld-TLB and the St-TLB, that are copies of each other.
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Figure 2.19 THE INTER MEDIATE OR EXECUT ION SU PIPEL INE STAGES AND STORE QUEUE ACCESS

FAULTS, TRAPS, ABORT CYCLES, AND THE PIPELINES

When the execution units were introduced, we discussed how the K6 deals
with exceptions, traps, and abort cycles. The mechanisms employed are
extremely important in the design of the pipeline. In fact, there are those
who believe that these issues are among the difficult ones to resolve and
are central to “what makes pipelining hard to implement,” see Patterson
and Hennessy, Computer Architecture: A Quantitative Approach, 2nd Edi-
tion, Morgan Kaufmann Publishers, Inc. 1996, pp. 178-187. You may want
to review the section titled “Status Flags, Faults, Traps, Interrupts, and
Abort Cycles” beginning on page 83 before proceeding. We will expand on
our explanations there by taking a look in more detail at how the K6 deals
with these issues by looking at how it handles a misaligned access while
executing a LdOp or a StOp.
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Figure 2.20 STORE COMMIT PIPEL INE STAGES

In the x86 instruction set architecture, a misaligned access occurs either
when an 8-byte (a quadword) access is made to an address that is not on
an 8-byte boundary, or when a 2-byte (a word) or a 4-byte (a double
word) access is made to an address that is not on a 4-byte boundary. We’ll
first look at how traps are handled and then examine the misaligned
access. The x86 instruction set architecture has an alignment check bit
which, if set, enables the generation of a misaligned access fault when a
misaligned access occurs. This feature is generally disabled as it has
limited, if any, use under contemporary operating systems.

FAULT AND TRAP HANDLING

When a fault (such as a segment violation or page fault exception) occurs
during the execution of a LdOp or a StOp, the OCU is immediately noti-
fied and an abort cycle typically is eventually initiated for the associated
Op. Later, we will discuss faults that do not cause an abort cycle. The abort
cycle results in a fault handler getting invoked which determines what
caused the fault and then initiates an appropriate response. Traps, in
contrast to the treatment of faults, are handled differently.

When a trap occurs, trap information is loaded into the scheduler in
the entry associated with the Op that caused the trap. Later, when the
OCU analyzes if it can commit that Op, it recognizes that the Op caused a
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trap and it sets a pending trap flip-flop. In effect, traps are accumulated as
pending traps until the end of an instruction is reached. Recall that
instructions decoded by either of the short decoders or the long decoder
produce at most one OpQuad and instructions that are decoded by the
vector decoder produce OpQuad sequences that end with an “ERET”
Action Field value within the sequencing field of its last OpQuad.

The OCU can recognize that it is retiring the last of all of the Ops that
are associated with a given instruction. If there are any pending traps at the
end of the commitment of an instruction, the OCU will initiate an excep-
tion (i.e., a fault) at the beginning of the next instruction—i.e., an abort
cycle will occur at the beginning of the next instruction whenever the
pending trap flip-flop is set. This discussion points out that the abort cycle
is central to the handling of both faults and traps. So, let’s take a closer
look at it.

LDOP ABORT CYCLES

Typically a LdOp, like all Ops, finishes execution successfully. But there are
a number of faults that can arise that cause the LdOp to be “held up” in
the last execution stage of the LU pipeline. Whenever one of these situa-
tions occurs, the LU sends a signal to the OCU indicating that there is a
LdOp held up in Stage2 of its pipeline because the Op has a violation asso-
ciated with it.

 

Fault ID register

Eventually, when the OCU examines the Ops in the bottom OpQuad
of the scheduler, it attempts to commit the LdOp for which the LU has
sent the violation signal. The OCU then recognizes that the LdOp is not
going to complete. It will retire any older Ops in the OpQuad and initiate
an abort cycle which will flush both the upper and lower portions of the
machine and vector the processor to a fault handler address in the
OpQuad ROM. Simultaneously, a snapshot of information in the LU is
written into the OCU’s Fault ID Register. This information is readable
from SR1[2:0] by the OCU, i.e., bits [2:0] of Special Register 1 (see
Table 2.6 on page 98). The fault handler OpQuad Sequence examines the
fault information in the SR1 through the use of a special RegOp that
allows the Special Registers to be read by an OpQuad sequence to deter-
mine what caused the fault.21 Based on this, the fault handler branches to
an appropriate OpQuad sequence that will process the specific type of
fault encountered. 

21  For some interrupts and “exceptions,” an x86 error code is constructed and 
ultimately placed on the architectural interrupt stack (see, for example, 
Chapter 5 in Intel’s publication, The Intel Architecture Software Developer’s 
Manual, Volume 3: System Programming Guide).
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Now that we have explained how faults and traps are handled and what
occurs during an abort cycle, we can examine how the misaligned access is
handled.

LDOP MISALIGNED ACCESSES

Since the size of the access is known when the LdOp begins execution, it
can be determined if an access is misaligned when the computed address is
available at the end of the address calculation phase of Stage1 of the LU
pipeline.

If the access is misaligned, the hardware in LU pipeline Stage1 splits
the LdOp into a cloned pair of LdOps. One of the cloned LdOps handles
the first half of the access (the lower byte addresses) while the other cloned
LdOp handles the upper half of the access (the high byte addresses). Thus,
the two cloned LdOps have different addresses and access sizes. The LdOp
accessing the lower half proceeds into Stage2 while the LdOp accessing the
upper half is left immediately behind it in Stage1. The two cloned LdOps
now progress down the LU pipeline back-to-back and get processed indi-
vidually—(e.g., each LdOp will get separately translated by the Ld-TLB,
and each will get separately looked up in the D-Cache). The two LdOps
are guaranteed to access data within neighboring aligned octets of mem-
ory. The assembly of the output of the back-to-back accesses into the orig-
inally required access is done in the assembly buffer register on the output
of the 2:1 multiplexer, just before the rotator, shown in Figure 2.16 on page
165. When the first LdOp completes, its data is loaded into the assembly
buffer. When the second LdOp completes, its data are combined with the
data in the assembly buffer and the correctly combined group of bytes is
input to the rotator. 

DESIGN NOTE

Default Handler Address and Alternate Handler Address

As explained in Chapter 3, concurrent with the abort cycle, the OCU
vectors the machine to one of two possible OpQuad sequence entry
point addresses—either the OCU default handler address or an OCU
alternate handler address; see Figure 2.10 on page 139. The setting of
these addresses is supported by the LDDHA Op (Load Default Handler
Address) and the LDAHA Op (Load Alternate Handler Address). The
default fault handler address is initialized by the Reset OpQuad
Sequence and the alternate handler address is specified within some
instruction and exception processing OpQuad sequences.
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The approach taken in the K6 to handling misaligned access effectively
results in a one clock penalty for such accesses. We will now examine how
a misaligned access is handled when executing a StOp since there are some
important similarities and differences from the above discussion for
LdOps.

STOP ABORT CYCLES

Both the logical and linear address are calculated in the address calculation
phase of Stage1 of the SU pipeline, using a) the base, scaled index, and dis-
placement, b) the segment base, and c) taking into account the
requirement of producing either a 16-bit style or a 32-bit style address.
The lower twenty bits of the linear address is sent to the St-TLB, while the
32-bit logical address is sent to the Segment Limit and Access Check logic,
along with the segment limit and access right bits. A page-related access
check is also done, assuming a St-TLB hit. If there is a miss in the St-TLB
then a table walk request to the table walk logic in the system interface unit
initiates a table walk to retrieve the appropriate page translation and load
it into the St-TLB and Ld-TLB (see Figure 2.22 on page 180).

DESIGN NOTE

Transparency of Cloned LdOps

The forming of the cloned LdOps and their progression through the
remaining LU pipeline stages are essentially transparent to the scheduler,
which only has a single Op entry for the original LdOp that caused the
misaligned access. The exception to this statement is a signal generated
within the LU pipeline and used in the scheduler’s LdOp and StOp rela-
tive age determination process. This situation is discussed in Chapter 3.

DESIGN NOTE

LdOp Worst Case Misaligned Access

The worst case misaligned access occurs when both of the cloned LdOps
each require an Ld-TLB fill and a D-Cache line fill. The processor will
basically do a Ld-TLB fill followed by a D-Cache fill followed by the sec-
ond Ld-TLB fill followed by the second D-Cache fill. The two cloned
LdOps are effectively executed by the majority of the LU pipeline just the
same as two unrelated LdOps would be.
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If there is a fault in the processing of a StOp in the SU pipeline, the
StOp will “stick” in Stage2 of this pipeline, just as was the case in the pro-
cessing of a LdOp in the LU pipeline. The SU will then signal that along
with the information about the fault to the OCU. Again, just as with the
signal from the LU, when the OCU examines Ops in the bottom OpQuad
of the scheduler and eventually attempts to commit the StOp for which the
SU has sent the violation signal, the OCU recognizes that the StOp is not
going to complete. It will retire any older Ops in the OpQuad and initiate
an abort cycle which will flush both the upper and lower portions of the
machine and vector the processor to a fault handler address in the
OpQuad ROM. Just as was the case with a LdOp abort cycle, a snapshot of
information in the SU is written into the OCU’s Fault ID Register. As
before, this information is readable from the OCU as SR1[2:0]. The fault
handler OpQuad sequence examines the fault information and branches
to the appropriate OpQuad sequence to handle this particular type of
fault.

STOP MISALIGNED ACCESSES

The issues with misaligned StOp accesses are quite similar to those for
misaligned LdOp accesses. Since the size of the access is known when the
StOp begins execution, it can be determined if an access is misaligned
when the computed address is available at the end of the address calcula-
tion phase of Stage1 of the SU pipeline. 

If the access is misaligned, the reference is split by the SU into two
memory writes and two associated store queue entries. The hardware in
SU pipeline Stage1 splits the StOp into a cloned pair of StOps. One of the
cloned StOps handles the first half of the access (the lower byte addresses)
while the other cloned StOp handles the upper half of the access (the high
byte addresses), and access sizes. Thus, the two cloned StOps have differ-
ent addresses. The StOp accessing the lower half proceeds into Stage2
while the StOp accessing the upper half is left immediately behind it in
Stage1. The two cloned StOps now progress down the SU pipeline back-
to-back and get processed individually—(e.g., each StOp will get sepa-
rately translated by St-TLB, and each will get separately looked up in the
D-Cache). The two StOps are guaranteed to access data within neighbor-
ing aligned octets of memory. Unlike misaligned LdOps, each of these
StOps creates a separate store queue entry which ultimately results in two
separate writes into the D-Cache and/or out onto the system bus to main
memory. 
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BRU PIPELINE

Before leaving this section, we present the pipeline diagram for a BrOp.
This pipeline is described in some detail in Chapter 3 and is presented in
this section with the RUX/RUY, LU, and SU pipelines for completeness. 

DESIGN NOTE

 Transparency of Cloned StOps

The forming of the cloned StOps and their progression through the
remaining SU pipeline stages is transparent to the scheduler, which only
has a single Op entry for the original StOp that caused the misaligned
access. Further, the OCU, when committing the original StOp from its
scheduler Op entry, recognizes that it has two associated store queue
entries and commits both entries before viewing the original StOp as
having been committed. The OCU is able to do this since the first store
queue entry of a related pair of entries is so marked within the store
queue entry itself. If the StOp has a fault then it must be aborted without
retirement of either store queue entry. This issue is discussed in some
detail in Chapter 3.

DESIGN NOTE

StOp Worst Case Misaligned Access

The worst case misaligned access occurs when both of the cloned StOps
require both a St-TLB fill and a D-Cache line fill. The processor will
basically do a St-TLB fill followed by a D-Cache fill followed by the sec-
ond St-TLB fill followed by the second D-Cache fill. The two cloned
StOps are effectively executed by the majority of the SU pipeline just the
same as two unrelated StOps would be.
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Figure 2.21 THE BRU PIPEL INE STAGES

HANDLING FAULTS,
TRAPS, AND PRECISE

INTERRUPTS

We discussed the handling of faults and traps in two earlier segments of
this chapter—the section titled “Status Flags, Faults, Traps, Interrupts,
and Abort Cycles” beginning on page 83 and the section titled “Faults,
Traps, Abort Cycles, and the Pipelines” beginning on page 168. You may
want to review these sections before proceeding. As we pointed out in
these sections, handling faults and traps in speculative, superscalar, pipe-
lined processors can be difficult. There are several problems to contend
with: (1) faults and traps can occur at various stages within a pipeline, (2)
the results of operations that were issued and executed speculatively may
no longer be valid after the fault or trap occurs, and (3) appropriate
machine state must be saved in the event of faults or traps that abort a
series of operations. There must be a relatively efficient mechanism to
restore the state and restart execution at that point. The execution pipe-
lines, various queues, and other processor resources may have to be
flushed. Depending on the microarchitecture, this can be done either
sequentially or in an overlapped fashion. The microarchitect basically
attempts to minimize the latency incurred in restating execution while
reducing the overall microarchitectural complexity in achieving this goal.
Some simple examples of faults are a segment limit violation and a page
fault. A simple example of a trap is the data breakpoint trap.

The K6 uses a uniform mechanism to handle faults, traps, and inter-
rupts. In the K6, there are some faults that are detected at decode time by
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the hardware decoders, some that are detected in the scheduler by the
OCU, and some that are detected during the execution of an OpQuad
sequence by “manual” checks (and corresponding conditional branches)
within the OpQuad sequence.

As just indicated, some faults are detected at decode time and some
are detected at Op commit time. An “instruction length greater than six-
teen bytes” fault is an example of a fault detected at decode time while a
“memory-related” fault is a common example of a fault recognized at Op
commit time (although initially detected at Op execution time). During
each decode cycle, the decoders check for several x86 instruction set archi-
tecture-specific exception conditions, including a code segment overrun,
an instruction fetch page fault, an instruction length greater than sixteen
bytes, a nonlockable instruction with a “lock” prefix, and a floating-point
not available condition. At the same time, the decoders also check for the
assertion of any pending hardware interrupts, including INTR, NMI, SMI,
STPCLK, INIT, and FLUSH. Some conditions are evaluated only during a
successful decode cycle; other conditions, including all hardware inter-
rupts, are decoded irrespective of any other possible decoding actions dur-
ing the cycle.

When an active fault condition is detected, all short, long, and vector
instruction decode cycles are inhibited and an exception vector decode
cycle occurs in the following decode cycle. During this exception vector
decode cycle, a special fault OpQuad sequence vector address is generated
in place of a normal instruction vector address. The fault vector address is
a fixed value except for low-order bits that are used to identify the particu-
lar fault condition that has been recognized and needs to be handled.
Other than a different vector address, this behaves just like any instruction
vector decode. There is no special synchronization within the scheduler
with respect to the OpQuads already in the scheduler. The handling of this
decoder-detected exception is naturally processed in the normal and
proper program order. When multiple fault conditions are simultaneously
detected, the faults are prioritized and the highest priority fault is recog-
nized. In-order decode ensures precise fault handling for decoder-detected
faults. 

Faults that are detected during the execution of an OpQuad sequence
do not insert an OpQuad into the top of the scheduler. A branch abort
occurs due to a mispredicted BRCOND Op based on status flag values that
were set by a preceding RegOp which performed some type of “check.”
The abort cycle results in a redirection to an alternate OpQuad sequence.

RE-EXAMINING THE ABORT CYCLE

When discussing the abort cycle in the earlier sections of this chapter
cited above, we introduced the notion of flushing and restarting the upper
and lower portions of the processor; the former is part of the BRCOND
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Op resolution cycle and the latter is part of the abort cycle in the case of
branch aborts.

When a “flush” occurs, all Ops in the bottom portion of the machine
are basically discarded, all abortable state is discarded, and the “valid bits”
of all Ops in the scheduler are set to invalid. In the case of a mispredicted
branch, the upper portion of the machine is flushed and then restarted to
begin fetching from the mispredicted path. This is done as part of the res-
olution of the branch versus as part of the abort cycle. The restarting of the
upper portion of the processor consists of reloading the PCs (program
counters) in the decoders and sending the mispredicted fetch address to
the I-Cache.

“Exception” aborts, discussed above, are different in that there is no
“resolution” stage, only an abort cycle. During the abort cycle, the bottom
portion of the machine is also flushed similar to the case of a mispredicted
branch and the upper portion is flushed and restarted. In this case the
scheduler vectors to the start of a “fault handler” OpQuad sequence in the
OpQuad ROM. 

PRECISE INTERRUPTS AND PRECISE EXCEPTIONS

As discussed earlier, interrupts are asynchronous events that occur inde-
pendently of the synchronous activity within the microprocessor. The x86
instruction set architecture employs a precise interrupt model. This model
holds that an interrupted process can resume correct execution after the
interrupt has been serviced. When the microprocessor detects an inter-
rupt, it:

1. halts the execution of the current instruction stream (i.e., the cur-
rent process).

2. saves enough of the state of the machine so processing can resume
at the point the interrupt was detected.

3. activates an interrupt handling routine to service the interrupt.

4. resumes processing after the interrupt has been serviced and after
the saved state has been restored.

A precise exception model is implemented for program-related excep-
tions; see the section titled “Status Flags, Faults, Traps, Interrupts, and
Abort Cycles” beginning on page 83. The issues that apply to precise inter-
rupts can be equally challenging to resolve as those dealing with precise
program exceptions. The following discussion is couched in the context of
precise interrupts and can be extended to precise exceptions.

Let us use stateresume to be the machine state that is required to
resume processing if an interrupt occurs. And, let us use stateno interrupt to
be the state that is required to continue processing if no interrupt
occurred. What must be done to support precise interrupts is to guarantee
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that stateresume = stateno interrupt which essentially means that the saved
machine state that exists after the interrupt has been serviced is that same
saved state that would have existed if the interrupt had not occurred at all.
This is reasonably straightforward to do in conventional, nonpipelined,
in-order processors. It’s a bit more difficult in pipelined processors, partic-
ularly those that support out-of-order execution.

Smith and Pleszkum identify three conditions that must hold to support
precise interrupts:

1. all instructions that issued prior to the instruction that was execut-
ing when the interrupt was detected have completed and have
modified the process state correctly.

2. all instructions after the one indicated by the saved program
counter execute only after control is returned to the interrupted
process.

3. if the interrupt were caused by an instruction (versus some activity
external to the processor), then the saved program counter must
point to that instruction.

The K6 supports the x86 instruction set architecture precise interrupt
model. An interrupt, when detected, is directed to the decoders. As
described in the preceding pages, hardware interrupts are just cases of

Suggested Readings

Precise Interrupts

We have included three articles on the CD-ROM that deal either wholly or in part with the
issue of providing for precise interrupts in pipelined processors. The article by Smith and
Pleszkum, is considered by many as a classic paper in this area. The second article, by Walker
and Cragon, develops a taxonomy of design strategies for providing precise interrupts based on

a detailed examination of fifteen processors that support concurrent instruction execution. The third
article, by Moudgill and Vassiliadis, gives an interesting treatment of the topic of precise interrupts.

1. James E. Smith and Andrew R. Pleszkum, “Implementation of Precise Interrupts on Pipelined

Processors,” in Proceedings of the 12th Annual International Symposium on Computer Architecture,
June 1985, pp. 34-44.

2. Wade Walker and Harvey G. Cragon, “Interrupt Processing in Concurrent Processors,” Computer,
Vol. 28, No. 6, June 1995, pp. 36-46.

3. Mayan Moudgill and Stamatis Vassiliadis, “Precise Interrupts,” IEEE Micro, Vol. 16, No. 1,
February 1996, pp.58-67.

We also suggest a paper by Hwu and Patt that presents an interesting hardware checkpointing scheme to
support precise interrupts, W. M. Hwu and Y N. Patt, “Checkpoint Repair for Out-of-Order Execution
Machines,” Proceedings of the 14th Annual International Symposium on Computer Architecture, 1987.
Similar checkpointing schemes have been widely used in software systems.
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exception vector decodes. Once the appropriate interrupt handling
OpQuad sequence is initiated, the K6 goes through the details of storing
the appropriate program state as defined by the x86 instruction set archi-
tecture. This state is restored through execution of an IRET instruction at
the end of the x86 interrupt handler before returning control to the inter-
rupted instruction stream.

SYSTEM INTERFACEAll transactions involving the system bus are mediated by the system inter-
face unit shown in Figure 2.2 on page 69. However, transactions may
involve the L2-Cache only, the system bus only, or both. System bus trans-
actions can proceed concurrently with L2-only transactions. L2-only
transactions may complete out of order with respect to system bus-only
transactions.

Requests are presented to the system interface over six separate inter-
faces that are shown in Figure 2.22:

1. L1 I-Cache read interface, IC.

2. L1 D-Cache read interface, DC.

3. L1 D-Cache write back interface.

4. L2-Cache write back interface.

5. Table Walk Unit read/write interface, TW.

6. Write Pipeline/Merge Unit interface, PM.

Each interface shown in this figure consists of:

1. request and handshake signals.

2. an address bus.

3. a data bus.

4. various attribute and status signals.

Data transfers may involve 1 or 4 octets, where an octet is eight bytes or
sixty-four bits. As mentioned earlier, standard Socket 7 pinouts and proto-
cols are implemented and are discussed in more detail in Chapter 4. Also,
operation of the system bus at 100-MHz is supported. The bus operates at
a whole or half-integer divisor of the core frequency (e.g., 3.5X for a 350-
MHz processor and a 100-MHz system bus). Because the L2-Cache is on-
chip, it runs at the core speed of the microprocessor itself. The L2-Cache
has separate read and write ports, allowing one read and one write per
cycle.

Neither inclusion nor exclusion is enforced between the L1- and L2-
Caches. L2-Cache line misses that result in an L2-Cache line fill cause
simultaneous L1- and L2-fill operations. A given line is never marked modi-
fied in both the L1- and L2-Caches. 
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Figure 2.22 SYSTEM INTERFACE UNIT

 

table walk unit The table walk unit undertakes x86-based page table walks in response to
requests from either the I-Cache TLB or the D-Cache TLB. It contains an 8-
entry PDE cache (page directory entry) to reduce the average table walk time
from a 2-level table walk to just a single table read. Request for such a table
walk are shown in the LdOp Pipeline and L1 D-Cache Access diagram shown
in Figure 2.16 on page 165 and in Figure 2.19 on page 168 for the StOp pipe-
line and store queue access.

The write pipeline/merge unit handles all single-octet writes from the D-
Cache, merging and pipelining them onto the system bus wherever possible.
The system bus supports 2-deep bus transaction pipelining.

The critical importance of how the microprocessor is integrated into the
other elements that make up a typical system (i.e., platform) is one of the cen-
tral themes of this book and is dealt with in a number of the following chap-
ters. 
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CHAPTER SUMMARYA general overview of the K6 3D microarchitecture has been given. In
particular, we examined a number of the design choices that were made which
were part of the decisions that ultimately led to the K6 3D’s microarchitecture.
Some of these choices were centered around

1. the predecode scheme which is done (a) at cache fill time, outside of
the fetch/decode/execute pipeline and (b) without knowledge of the
actual instruction boundaries.

2. the number and types of decoders used.

3. the unification of most major control requirements (e.g., reservation
stations, reorder buffer, and register renaming) into one structure—
the scheduler and its centralized buffer.

4. the focus on short pipelines and short latencies, (e.g., short branch
prediction, fetch redirection, execution latencies, short branch
misprediction penalty, and short misaligned memory access penalty).

5. the use of an internal RISC-like microarchitecture in conjunction
with the translation of x86 instructions into corresponding short or
long sequences of RSIC-like Ops (OpQuads and OpQuad
sequences).

In fact, as pointed out in Chapter 1, this case study provides a detailed and
coherent context for studying the wealth of design problems encountered
in processor design that are covered in conventional textbooks in com-
puter architecture. Hopefully, the rich set of design issues that result from
the above set of topics and other design choices discussed in this chapter
have helped you understand the interrelationships and dependencies that
exist among them. 

Suggested Readings

Instruction Level Parallelism

Many of the approaches discussed in this chapter are discussed in the literature under the
general phrase “instruction level parallelism (ILP)”. Two articles we recommend, in addition to
those already cited, are given here. The article, “The 16-Fold Way: A Microparallel Taxonomy,”
by Barton J. Sano and Alvin M. Despain, Proceedings of the 26th Annual International

Symposium on Microarchitecture, 1993, presents an interesting taxonomy for processors that have
multiple-instruction processing capabilities, including some of those discussed here. Additionally, the
article, by Roger Espasa and Mateo Valero, “Exploiting Instruction- And Data-Level Parallelism,” IEEE
Micro, 1997, describes a design approach which combines ILP design approaches with data-level parallel-
ism techniques (i.e., vectorization techniques). Both of these articles are on the CD-ROM.

Additionally, two presentations by Bruce Shriver related to these issues are on the CD-ROM.
Their titles are, “Instruction Level Parallelism,” and “The Evolution of High-Performance ISAs.”
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Now that we have given an overview of the K6 3D’s microarchitecture, we
will, in the next chapter, examine three of the major aspects of the it
microarchitecture in considerably more depth to aid you in understanding
some of the implementation issues associated with specific design
approaches.
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