
1

Chapter 1
Microprocessors, Platforms,

and Systems

his chapter examines the process of designing and implementing
a microprocessor and then examines issues that arise in the
process of designing and implementing a 3D graphics PC

platform. Toward the end of the chapter, several Eckert-Mauchly award
winners share their insights regarding important references in the field of
computer architecture. Although this chapter is written for each of the
books intended1 audiences, there are some subsections that have details
that will be of more interest and use to practitioners and those in universi-
ties. The following road map for this chapter identifies these sections.

DESIGNING AND

IMPLEMENTING A
MICROPROCESSOR

What makes microprocessors especially difficult to design and implement
are their complex nature, large size as measured in the number of
electronic devices required in their implementation and the number of
highly dependent trade-offs that must be made to achieve given size, yield,
voltage, power, temperature, price, and performance points. The situation

1 See the Preface

ROAD MA P OF CHA PTER 1

Section Audience

The following are more detailed subsections:
Model at the Gate and Circuit Levels
Gate and Circuit Level Simulation and Hardware 
Emulation
Generate Netlists and Physical Layout
Mask Generation, Wafer Fabrication, and Packag-
ing

Practitioners, Uni-
versity Professors, 
and Students

T
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is complicated by the fact that the performance of the microprocessor
should not be looked at independently of how it is integrated into a
platform and a system. Issues such as the performance characteristics
(bandwidth, latency, clock rate, etc.) of the core logic chipset, the memory
architecture, the number and types of buses and their characteristics, and
the I/O device support integrated onto the motherboard must be consid-
ered in a number of the design trade-offs. It makes little sense to have the
fastest microprocessor in the world integrated into a system with an
inappropriate bus or memory architecture or I/O support.

hardware-software co-design This implies that the core logic chipset, bus, memory architecture, and
motherboard design teams must work intimately with the microprocessor
design team. Each of these system elements is also significantly impacted
by the rate of increases in clock speed and circuit density as well as impor-
tant changes in packaging technology. Instead of advocating hardware-
software co-design, we advocate hardware-system co-design. The “hard-
ware” component of hardware-software co-design often refers only to pro-
cessor design. Even when used in this restricted context, the hardware-
software co-design process has substantive advantages when contrasted
with the approach used just a few years ago of designing a processor with-
out on-going, detailed interactions with software teams, such as compiler
writers and operating systems implementers, that ultimately leads to the
co-evolution, testing, and integration of the processor and the software.

hardware-system co-design We use the term hardware-system co-design to extend these notions to
include on-going, detailed interactions with the teams involved in the
design of the core logic chipset, the BIOS, the bus and memory architec-
tures, the motherboard and any special device controller chips that will be
integrated on the motherboard, (e.g., graphics controller chip, a high-
speed FAX-data-voice modem chip, or a high-performance network con-
troller chip). The second half of this book deals with many of these issues.
In the first half, we focus on the microarchitecture of the microprocessor.

AR TICLE ON CD-ROM

An insightful article that clearly shows the dependent
nature of processor and compiler design is, “Com-
piler Technology for Future Microprocessors,” by
Wen-Mei Hwu, Richard E. Hank, Daniel M. Lavery,
Grant E. Haab, John C. Gyllenhaal, and David I.
August, Proceedings of the IEEE, December 1995.
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WHAT NEEDS TO BE DONE?
We use the terms “representation” 
and “model” interchangeably in 
this discussion.

How do you go about implementing a microprocessor? What needs to be
done can be stated quite simply: We need to take the high-level instruction
set architecture representation or model of the microprocessor’s architec-
ture and transform it into a correctly working, high-performance silicon
chip that will have a long, failure-free life. Doing that is, of course, not so
simple.

Models play an integral role in the transformation process. Models are
used to explore and analyze alternative design solutions and to verify
behavioral (functional) specifications, compatibility requirements, and
adherence to standards. A model—a representation of the microprocessor
expressed in some language—is typically implemented in a simulator,
emulator, or a combination of both. The model can represent the micro-
processor at the architecture, microarchitecture, logical implementation,
or chip level, or it can span one or more of these levels. While computer
architects typically tend to deal with issues at the architecture and
microarchitecture levels, digital design engineers tend to be more directly
involved with issues at the logical implementation and chip levels. As a
result, these two groups often approach the modeling and simulations
issues from different perspectives and often with a different set of termi-
nology and tools. For example, some digital system designers might refer
to the levels of abstraction shown in Table 1.1 when discussing the model-
ing and simulation of digital systems:

These levels of abstractions (sometimes also called stages) are shown in
more detail in Figure 1.1. The differences between the terminology and
tools each group employs are lessening because:

Table 1.1 LEVELS OF ABSTRACT ION COMPAR ISON

Digital Design 
Engineer’s Level

Examples of 
Modeled Entity

Approximate Equivalence to 
Computer Architect’s Level

system level
pipelines, instruction decoders, 
and TLBs

microarchitecture

register transfer level
(RTL)

registers, buses, multiplexers, and 
combinational logic

microarchitecture
and logical implementation

gate level or 
logic level

library cells of AND, 
OR, etc. gates

logical implementation

transistor level
transistors in various process tech-
nologies

chip

layout level geometries, transistor placements chip
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1. the size and complexity of the microprocessors and the impact of
the implementation-related issues on the cost/performance of the
overall system require these groups to work closer together, with
the result that the boundaries between some of the adjacent stages
in the design process are becoming increasingly blurred.

2. the decreasing cost of high-performance computer platforms has
precipitated a movement of electronic design automation tools
from specialized workstations to more widely available desktop
platforms resulting in an increase in the power and scope of these
tools.

Let us now take a look at the design and implementation process repre-
sented in Figure 1.1 in more detail.

CONSTRAINTS

We assume that the instruction set architecture to be implemented has
been previously defined. Thus the design and implementation process
does not start with the design of the instruction set architecture but with
the design of the microarchitecture, (i.e., the set of resources and methods
used to implement the instruction set architecture). Recall from the earlier
definition of the term microarchitecture that it includes the way in which
these resources are organized as well as the design techniques used to reach
the target cost and performance goals. Presumably, the instruction set
architecture has been designed with an intimate knowledge of what the
programs implemented actually do, (e.g., knowing what systems resources
are used and how frequently, and knowing what memory bandwidth vari-
ous classes of algorithms require). Knowing what programs do is abso-
lutely essential to identifying what resources and instructions are required
in the architecture.

The detailed analysis of perfor-
mance data and the subsequent use 
of that analysis in the design pro-
cess is the cornerstone of many, if 
not most, architectural design deci-
sions.

It cannot be emphasized strongly enough the importance of under-
standing what the processor is doing when it executes specific benchmarks
or workloads. This assumes that the benchmarks and workloads are truly
representative of how the system will be used. This assumption, however,
is one that is difficult to meet. Not only must suitable workloads be cre-
ated, but representative traces from those workloads must also be devel-
oped. Using bad trace data in good performance models has been the
cause of more than one processor’s performance deficiencies. Moreover,
deciding on what workloads are representative of current (or future) target
markets can be extremely difficult.
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Figure 1.1 DESIGN PROCESS
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Even given these difficulties with developing good performance
models and good trace data, it is safe to say that the detailed analysis of
performance data and the subsequent use of that analysis is the corner-
stone of many, if not most, central architectural design decisions. Some
examples are data from address traces that yields information about such
things as the frequency of occurrence of conditional branches, address
modes, exception conditions, and interrupts.

The design of specific workloads 
and benchmarks is an art in itself.

The workloads and benchmarks and subsequent analysis may be tar-
geted at a specific component of the processor (e.g., the integer unit or the
floating-point unit), a group of components (e.g., the chunks of logic
involved in the fetching, predicating, and decoding of instructions), the
entire processor itself, or the processor interconnected with one or more
of its external system components (e.g., the chipset or off-chip cache). The
design of specific workloads and benchmarks is an art in itself as often
millions of instruction executions are needed to gain some understanding
of the specific behavior you are attempting to study. Both the architect and
the digital systems engineer need to know where the bottlenecks are in
their respective models of the microprocessor in order to remove these
bottlenecks.

Clearly, one of the most important constraints placed on the microar-
chitecture design team is the definition of the instruction set architecture
that they need to support. For the K6 3D microarchitecture, it is the widely
used x86 instruction set architecture. Indeed, one view of the K6 3D is that
it is a high-performance CISC-on-RISC microprocessor. The CISC-com-
ponent is the x86 instruction set architecture, while the underlying RISC-
component is known as the Enhanced RISC86 microarchitecture. The
most important implication of this constraint is that the K6 must be fully
x86 binary code compatible, including code using the x86 MMX multime-
dia instruction set extensions. We will learn later that the K6 3D also pro-
vides an additional set of AMD-developed instruction set extensions
called the AMD-3D instructions which support high-performance 3D
graphics, audio, and physics-based modeling and simulation processing.

Other constraints, both from a platform and performance point of view
have to do with systems-related issues. Among the design goals for the
K6 3D processor were explicit objectives for it to be Socket 7 compatible

VIDEO ON CD-ROM

Amos Ben-Meir, Principal Designer of the K6 3D,
addresses two questions of interest in this video clip:
“What is needed to design state-of-the art micropro-
cessors?” and “What were the design methods that
enabled the K6 3D to be implemented in such a short
period of time?”
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and for it to fit within the electrical, power and thermal specifications, and
the EMI envelope of the Intel Pentium processor. If it were successful in
meeting these objectives, it could readily integrate into industry-standard
Pentium-compatible motherboards, chipsets, power supplies, and thermal
designs.

The analysis of the instruction set architecture is based on knowledge of
typical application and system software, typical coding practice, behavior
or nature of code generated by various compilers, and analysis of instruc-
tion and data reference traces of actual software. On this last point, which
is one of the most significant inputs to the microarchitecture development
process, the following elements are key:

1. the capability to capture traces of the execution of any and all code,
(e.g., privileged OS code, device driver code, and application
code).

2. the capability to use long traces—ten million to one billion
instructions long.

3. the need to have an accurate and detailed trace-driven perfor-
mance model of the design that can output a wide variety of
performance-related statistics and that can be readily changed to
explore alternative design options.

COMPARATIVE ANALYSIS

Socket 7 Compatible

Socket 7 compatible means that the system bus interface is compatible
with the industry-standard 64-bit Pentium P55C bus protocol and
motherboard socket. One of the most important differences between the
K6 and Intel’s Pentium Pro and Pentium II processors is the way in
which the microprocessor chips connect to the rest of the system and the
system bus interface. 

The K6, like the Intel Pentium and the Intel Pentium MMX (P55C),
are “Socket 7 compatible” as defined above. However the Intel Pentium
Pro and the Intel Pentium II (Klamath) use a different bus interface or
protocol (called the P6 bus interface) and each uses a different physical
motherboard connector. The Intel Pentium Pro uses a dual-cavity PGA
packaging technology. The Intel Pentium II uses Intel’s Single Edge
Cartridge (SEC) technology and its Slot 1 and Slot 2 connectors. These
issues and their design implications (e.g., the way in which the L2-Cache
is interfaced to the system and the performance issues involved) are
discussed in Chapter 4 and Chapter 6.
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TESTING

During the design process, we undertake different types of testing—func-
tional (i.e., behavioral) testing, structural testing, compatibility testing,
and performance testing. There are basically three different levels of test-
ing that need to be considered for each of these types. The testing of:

1. the design (i.e., verifying the design realizes the instruction set
architecture without any errors).

2. the logical implementation (i.e., verifying the logical implementa-
tion realizes the design without any errors).

3. the chip (i.e., verifying the physical device realizes the logical
implementation without any errors).

Functional (Behavioral) Testing

Functional (behavioral) testing is a method for verifying design correct-
ness via simulation. A “block” or “component” representing a set of func-
tions or system behavior is modeled. A simulator is constructed for the
model. An input stimulus is applied to the block’s inputs and the block’s
outputs are compared with the expected outputs. Trace buffers are used to
chronicle the behavior of the block, permitting examination of the behav-
ior for an arbitrary period of time prior to matching results. Such com-
puter modeling of the design is begun at an early stage in the design
process to verify design concepts in a top-down fashion. Functional testing
is continued as more detail is added to the design and changes are made.

Initially the simulations are strictly at a highly abstract behavioral level
and are performed on large blocks that model major functional areas of
the design. As design implementation progresses, the original blocks are
usually hierarchically decomposed into sub-blocks. The model is managed
to track the design hierarchy and thus becomes more detailed over time.
Testing is generally performed first on each new sub-block and then inter-
actions between blocks are confirmed.

DEFINITION

Test Vector

Test vectors are the collection of values of input stimulus and expected
output results for each sequential stage of simulation. The test vectors
are intended to cover all inputs and outputs (pins entering or leaving)
each block being tested. Test vectors for larger blocks don’t need to
include I/Os of smaller blocks that do not appear at the boundary of the
larger block.
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The development of test vectors is time-consuming and may be naively
omitted from project scheduling or its extent may be underestimated.
Writing the vectors generally requires a detailed knowledge of the blocks
being tested. Often the logic designer of the blocks must write the vectors
or at least define an initial template for others to follow. Insuring compre-
hensive testing coverage for large complex blocks is a specialized field,
because exhaustive testing of all possible combinations of inputs may not
be practical. Once confidence in the test vectors is obtained, vectors may
be used in gate-level or other lower-level simulations, to verify bottom-up
design correctness.

Functional simulators are generally restricted to behavioral modeling.
When the gate-level design of a block is synthesized or manually designed,
it too can be modeled using a gate-level simulation. Gate-level simulators
generally can handle the simulation of sub-blocks that have behavioral
descriptions. Thus some blocks may be at a gate-level, while others are still
using a behavioral model. Often the focus is on verifying the gate-level
design of a particular block, and blocks providing stimulus to or sampling
outputs from the block of interest need only be behaviorally modeled.

Design for Testability

A digital circuit is an implementation of the specification of a desired
function, (i.e., it exhibits a desired behavior). A microprocessor is a collec-
tion of hundreds of thousands of such circuits. Given the complexity of
the resulting microprocessor chips, the testing of them must be integral in
their design from the onset. Incorporating testing technology into a design
from its inception is often referred to as “design for testability” or DFT.
Using DFT techniques invariably reduces costs and design time.

There have been a number of important DFT advances made at the
logical implementation and chip level, such as boundary scan testing, full
operational scan of internal state elements (e.g., flip-flops), built-in self-
test (BIST), test vector generation, signature analysis, and observers. A
number of these approaches required additional circuitry to be included
in the design, solely for the testing function, reducing the amount of the
total gates on the chip that are available to implement the microprocessor.
Thus, another trade-off emerges regarding the distribution of gates
between functionality and testing and the benefits from the use of DFT
techniques. 

A substantive treatment of testing—dealing with issues such as fault
modeling, fault manifestation,2 fault detection (controllability and

2  For example, at the chip level one needs to conjecture how fabrication faults 
such as holes in insulating layers, bridging connections in metal layers, missed 
contacts, and poor control of etching will be manifested so that it is possible to 
test for them.
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observability), test design, test data (collection and generation), and test
coverage—is well beyond the scope of this book. Particularly since each of
these topics needs to be discussed in the context of testing the design, the
implementation, and the chip. However, a number of fundamental ideas
are presented so the reader has an appreciation of the issues involved.

Compatibility Testing

The difficulty of achieving x86 architectural compatibility is generally
underestimated. The business issues surrounding compatibility are gener-
ally equally underestimated. We will see that these business issues contrib-
ute directly to the technical difficulties in achieving compatibility.

From a business perspective, x86 compatibility is an absolute require-
ment. First of all, if it is perceived that the affected microprocessors are
flawed merchandise, there is the real possibility of being held liable to
recall or field-replace the flawed units. Equally important however, is that
consumers simply will not accept a microprocessor if there is a lack of con-
fidence that the microprocessor will not successfully run popular or legacy
software. This latter problem is aggravated by the fact that the program-

Suggested Readings

Design for Testability

1. H. P. G. Vranken, M. F. Willeman, and R. C. van Wuijswinkel, “Design for Testability in
Hardware-Software Systems,” IEEE Design & Test of Computers, Vol. 13, No. 3, Fall 1996, pp.
79-87.

2. K. P. Parker, The Boundary Scan Handbook, Kluwer Academic Publishers, 1992.

3. IEEE Standard 1149.1-1990, Test Access Port and Boundary Scan Architecture, January 1992
and the associated standard, 1149.1b, Boundary Scan Description Language (BSDL), 1991.

4. M. Tegethoff, “IEEE Standard 1149.1: Where Are We? Where From Here?” IEEE Design &
Test of Computers, Vol. 12, No. 2, Summer 1995, pp. 53-59.

5. B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the Core of the Problem,” Computer,
November 1996.

6. V. D. Agrawal and C. R. Kime and K. K. Saluja, “A Tutorial on Built-in Self-Test, Part 1: Prin-
ciples,” IEEE Design & Test of Computers, Vol. 10., No. 1, May 1993, pp. 73-82.

7. V. D. Agrawal and C.R. Kime and K. K. Saluja, “A Tutorial on Built-in Self-Test, Part 2: Ap-
plications,” IEEE Design & Test of Computers, Vol. 10., No. 2, June 1993, pp. 69-77.

You can find the full text versions of Part 1 and Part 2 of the Agrawal, Kime, and Saluja tutorial
as well as the Murray and Hayes article, on the companion CD-ROM.
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mers of such software may have relied on unintended and undocumented
behaviors, which historically have been prevalent in x86 microprocessors.

Compatibility must not only deal 
with “official” or “publicly” docu-
mented features, but must also deal 
with “unofficial” and “undocu-
mented” features and with behav-
iors in obscure cases.

Undocumented or imprecisely documented behaviors are at the
center of the difficulty in achieving compatibility. The user and program-
ming manuals for x86 microprocessors have historically not compared
with documents like the IBM/370 Principles of Operation manuals. The
x86 manuals have generally been little more than abstractions that approx-
imate the exact behavior of the microprocessor. Such x86 manuals cannot
be considered as formal reference documents, written and edited with
extreme care, and thereby suitable for design purposes.

Generally speaking, the first vendor to implement a commercially
successful microprocessor will de facto determine its behavior for all
implementations to follow. Even if part of that initial behavior includes
unintended and undocumented artifacts, the earliest implementation
defines the compatibility requirements for all other vendors. The first
vendor does not need to reverse engineer the behavior, at least not until a
subsequent generation’s implementation. Even then, this vendor has
knowledge of the exact logic underlying the original implementation, and
can use that to retroactively deduce the precise behavior. The second
implementer to market the instruction set architecture of the micropro-
cessor does not have these luxuries.

Designers take great risks when making extensions to instruction sets.
If the extensions are not useful, they will increase the cost of the processor
without returning benefit. If the extensions are useful, but implemented
inefficiently, they leave room for competitors to make improvements. The
x86 architecture has had a number of extensions over its history. An early
extension was the introduction of the 80286 instruction set, which
extended the addressable memory from 1-MByte to 16-MBytes. This
extension was not very successful. It failed to support compatibility with
the underlying 8086 architecture in a way that could be used efficiently in
practice. Some commercial software used the larger memory model, but
two key operating systems at the time, Microsoft’s Windows and IBM’s
OS/2, were unable to produce widely accepted versions using these exten-
sions. Subsequent instruction set extensions embodied in the 80386 archi-
tecture provided an efficient 8086 emulation mode, and that enabled new
operating systems to run 80386 and legacy 8086 code with equal efficiency.

One of the lessons to be learned from these examples is that instruc-
tion set extensions should be done in concert with the development of
both the operating systems and important software applications that will
use them. This suggests that computer architects and software designers
should sit down together to determine what the extensions should do and
how they should be implemented (see hardware-software co-design and
hardware-system co-design on page 2). From a competitive point of view,
this means that some proprietary information has to be shared across the
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industry with some partners while kept secret from companies in the busi-
ness of designing competitive microprocessors. 

The ideal strategy is to publicly announce the instruction set exten-
sions and the operating systems and applications software use of the
extensions at the same time. In reality, the software announcements
usually always follow the availability of the instruction set extensions,
often by as much as a year. As an example, the x86 MMX instruction set
extensions were announced in the spring of 1997. By early 1998, very little
MMX software had been released, although a large number of the poten-
tial developers who could make use of the extensions had committed to
use them in their applications. So, it looks promising that these extensions
will indeed succeed.

On the other hand, the 80286 instruction set extensions were never
truly successful. Yet they were used by enough software to force 80286
compatibility to a component of x86 designs through the 1990s and possi-
bly beyond. Virtually all 80286 applications that were running in the late
1990s had long ago been converted to the 80386 memory model. But the
possibility that some still exist for the 80286 memory model creates what
amounts to a tax on the x86 architecture to support software that, in all
probability, is no longer in use. Given this background into some of the
problems involved in extending an instruction set, let us return to the
issues regarding compatibility testing.

compatibility test suites Because the published x86 documentation is not adequate for
compatible design, design houses for x86 processors must make a large
investment in time to develop extensive compatibility test suites. These
suites are used to compare their parts against the de facto standard Intel
x86 microprocessors. The compatibility suites exercise the functionality of
individual instructions and inter-instruction interactions. Many tests are
written that create result arrays in memory. Comparison of the result
arrays for the microprocessor with the device under test, is more efficient
than tests that require comparison of register values. Subsequent to such
tests, compatibility testing includes extensive trials of major applications
and operating systems. Comprehensive system tests are also performed
using a wide range of peripherals. After much internal testing, outside
compatibility laboratories are employed to give independent certification,
and hence added credibility that the microprocessor is indeed compatible.

Clearly part of the difficulty in compatibility testing stems from x86
architectural complexity, particularly in the context of high-performance
implementations, which act to further complicate compatibility testing.
Some x86 architectural complexity issues are well known. These include
the existence of complex instructions with variable-length instructions,
non uniform instruction decoding, many address modes and inherently
multiple cycle operations; a segmented addressing model, requiring con-
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tinual effective and linear address calculations; precise interrupts; and
IEEE compatible floating-point.

The foregoing well-known complexity issues are just the beginning.
Beyond these are many more problems. Historically, x86 programmers
have exploited the use of self-modifying code. Compatibility requires close
monitoring for store-into-instruction stream events and extensive design
efforts to ensure instruction cache coherency, which must extend over
multiple levels of cache hierarchy, deep into the branch prediction,
prefetch, and instruction decode logic. The x86 has multiple operating
modes, including real-mode, virtual 86 mode, segmentation without pag-
ing, and segmentation with paging. Paging involves a 2-level translation
with a TLB and also introduces additional user and supervisor-like protec-
tion features. Beyond addressing issues, segmentation has extensive pro-
tection model features, including the use of selectors and segment
descriptors, call-gate transitions between protection levels, task-gate tran-
sitions between tasks, protected stack operations, and virtualized I/O.
Miscellaneous x86 complexity that complicates compatibility testing stems
from the existence of a “System Management” mode for facilitating system
power management, instruction prefix operations, non uniform register
operations (8-bit, 16-bit, and 32-bit operations), and the implicit instruc-
tion use of dedicated registers.

Because the K6 3D executes x86 instructions directly, a significant
compatibility effort was undertaken from the very beginning of the project
to ensure its x86 binary code compatibility. Its verification included all of
the steps above plus validation for several major operating systems envi-
ronments. Some of the validation steps were simplified because of tools
and experience in building three earlier generations of x86 processors, but
no steps were omitted..

DEFINING A PROCESSOR’S INSTRUCTION SET ARCHITECTURE

The genesis of a processor’s instruction set architecture is often quite
informal in nature—ranging from discussions where diagrams are drawn
on backs of envelopes to talking one or two people into writing a report or
a white paper discussing what might be done. 

VIDEO ON THE COMPANION CD-ROM

There is a video interview on the CD-ROM with
Warren Stapleton, Leader of Model Development and
Verification of the K6 3D and Anu Mitra, Verification
Manager of the K6 3D in which they discuss the
design process employed and the extensive role verifi-
cation played in the project from its inception.
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These modest beginnings often lead to forming a small group of people to
undertake both analytical studies and simulations to explore the feasibility
of some of the newer concepts inherent in the design, to define some
aspects of the instruction set architecture with a bit more rigor, to examine
the implications of a number of the design constraints. If the results of
these efforts are promising, a project to design and implement the proces-
sor is typically launched, consistent with available resources. It should
come as no surprise that a microarchitecture also evolves in a similar way
to an instruction set architecture.

There are a wide variety of factors that influence the nature of the pro-
cessor’s instruction set and the candidate microarchitectures for imple-
menting the resultant instruction set architecture.

Historical Comment and Suggested Reading

The von Neumann Machine

Two of the most significant papers in the history of computer architecture are related to what is called the
“von Neumann machine.” They are:

1. John von Neumann, “The First Draft of a Report on the EDVAC,” Moore School of Electrical Engineer-
ing, University of Pennsylvania, June 30, 1945, republished in the IEEE Annals of the History of Comput-
ing, 1993. 

2. Arthur W. Burks, Herman H. Goldstine, and John von Neumann, “Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument,” report prepared for U.S. Army Ordnance
Dept., 1946, reprinted in Datamation, Vol. 8, No. 9, pp. 24-31, September 1962 (Part I) and Datama-
tion, Vol. 8, No. 10, pp. 36-41, October, 1962 (Part II).

An interesting augmentation to the von Neumann paper cited above can be found in:

3. M. D. Godfrey and D. F. Henry, “The Computer as von Neumann Planned It,” IEEE Annals of the
History of Computing, 1993.

An historical account of RISC technology within IBM, a good deal of which is relevant to topics discussed
in this book, can be found in:

4. John Cocke and V. Markstein, “The Evolution of RISC Technology at IBM,” IBM Journal of Research
and Development, January 1990.

Complete full-text versions of each of the above important, historical articles can be found on
the companion CD-ROM. We encourage you to read each of them.
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Some of the higher-level issues are:

1. target applications and operating systems.

2. target platform context—e.g., desktop, portable, or server.

3. target cost/performance level.

4. need to support legacy 16-bit and 32-bit code.

Some of the lower-level issues are:

1. target die size and cost.

2. target platform/system environment—e.g., external caches, bus
speeds, and I/O speeds.

Suggested Readings

Instruction Set Design

Consider what Michael Flynn on pp. 2-3 in Computer Architecture, Pipelined and Parallel Processor Design,
Jones and Bartlett, 1995 has to say about instruction set design:

“There are always trade-offs in instruction set design. A well-designed instruction set allows variabil-
ity in implementation technology and is less sensitive to technology changes. As time goes by, even a
well-designed set must undergo changesadditions to accommodate new functionality and perhaps a
de-emphasis of older features. Thus, at any moment, a successful architecture includes an instruction
set consisting of:

• A core of frequently used instructions.

• Some features extending or correcting limitations in the original design.

• Some instructions no longer expected to be used (either superseded or “out-of-vogue”), which
remain for reasons of compatibility.”

Also, consider Harold Stone’s related comments on p. 9 in High Performance Computer Architecture, 3rd
Edition, Addison Wesley, 1993:

“… The architect should measure the quality of the architecture across a number of applications that
characterize how an architecture is to be used. The effectiveness may vary considerably from applica-
tion to application, and such measurements should reveal where the architecture is truly beneficial to
the user and where other approaches are superior.

A computer architecture might well have some minor but costly inherent flaws that escape the
scrutiny of its designer. A different designer who can build essentially the same architecture with those
flaws repaired can produce a more effective, and therefore more competitive, machine. Architects
cannot hide inefficiency by arguing that hardware costs nothing.”
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Some typical design decisions that need to be made are:

1. will the design focus on employing multiple parallel pipelines or
fewer, deeper pipelines—i.e., a maximum superscalar versus a
maximum frequency approach.

2. how many instruction decodes/clock.

3. how many functional units and how deeply will they be pipelined.

4. how will functions be apportioned or assigned to each pipeline
stage.

5. what type of caching.

The models employed by the hardware/system co-design teams need to be
flexible enough and detailed enough to allow alternatives to this wide
range of design issues to be evaluated.

MODEL OF THE MICROPROCESSOR AT THE RTL LEVEL

There has been a rich history of the use of both formal and informal
textual and graphical representations of computer architecture. In the
following extended Historical Comment, Dr. Mario Barbacci of CMU
shares some of that history with us.

HISTORICAL COMMENT

The Evolution of Architecture Description Languages
by

Dr. Mario Barbacci
CMU

Designers and students of computer architectures have always made use of graphical and textual conven-
tions to describe computer architectures. Early notations varied in their degree of formality and descrip-
tive power and were not in widespread use (for reasons that will become apparent later). A significant
event in the evolution of architecture description languages took place in 1964 with the publication of a
formal description of the recently announced IBM SYSTEM/360 [5]. This description provided a defini-
tion for a computer architecture namely, the behavior and the state visible to the programmer:

“This paper presents a precise formal description of a complete computer system, the IBM SYSTEM/
360. The description is functional: it describes the behavior of the machine as seen by the programmer,
irrespective of any particular physical implementation, and expressly specifies the state of every register
or facility accessible to the programmer for every moment of system operation at which this informa-
tion is actually available.”

continued on next page...
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HISTORICAL COMMENT (CONT.)

The Evolution of Architecture Description Languages

The description of SYSTEM/360 consisted of a set of programs in APL [7] organized in two sections, the
central processing system (nine programs) and the input/output (five programs). The programs were
complemented with auxiliary tables that provided, for example, definitions of variables and locations (line
numbers) in the programs where the variables are read or written. The legendary terseness of the language
makes a study of the description a slow process at best, and the process is not helped by the naming con-
ventions (e.g., “For brevity, single characters are used for all variables except for those which occur infre-
quently, such as the panel switches occurring in CP, the control panel program.”) Nevertheless, this is a
milestone in the evolution of Architecture Description Languages and must read for any serious student of
the subject.

As integrated circuits increased in density during the 1960’s, new computers began to proliferate and it
was possible, for the first time, to collect, study, and classify these artifacts, just like one could study plants
or animals or rocks. The publication of [3] was the first attempt to organize computer structures into lev-
els, represented with uniform notations: 

“The structures that we call computer systems continue to grow in complexity, in size, and in diversity.
This book is linked firmly to the nature of this growth. The book is about the upper levels of computer
structure: about instruction sets, which define a computer system at the programming level; and about
organizations of processors, memories, switches, input-output devices, controllers, and communica-
tion links, which provide the ultimate functioning system. These levels are just emerging into well-
defined system levels, with developed symbolic techniques of analysis and synthesis and accumulated
engineering know-how, all expressed in a crystallized representation.”

The book provided a large collection of detailed examples illustrating actual computers. The authors
felt that a sufficiently large number of computers had been designed over the previous 25 years that it was
possible to systematize the space of computer designs, to provide a framework for the study of computers
as a class of artifacts and not as isolated, independent inventions.

The framework consisted of a hierarchy of levels of descriptions complemented by two notations, one
for instruction sets, called ISP, and the other for configurations of major components, called PMS.

According to [3] a digital system can be described at many different levels of detail in order to depict
structural or behavioral aspects. Thus a system can be described at the gate level as a network of logic gates
and flip-flops whose behavior is specified by timing diagrams, Boolean equations, or truth tables. While a
complete digital computer could be described at this level, the amount of information to be conveyed
would be too extensive for a human designer to comprehend, and higher levels are introduced to abstract
details: Combinatorial and Sequential Register Transfer levels.

The existence of digital components capable of interpreting instructions stored in memory (i.e.,
instruction set processors) motivated Bell and Newell to introduce the programming level of description. 

continued on next page...
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HISTORICAL COMMENT (CONT.)

The Evolution of Architecture Description Languages

At the programming level, the basic components are the interpretation cycle, the machine instruc-
tions, and operations (all of which are defined as register transfer level operations).The programming level
arises from the need to describe the behavior rather than the structure of processors—in particular the
behavior as seen by the programmers of the machine (i.e., the goal of Falkoff et al, in the SYSTEM/360
description)

The system levels correspond closely to the technology available for analysis and synthesis of computer
systems. During the 1940’s and 1950’s computer architectures were simple, often linked to one unique
implementation, and the need for a description language were satisfied by logic diagrams and Boolean
equations. The situation changed with the introduction of SYSTEM/360 because it consisted of a large
family of implementation of the same instruction set—the architecture had to be abstracted from the
implementation, thus the need for a different notation. In 1971, Bell and Newell characterized the situa-
tion thus,

“Each of these levels exists in fact, precisely to the extent that a technology has become well developed.
Thus both the circuit level and the lower half of the logic level (combinatorial and sequential circuits)
are highly polished technologies. They are what one learns today, if one wants to become a computer
engineer. Textbooks exist, courses are taught, and there is a flourishing, cumulative technical litera-
ture. As we progress up the systems levels, matters become progressively worse. The register-transfer
level is not yet well established, although there is considerable current activity and the next few years
may see its universal establishment.”

No such consensus was apparent at the programming or system levels although the increased complexity
of computer systems was increasing the importance of these higher levels.
One decade later technology advances had led to an explosion in the number of computer types, with a
large number of instruction sets and data types, as reflected in a revised and expanded version of [3]. By
the time [8] was published, the programming level of description was firmly established and the leading
notation, ISPS, a formally defined programming language, based on the original ISP notation had been
used in a variety of analysis and synthesis applications. In ISPS [1] a processor is described by declarations
of carriers and procedures specifying the behavior of the system:

1. information carriers - registers and memories used to store programs, data, and other state infor-
mation.

2. instruction set - procedures describing the behavior of the processor instructions.

3. addressing modes - procedures describing the operand and instruction fetch and store operations.

4. interpretation cycle - typically, the main procedure of an ISP description. It defines the fetch, de-
code, and execute sequence of a digital processor.

continued on the next page....
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HISTORICAL COMMENT (CONT.)

The Evolution of Architecture Description Languages

The PMS notation remained a graphical language for describing uniprocessor structures but never evolved
to the point of being formalized and implemented as a serious design tool. 

The story was very different at the lower levels of detail, where a number of notations known collec-
tively as “Hardware Description Languages” continued to be developed and used. Hardware Description
Languages (HDL) are notations and languages that facilitate the documentation, design, simulation, and
manufacturing of digital computer systems [2]. Most of these languages (see suggested reading material)
were used mostly in research and academic environments, as input notations for experimental simulation,
analysis, or synthesis tools. In the industrial world, however, additional requirements had to be consid-
ered, namely the need to create, modify and support many design and manufacturing details across man-
ufacturers and throughout the product’s lifecycle.

To address these requirements, several industry-supported efforts have led to standard formats to rep-
resent product data in a standard format. Two of these efforts were the Very High Speed Integrated Cir-
cuits Hardware Description Languages (VHDL) [6] and the Electronic Design Interchange Format
(EDIF). VHDL and EDIF became standards in 1987 (IEEE Standard, 1076 and EIA RS44 respectively) [4].

In VHDL each hardware entity has an interface and a body or architecture. The interface descriptions
consist of input and output ports and various attributes associated with the interface, such as pin names,
timing constraints, etc. The body describes the function or the structure of the design. The body may be
written as an algorithm or as a combination of algorithms and real hardware representations (e.g., gates,
arithmetic-logic units) or made up totally as a structure of real hardware representations.

EDIF provides a hierarchical syntax for data necessary for chip and printed circuit board fabrication.
Note that EDIF is a format, not a language. EDIF's primary application is as a means of transferring design
data from the design environment to the fabrication environment. The format provides for libraries, cells,
views, interfaces, and information on the content within each cell. Test data, mask layout data, physical
layout data, connectivity data, and simulation data can be represented in EDIF. 

These various standards attempt to answer the needs of the various product life-cycle activities. How-
ever, the development of these standards have not been coordinated, and users still need a thorough
understanding of the objectives and uses of each standard. The technology of HDLs has not matured to
the point that a standard language or format can satisfy the wide diversity of product description require-
ments, at least for the foreseeable future.

By the early 80’s, the dimensions of an emerging level, the network level, were noticed. It had the char-
acter of a different level because the performance of a network was far more dependent on operating sys-
tems, network topology, protocols, bandwidth, than on the instruction sets of individual processors.

At the time of this writing, 15 years after [8], an explosion on the number of network types, protocols,
and communications has taken place. Millions of personal computer users connected to intranets and the
Internet have created an enormous demand for new technology. The technology is changing so rapidly
that it will be a while before “the level” begins to settle down and “the notation” emerges.

continued on the next page...
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HISTORICAL COMMENT (CONT.)
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Among the important issues to consider when modeling a microprocessor
are: what the model will be used for, the type of model required and its
representation, the ease of use of the model, and cost. The specific level of
abstraction is selected consistent with the goals of the modeling effort. It is
not only important to decide how the logic and circuit designs of the
actual microprocessor are going to be represented but also how the “simu-
lation environment” within which the microprocessor will be “exercised”
will itself be designed and implemented. This is the part of the system that
generates stimulus for the model and checks that it is behaving properly.
For a microprocessor, the simulation environment must be able to display
and check the state of various conditions within the processor and it must
accommodate such things as distributing clock signals and modeling of
the main memory and system bus architecture and protocols. A software
simulator may be coupled to various hardware emulators to form a hard-
ware/software co-simulation environment.

Modeling is a compromise between accuracy (the level of representa-
tion, the details described, and the precision with which they are
described) and speed. An accurate model of a microprocessor at the
physical level would have to model physical device characteristics. A
simulation of such a model would be so slow that it would be completely
useless for functional compatibility tests. Moreover, there needs to be a
tool that can be used to conveniently describe a microprocessor’s complex
behavior and structure. Specialized high-level programming languages
have evolved to meet this need.

Suggested Readings

Full-Custom and Semi-Custom Design

From page 3 of the book by Ulrich Golze, (with Peter Blinzer, Elmar Cochlovius, Michael Schafers, and
Klaus-Peter Wachsmann), VLSI Chip Design with the Hardware Description Language VERILOG, Springer,
1996, which was mentioned earlier, we have:

“In full-custom design, all details of the circuit had now to be designed, the transistors had to be
dimensioned and composed to meaningful geometrical layouts which were afterward verified by an
analog simulator. A layout is a true-to-scale template for the structures to be produced, however
strongly enlarged. … Around the middle of the 1980s, semi-custom design style became the workhorse
of VLSI design. With the user interface again moving upward, the semi-custom design employs opti-
mized library cells, typically logic gates, adders, etc., composes them to logic wiring diagrams (gate
netlists, schematics) and simulates them logically. The transformation into a geometric layout is
achieved by efficient placement and layout programs. The designer, in general, is not involved with
single transistors, he often does not even know the internal structure of the library cells used.”
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There is substantial debate in the 
industry about the adequacy of 
current hardware description lan-
guages to handle system-level 
designs, behavioral and logic syn-
thesis, simulation, and formal veri-
fication. See for example, “DAC 97 
Panel: Next-Generation HDLs,” 
by L. Lavango and N. Collins, 
IEEE Design & Test of Comput-
ers, July-September, 1997, Vol. 13, 
No. 3, p. 7.

Programming languages, extended to include notions of time, parallelism
and synchronization, and architectural and hardware data structure exten-
sions, have emerged to dominate in semi-custom design. Such languages
are called hardware description languages or HDLs. A model, which is the
definition of the microprocessor implemented as a program in the HDL,
can be simulated by compiling and executing it. Since the program can be
written to describe the microprocessor at any level of abstraction, the sim-
ulation will be of the microprocessor at that particular level.

GOLDEN REPRESENTATION

The HDL description becomes the “golden representation” of the
microprocessor. Changes are made to the golden representation, and all
other representations must change to match the golden representation.
The flow of change is one way, starting with the golden representation.
When this representation becomes detailed enough, it can be transformed
by a process called logic synthesis to be input to the layout and placement
stage of the design process.

Independent descriptions of the microprocessor can be made for each
level of abstraction. Beginning with its behavioral description and
employing step-wise refinement to model more and more of the underly-
ing structure, one could extend the description down to the gate level.
These lower-level design representations must be “cross-verified” against
the golden representation to ensure they are functionally equivalent. Cross-
verification is necessary mainly when the lower-level representations are
generated in part or totally by hand. If they are completely machine-gener-
ated, cross-verification is less necessary unless the software tools that gen-
erate the lower-level representations are suspect.

A growing number of digital system designs are currently represented in
one of two popular hardware description languages, Verilog or VHDL.

AR TICLES ON CD-ROM

A full text version of “Introduction to High-Level
Synthesis,” by Daniel D. Gajski and Loganath Ram-
achandran, IEEE Design & Test of Computers, Winter
1994 can be found on the companion CD-ROM. Two
related articles, “Specification and Design of Embed-
ded Hardware-Software Systems,” by Daniel D.
Gajski and Frank Vahid, IEEE Design & Test of Com-
puters, Spring 1995 and “Introduction to the Sched-
uling Problem,” by Robert A. Walker and Samit
Chaudhuri, IEEE Design & Test, Summer, 1995 are
also on the CD-ROM.
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Selecting one over the other is seen by some as mostly a matter of religion.
However there are some concrete reasons why one might be better suited
to a particular design than the other. If Verilog was to be compared to C,
then it might be reasonable to say that VHDL is like C++. VHDL is a
much more complex language that allows practically all aspects of its defi-
nition to be redefined. In most cases VHDL is used with standard pack-
ages that define the operators to work in the most logical and expected
fashion. A typical complaint is that VHDL is difficult to learn and is a ver-
bose language. Some authors state that one advantage of VHDL is that its
simulation semantics are reasonably well defined; thus, most vendors’
simulators for VHDL behave exactly the same. However, we caution that
the same can be said about Verilog simulators noting that they are based
on a de facto definition as evidenced by the Verilog simulator of Cadence
Design Systems, Inc. VHDL is the accepted HDL used for military appli-
cations and also is often used for describing extensible libraries. On the
other hand, Verilog has gained widespread acceptance because it is easy to
learn and many consider it more practical. Many engineers say they were
able to use Verilog in just a few days. The Verilog language looks familiar
because it is like a combination of Pascal and C mixed together with addi-
tional constructs to represent hardware design and simulation semantics.

BEHAVIORAL (FUNCTIONAL) SIMULATION

Unfortunately, hardware designs, like software designs, usually have some
errors (bugs). For a complex design like a microprocessor, there are likely
to be thousands of bugs that have to be identified and fixed throughout the
design process. Obviously any speedup in the process of identifying bugs
will shorten the entire design cycle. Simulators typically provide mecha-
nisms for displaying selected design variables, either every cycle or when
they change value. This information can be used by other tools that allow
the data to be displayed in a more convenient and meaningful manner as
either waveforms or state dumps. There are two basic styles of writing sim-
ulators to study the behavior of a particular model—cycle-based and
event-driven. Cycle-based simulation corresponds to examining model
variables “every cycle” whereas event-driven simulation corresponds to
examining model variables “when they change.”

cycle-based simulationOne of the problems with describing and simulating hardware is that
hardware can execute a number of things in parallel. However, these items
are resolved at different stages of execution in a simulator. For example, a
3-input AND gate may have only two inputs ready when the simulator has
reached the stage of executing the model that represents the AND gate.
This means that the evaluation of the AND gate will not produce the final
result and will have to be evaluated again once the 3rd input is ready. 
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.

DESIGN NOTE AND SUGGESTED READING

Using C++ as an HDL

The K6 family of microprocessors requires a rather large systems-based simulation environment. The
team decided that contemporary hardware description languages were not good for the general purpose
programming that would be required. They chose to model the microarchitecture using C++ and to then
take advantage of this general purpose programming language to represent the entire model (i.e., the
design plus the simulation environment). There were a number of advantages to using C++:

1. object-oriented nature: The object-oriented nature of the C++ programming language allowed the
team to define an elegant way to represent the logic of the design, and was flexible enough to gen-
erate complex models of expected behavior.

2. ability to override operators: One main advantage that HDLs have over programming languages is
their ability to manipulate individual bits of data. To overcome this limitation the operator() func-
tion was overridden to represent bit and part selection.

3. expressiveness: It was possible to write equations in the form of “signal1(3,2) = signal2(1,0)” or
“signal1 = signal 2 & signal 3” which are just as convenient as using one of the hardware description
languages. 

4. speed: The K6 3D simulator needed to be very fast. This was another key reason for choosing a
compiled language. Minimizing the amount of time to debug a problem, making a modification,
recompiling, and verifying that the problem is indeed fixed was key to the success of the project.

5. debugging aids: design assertions and instrumentation code were easily included in the simulator.

6. execution in desktop PCs: ability to run simulations of large systems on desktop PCs and worksta-
tions with relatively modest amounts of main memory as well as on servers.

7. quick development loop: relatively fast simulate-debug-change-compile loop compared to typical
HDL environments.

For a discussion of related issues related to the use of “traditional” programming languages as
HDLs, see the article, “Using a Programming Language for Digital System Design,” by R. K.
Gupta and S. Y. Liao, IEEE Design & Test of Computers, April-June 1997 on the book’s com-
panion CD-ROM.
In this video clip, Amos Ben-Meir, Principal Designer of the K6 3D, addresses the question,
“Was software simulation used in the verification of the K6 3D?” and Warren Stapleton, the
K6 3D’s Leader of Model Development and Verification, addresses the question, “Why did the
K6 3D team choose to use its own proprietary modeling and simulation tools?” 
Given the importance simulation plays in the design and implementation of microprocessors,
we have included three simulators on the CD-ROM. In Chapter 3, we give pseudo-RTL
descriptions that describe various chunks of microarchitecture logic and recommend the
reader simulated them on these simulators.
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In cycle-based simulation many things (e.g., register loads and signal tran-
sitions) can occur in parallel. These actions are “flattened and re-ordered”
in order to create the effect of all events occurring in their proper order.
Cycle-based simulation eliminates the need to re-evaluate sections of code
due to having unresolved terms. Again, this is done by flattening and re-
ordering so that everything computes and resolves in one pass through the
simulator. In a cycle-based simulation, there are inputs defined and
expected outputs derived for every cycle. Cycle-based simulators have
difficulty in dealing with multiple clock domains and generally cannot
deal with delay simulation at all.

event-drivenEvent-driven simulators take the approach of re-evaluating models
every time there is an event on one of the inputs or variables of the model.
It is easier to handle multiple clocking domains with this type of simula-
tor, as well as delay simulation. The disadvantage is that this type of
simulator is generally slower than cycle-based simulators.

cycle-accurateCycle-accurate model refers to a model describing the behavior of a
functional unit down to the cycle level. This means that the functional
unit’s behavior is modeled accurately enough so that the model’s pins
behave identically to the “real thing” on a cycle-by-cycle basis. This allows
generating test vectors from the model so that the “real thing” can be
verified with these. An example of a model that may not be cycle-accurate
is a performance model. A performance model may only approximate the
cycle behavior since its purpose is to gauge the performance of the
functional unit within some range of accuracy.

As mentioned earlier, one of the most important uses of simulators is
to verify the behavior of and to debug the system being modeled.

Debugging a design usually differs significantly from debugging a pro-
gram. When writing programs, source level debug tools that allow the
code to be single stepped while examining individual variables are key to

HISTORICAL COMMENT

Verification Technology

From P. Shepherd, Integrated Circuit Design, Fabrication, and Test, McGraw-Hill, 1996, pp. 120-121, we
learn:

“Before software tools were developed, the verification of a particular circuit design could only be
achieved by constructing a prototype circuit. While the design could use standard digital and analogue
techniques to design the circuit on paper, it was almost impossible to determine whether the circuit
would perform as expected to in practice. …. When built, the circuit would be thoroughly tested and
design modifications made on the basis of these tests. The next version of the process was then con-
structed and the process repeated. Such a technique was very time-consuming and expensive. ….
Redesign and rework of the mask set added further delay and expense to the product development.”
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boosting debug productivity. Although this capability is available in some
simulator environments it is not used that often. A good environment for
debugging a design should provide fast access to all of the key signal val-
ues, in a logically formatted display, after each cycle has completed. Also,
many simulators keep a history of selected variables so that one can step
backwards in time from an erroneous state to determine the events that
forced the system into that state. Keeping in mind the simplicity of most
hardware description languages, the bugs are more likely to be conceptual
in nature rather than simple coding errors.

MODEL AT THE GATE AND CIRCUIT LEVELS 

Gate-level models are models that describe the function of a particular
block or chip at the gate level. A gate is generally a basic building block of
the design that implements a simple Boolean function. The gates are then
connected together to create a more complex functional unit. Circuit-level
models are typically models that go one level below the gates (i.e., to the
transistor level). 

GATE AND CIRCUIT LEVEL SIMULATION AND HARDWARE EMULATION

The simulation models for the basic gates are generally part of a gate
library that contains multiple representations of these gates (in chip
design, this is typically layout, timing models, ATPG models, transistor
level netlist/schematic and simulation models). When doing gate-level
simulation, the functional unit being simulated must already have a netlist
with a gate implementation. This netlist can then be simulated with one of
the multiple commercial simulators or proprietary in-house simulators.

When doing functional simulation with circuit-level models (transis-
tor-level models), there is usually an abstraction phase where the transis-
tors are translated into gates and then these gates are simulated. This is
done to improve the speed of transistor level simulations. There are simu-
lators that are able to simulate at the transistor level, treating the transistor
as a 3-node switch and computing the values on each node. This is typi-
cally very slow and requires much compute time. In addition, many tran-
sistor topologies that have analog behavior do not lend themselves well to
switch-level simulation—i.e., it is difficult for the simulator to resolve
what the circuit is doing. These analog sections typically require creation
of simple RTL or gate models to describe their logic behavior.
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hardware emulationHardware emulation is the process of taking a functional unit netlist or a
full-chip netlist and building it in some form of real hardware, such as
FPGAs and memories. Then that hardware can be plugged into a real sys-
tem for testing (though at fairly low frequencies, 100’s of KHz or a few
number of MHz). The hardware can also be used as a very fast simulator
provided there is an environment that allows passing stimulus to the emu-
lator and receiving the outputs from the emulator and then comparing the
outputs with expected results to check for correctness.

AR TICLES ON CD-ROM

Full text versions of two articles that deal with the top-
ics discussed in this subsection: see “Circuit Tech-
niques in a 266-MHz MMX-Enabled Processor,” by
Donald A. Draper, Matt Crowley, John Holst, Greg
Favor, Albrecht Schoy, Jeff Trull, Amos Ben-Meir,
Rajesh Khanna, Dennie Wendell, Ravi Krishna, Joe
Nolan, Dhiraj Mallick, Hamid Partovi, Mark Roberts,
Mark Johnson, and Thomas Lee, IEEE Journal of
Solid-State Circuits, November 1997 and “An x86
Microprocessor with Multimedia Extensions,” by
Donald A. Draper, Matthew P. Crowley, John Holst,
Greg Favor, Albrecht Schoy, Amos Ben-Meir, Jeff
Trull, Raj Khanna, Dennie Wendell, Ravi Krishna, Joe
Nolan, Hamid Partovi, Mark Johnson, Tom Lee,
Dhiraj Mallick, Gene Frydel, Anderson Vuong, Stan-
ley Yu, Reading Maley, and Bruce Kaufmann 1997
ISSCC Digest of Technical Papers. You can find the full
text versions of both of the above articles on the com-
panion CD-ROM. 

DEFINITIONS

Co-simulation and Co-verification

Co-simulation and co-verification are terms generally used to describe a
situation where two different types of models (gates and RTL for exam-
ple) are simulated together. Both models receive identical stimulus, then
their outputs are compared on every cycle to guarantee that the two
models behave identically. The goal of this type of simulation is to prove
functional equivalence between two representations of a design.
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One of the goals of emulation is to provide a way to run the design in
a real-world environment. Usually this means being able to plug the emu-
lator into the actual socket that the chip will plug into and using the com-
plete final product as if it had a real chip installed. This goal can be
achieved in several different ways. One approach is simply to build an
extremely fast simulator using parallel processors to get the required
speed. The more traditional approach is to use a large number of intercon-
nected FPGAs (Field Programmable Gate Arrays) and program them with
a version of the gate-level netlist of the design.

GENERATE NETLISTS AND PHYSICAL LAYOUT 

The gates described at the behavioral level are selected from a library of
cells which have been created for optimal realization of the logical
functions in a particular process. These cells consist of nands, nors,
inverters, flip-flops, latches, multiplexers, and other specialized cells. The
first task is defining the physical and electrical characteristics of these cells.

The dimensions and pin placements of the cell needs to be expressed
in multiples of the metal pitch, which is defined by the process capabilities.
The routing pickup points likewise are determined by the metal pitch, and
as many as possible should be placed in the cell to optimize the routing
density. The power and ground supplies are designed to minimize the

DESIGN NOTE

Using Emulation in the Design and Testing of the 
K6 Family of Microprocessors

Hardware emulation was one of the keys to the success of the K6 project. The team programmed intercon-
nected FPGAs with a version of the gate-level netlist of the design. They used the commercially available
Quickturn emulation system to do this. What made the K6 emulation unique was that the team was able
to get the gate-level design working quite some time before the initial fabrication of the chip. Prior to com-
mitting the design to manufacturing they were able to initialize and run all of the available x86 operating
systems and run a significant number of standard applications, thus proving their design and its compati-
bility very early in the design cycle.

In addition to finding a handful of obscure bugs that probably would not have been found with con-
ventional simulation, they were able to verify the built-in engineering debug features of the chip that
would have required too many cycles to verify with the C++ model. 

There were also some intangible benefits of emulation: The emulation lab provided experience for a
multi-disciplined team that included BIOS developers, system experts, and chip designers. This experi-
ence was valuable when silicon returned from the fabrication facility. When the team booted the
Windows 95 Operating System for the first time in the emulation laboratory the event gave an additional
boost to the morale of the entire development team, which helped them get through the last few months
before chip tapeout.
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resistive drop to the transistors and to avoid creating excessively high
current densities which could lead to early reliability failures due to
electromigration. To avoid performance loss due to resistance in the
diffusions of the transistors, many metal-to-diffusion contacts need to be
used. This is still true even with modern diffusions which use a silicided
layer for reducing resistance. Another characteristic of cell design is that
the gate resistance combined with the gate capacitance causes a delay of
the input signal from the pickup point to the other end of the gate
represented by the transistor width. This delay increases as the square of
the length of the gate over thin gate oxide. Furthermore, it is a characteris-
tic of the silicidation process that narrower gates form the silicide poorly,
resulting in a higher effective sheet resistance, which further aggravates the
problem. For this reason, it is necessary to limit the maximum length of
gate poly which can be done by using smaller transistors with many legs,
by strapping out the poly, or by using pickup points in the center of the
gate, between the n-channel and p-channel transistor blocks. All these
things impair the routeability of the cell, which needs to be balanced
against the performance loss of the poly resistance.

Next, the sizes of the n-channel and p-channel transistor blocks need
to be defined. The optimum ratio for speed is in the range of 1.4 to 1.8, for
p-channel width relative to n-channel. The switching point will be slightly
less than VDD/2. This switching point should be the same for all gates,
whether nands, nors, or other gates. This means that not all the available
transistor width in the cell will be used, but this makes timing simulation
using the static timing analyzer more accurate. Cells of different drive
strengths are required for optimum timing, but for drive strengths beyond
three or four times the minimum, buffer cells should be used. It is also
possible to have all the cells have versions optimized for both rising and
falling edges, although this will lead to an extensive proliferation of the
number of cells.

The design of the flip-flops is optimized for speed and other
characteristics, such as minimum hold time and setup time. Dynamic
logic can be incorporated into the flip-flops to achieve a performance
increase. Another specialized design is to put delay cells into the clock
input path of the flip-flop to achieve cycle-stealing or delay transfer
between critical paths. Similar strategies can be used with level-sensitive
transparent latches. To facilitate testing and debugging, the flip-flops need
to have scan designed in. This means adding extra logic and routing scan
clocks and the scan data in and scan data out, all of which add cost and
complexity. But, there is probably no other way to achieve a high level of
fault coverage or to be able to debug the chip when there is a logical bug or
a pattern sensitivity.

characterizing cell timingAfter building the cells, it is very important to characterize them for
timing. The first requirement is to determine the maximum delays for the
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frequency-limiting maximum-delay paths. This is done by simulating the
cells with the typical process at nominal voltage and worst-case tempera-
ture. The propagation delay needs to be determined for each input to each
output path or arc. The delay is simulated as a function of the output load-
ing and the input transition time, and is commonly represented as a
matrix from which the actual timing delay is interpolated or extrapolated.
In the case of state-dependent delays for cells such as exclusive-or gates,
the delay of one arc is dependent on the logical state of the other input.
This cannot be known to a static timing analyzer, so the worst-case delay
needs to be selected. In the case where there are simultaneously switching
inputs, such as from a bus, the delay time is again affected. For example, in
a nand gate, if all the inputs switch from low to high within a small speci-
fied time of each other, the output delay is significantly increased, as com-
pared to the case in which only one input switches while the other inputs
stay high.

hold-time requirements It is also necessary to guarantee that min-path, or hold time require-
ments, are met. The simulation conditions use the fast process corner at
high voltage and low temperature. In the case of state-dependent delays,
the shortest delay needs to be selected. Similarly for simultaneously
switching inputs, the condition for the fastest output needs to be consid-
ered. For example, in the case of the nand again, if all of the inputs switch
at the same time from high to low, the load is pulled up by all the p-chan-
nel transistors in the nand gate, not just one of them.

The above analysis becomes much more complicated for complex
gates such as and-or-invert (AOI) cells and all combinations of input tim-
ing need to be exhaustively simulated. Similarly, the logical function needs
to be verified in comparison to the Verilog or behavioral model by run-
ning an exhaustive combination of all possible inputs. This is especially
important for complex gates such as tristate drivers and for AOI gates.

Full-Custom Macro Blocks

The other major category of physical development involves the full-
custom designed macro blocks, such as cache memories, register files,
input/output drivers, phase-locked loop and clock distribution systems.
As with the standard cells, these blocks need to have their timing charac-
teristics and logical function thoroughly specified and verified. The timing
is determined after design and layout of the macro blocks by extracting the
capacitance of the nodes and resimulating. The functional verification is
accomplished by simulating the circuit and comparing the outputs, vector
by vector, with the behavioral model.

The design of arrayed structures, such as memories, requires speed to
be balanced with the margin of bit-line signal at the sense amps. This is a
very carefully balanced race condition, with the sense-amp strobe arriving
not too early before the signal has developed on the bit lines and not too
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late, losing performance. Usual signal requirements at the sense amp are
150 mV at typical timing condition. To guarantee robust design, every
race in the circuit needs to be simulated extensively to ensure adequate
margin. 

Testability is addressed by means of a built-in self test mechanism.
Testing a large array solely by means of external parallel vectors or by scan
is prohibitively expensive in test time, so an internal engine to generate test
vectors is included. It should completely test the array for most of the
known failure mechanisms in memories; e.g., such a built-in self-test pat-
tern is the 13N algorithm, which tests the complete array in thirteen
passes.

Due to the large area or number of transistors in the design, the yield
of regular, arrayed structures (such as memories) can be increased by
including redundant rows or columns or both. The regular array is tested
and if a defect is found, the defective row is deselected and a spare row is
switched in instead.

Among other design features for arrayed structures, it is important to
include the ability to bit-map the array for debug purposes, using scan or
by using parallel vectors. Some arrayed structures use single-ended bit
lines, and in these cases, bit-line coupling needs to be considered and
designed. Some designs have used cascade sense amps, but these are too
noise sensitive and should be avoided.

Chip Input/Output designs need to match the requirements of the
external system at the same time as interfacing to the internal circuitry.
Since I/O voltages are often different from the supply voltage used for the
rest of the chip, reliable interfaces need to be designed between the two
voltage domains, often requiring level shifting. The I/O voltage, being
usually higher, imposes special design requirements involving the gate
oxide. Excessively high voltage across the gate oxide is a wearout
mechanism and a reliability hazard which needs to be addressed.

A special macro block is the phase locked loop, or PLL, which is used
for synchronizing the internal clock signal with the external and for multi-
plying up the external or system bus clock frequency. The requirements
are for stability and frequency tracking over a wide range of process condi-
tions. The output frequency of the PLL should be as constant as possible.
Jitter, which is variation in the clock period, effectively decreases the
amount of time in the cycle available to logic.

clock distributionThe clock distribution system is required to deliver the clock signal to
all the flip-flops, latches, and macros in the chip at nearly the same time.
The deviation from this time, called skew, is an important component of
the hold time analysis. The main cause of skew in the clock distribution
system is local variations in the amount of clock load. After the chip is
assembled, this load is extracted and the required number of local clock
buffers is programmed in using one of the metal contact layers.
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Netlists describe the topology and connectivity of the circuit elements.
Netlists usually adhere to a standard format (such as EDIF), which allow
them to be used on different computer platforms and enabling various
tools to be integrated based on the standard format.

Timing Analysis

Each major functional block of the chip is typically realized as a top-level
module based on the gate-level netlists and on the full-custom macro
blocks. The initial timing of the gate netlist is accomplished with a static
timing analyzer. A default wire load model is used and can be based, for
example, on a non linear, statistical capacitive loading model which is a
function of fan-out. The module is then floorplanned and the cells placed
by hand with the help of some in-house placement programs. Following
this, the cells are connected together according to the netlist. Using the
placement data, a minpath analysis tool is run using clock skew estimates
to ensure hold time constraints are met. After routing, a parasitic-extrac-
tion tool is run on the routed database to extract distributed RC delay val-
ues. The net delays are computed (e.g., by Ultima Delay Calculator) and
input into a timing analyzer. Timing analysis is performed on each top
level module, and ultimately on the whole chip. Design rule checks and
layout versus schematic checks are run on the completed route. Finally, the
database is analyzed for electrical integrity purposes (wire lengths, elec-
tromigration, max-transition violations, electrical rules checking, etc.).
Any type of undesired results along the design flow causes looping itera-
tions to take place until the entire chip meets all of the design constraints
and is ready for tapeout.

The timing analysis and allocation or budgeting methodology is based
on gate-level static timing analysis tools, more-accurate RC extraction
tools, and delay calculation tools. Various in-house programs are often
used to bind all of the above together. The timing analysis and budgeting
methodologies are both designed to work together to provide consistency
and accuracy throughout the evolution of the chip by making use of as
much detailed design information as is available at any given time. As the
design evolves, the timing methodology is required to support the follow-
ing activities. In the early timing phase, time budgeting is done at the
block and sub-block level to drive and check the consistency of timing
constraints for synthesis or manual design. In the middle timing phase,
pre- and post-layout timing analysis of major design blocks is done in the
context of the whole chip, before the entire chip is ready to be timed. In
the late timing phase, post-layout RC extraction and timing analysis are
done on the entire chip.
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Cell Placement

Most cells are placed by using text-based directives which are read by an
in-house set of programs. A graphical display of the results aids in integra-
tion. Most of the chip is placed using these scripts which greatly aid layout
productivity and yield density and timing results similar to a full custom
design.

The top-level modules are constructed such that they include all logic
and any wires passing through their “air-space”. The inputs and outputs of
each top level module are routed to a predefined I/O footprint which was
derived by understanding the routing requirements of each top-level net.
This allows most of the chip construction to be done early during the con-
struction of the top level modules. Construction of the chip then consists
merely of placing the top level modules and stitching them together with
very short final routes. 

MASK GENERATION, WAFER FABRICATION, AND PACKAGING

Following assembly of the chip, the database goes through an extended
release procedure which checks the layout versus schematic and verifies
that the drawn geometries match the design rules defined by the process
development group. At this point the database is taped out to the mask
generation group. At mask generation, the first operation is to size several
of the layers according to the latest data from the fab. Here the poly layer is
tuned to get the best transistor channel length, for example. A final
extended release procedure is done at this step. Following this, the data-
base is fractured, that is, the complex polygons are broken up into rectan-
gles, so that they can be handled by the mask writing hardware. The data
are written on to the reticle which is a chrome-covered quartz plate used to
project the patterns onto the resist-covered wafer when exposed by ultra-
violet light in a machine called a stepper. The data are written onto the ret-
icle using an electron beam machine. The data are then etched in the
chrome and the plate inspected. This is repeated for all the mask layers
used in the fab.

When the mask plates are shipped to the fab, the wafer fabrication
process begins. The initial AMD-K6 processor was fabricated, for
example, on a 0.35 micron CMOS process with five layers of metal, shal-
low trench isolation, tungsten local interconnect, and C4 flip-chip die
attach. As is discussed in Chapter 2, the K6 3D design has migrated to a
similar 0.25 micron process. The shallow trench isolation is required for
tighter active area packing and smaller transistor width variation. The
tungsten local interconnect is used to connect poly and diffusion without
an intervening contact layer. It provides tighter layout of SRAM cells, stan-
dard cells, and custom macros. It is realized by a damascene tungsten pro-
cess, which means the interconnect pattern is defined by trenches etched
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in the oxide, filled with tungsten and later polished off. Chemical-
mechanical polishing is an integral part of the process, providing pla-
narization, stacked vias, and metalization density unobtainable by any
other means. The C4 flip-chip die attach allows better power routing on
the chip and low-inductance power supply connections to the package.
The process is based on p-epi on a p+ substrate for less susceptibility to
latchup. The transistors use a seventy-angstrom-thick gate oxide and the
metal pitch is 1.4 microns, 1.8 microns, and 4.8 microns for metal layers 1-
3, 4, and 5, respectively.

Following completion of the wafers and the deposition of the lead-tin
solder bumps, they are tested by an automatic tester using an instrument
called a cobra probe which contacts all the solder bumps with probe pins.
The test program consists of a series of routines to verify the operation of
every part of the processor. The built-in self-test structures are driven by
this procedure to exercise each of the full-custom macros (except the PLL,
which is verified by measuring the generated clock signal). There are four
scan chains that are used to load the test patterns into the flip-flops. The
data is then clocked through, captured in the downstream flip-flops,
scanned out and compared with the expected values. In addition to this,
the tester applies parallel test vectors to the input and output pins of the
processor to complete the test. The test results are then recorded and the
wafer is sent for packaging.

The wafers are cut up into separate die and, using a die location map,
the good die are mounted onto a ceramic substrate with metalized con-
tacts on the surface for contacting the solder bumps. The solder bumps
melt during the refill heating step and make strong mechanical and electri-
cal contact. A potting compound is then forced under the die, between the
solder bumps, to make a more rigid assembly which increases reliability.
Then decoupling capacitors are attached by reflow. These capacitors pro-
vide more stability to the power supply on the chip in the presence of elec-
trical noise. After attaching the lid, the packaged part is sent for final test
and measurement of its maximum frequency. Based on their performance,
the parts are shipped in various speed grades to the customer.

The following video brings together a number of the issues discussed in
the section concerning designing and implementing a microprocessor in
the context of an actual microprocessor.

VIDEO ON CD-ROM

On the companion CD-ROM, there is a tutorial-level
video on the steps involved in the fabrication of con-
temporary microprocessors and chips. There is also a
film interview with Bill Siegle, AMD’s Chief Scientist,
about this technology. 
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Having completed out overview of the design and implementation of micro-
processors, we will not begin our examination of some of the related platform
and systems issues.

DESIGNING AND

IMPLEMENTING A 3D
GRAPHICS PC

PLATFORM

We stated earlier in this chapter that because the PC platform dominates high-
performance microprocessor-based systems, both in terms of unit and dollar
volume, it exerts tremendous influence on the design of PC platform compat-
ible processors, such as the K6 3D. Furthermore we noted that the PC-based
systems environment is dominated by Microsoft Windows-based PC plat-
forms. Therefore, we explore this environment by providing a guide to the
hardware architecture of PC platforms that support Microsoft Windows. The
examples used in the platform and systems chapters are based on a PC plat-
form targeted for desktop consumer 3D graphics applications. 3D graphics
continues to evolve, presenting a seemingly ever-growing demand on the
bandwidth of the platform’s buses, peripherals, and sub-systems. We begin
our journey into the systems-related issues of PC platforms by giving a high-
level hardware overview of a 3D Graphics PC Platform for the consumer
market. It is from this point of view that the systems-related chapters will
examine the design and implementation of PC platforms and systems.

PC PLATFORMS: KEY COMPONENTS AND INTERCONNECTIONS

An abstract view of a 3D graphics PC platform and associated system periph-
erals is provided by Figure 1.2. Consistent with the definition given for plat-
forms on page xiv in the Preface, the platform consists of a number of key
components and interconnections on a motherboard and typically includes a
high-performance peripheral bus and ports, main memory, an I/O module, a
processor module, and appropriate BIOS code. Generally, the processor and
I/O modules are not physically distinct components, although the processor
module shown in Figure 1.2 roughly corresponds with Intel’s Pentium II car-
tridge and its Slot 1 interface or AMD’s proposed K7 Processor Module and
its Slot “A” interface (discussed in the Next-Generation Platforms section in
Chapter 6). The processor module typically includes the processor, processor
local bus, optional external cache, and a controller for the peripheral bus and
main memory. The I/O module, as embodied by the South-Bridge shown,
typically includes bus controllers and ports for standardized and optional
peripherals.

VIDEO ON CD-ROM

Atiq Raza, Executive Vice-President and Chief Technol-
ogy Officer of AMD answers the following question,
“What was the discipline used to design and implement
the K6 3D?” 
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Figure 1.2 3D GRA PHICS PC PLATFOR M
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This is a conceptual block diagram of a PC graphics platform for the 1998-1999 time frame. A front-
side or back-side cache is generally present on the processor module. Connection to the Display
Adapter Card is made via either the Advanced Graphics Port or the PCI Bus. PC Cards are generally
found in laptop platforms and not in desktop or server platforms. Conversely, PCI Bus and legacy
bus adapter cards are generally found in desktop or server platforms and not in laptops.
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Figure 1.3 PHOTOGRA PH OF A 3D GRA PHICS MOTHERBOARD

a. Board Courtesy of Advanced Micro Devices Inc., photo by Smith.

We have printed those features that closely correspond to features shown
in Figure 1.2 in regular typeface (but with color accent on the CD-ROM),
while new features, or additional feature details, are annotated in italics
(and without color accent on the CD-ROM). The microprocessor, front-
side cache, and North-Bridge, are implemented directly on the
motherboard. 
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A complete 3D graphics PC system would, consistent with the defini-
tion for systems on page xiv in the Preface, consist of extending the forego-
ing platform descriptions to include an operating system, device drivers
including BIOS extensions, other configuration and power management
software, and a basic set of applications software. The selection, interac-
tion, configuration and optimization of the components that make up
Figure 1.2 and Figure 1.3 is the focus of Chapter 4.

The Microprocessor

The microprocessor, under control of a multi-tasking operating system,
carries out interleaved threads of execution for a variety of processes
including: the various components of the operating system itself, one or
more Application Programming Interfaces (APIs),3 a number of system-
software services and utilities, and one or more user-launched applica-
tions.4 In addition, for 3D graphics-oriented applications, the processor
maps graphics scenes to the display’s viewport. For this mapping, floating-
point operations on vectors are used to perform object modeling, geome-
try transform, clipping, and lighting calculations. The processor then per-
forms rendering, setup operations, and prepares 3D display (execution)
lists in main memory, which contain the mapped scene information and
rendering commands for the 3D graphics accelerator. As an alternative to
building display lists in main memory, the graphics system may be
designed such that the processor directly writes triangle data, parameters,
and commands directly to the 3D graphics accelerator.

ZIF socket, or Zero Insertion Force 
socket, refers to a socket that per-
mits a device with large numbers of 
pins to be dropped into the socket 
rather than requiring pressure 
insertion.

The processor local bus shown is a 100-MHz Enhanced Socket 7 Bus
and is discussed in the Processor Bus — Socket 7 section in Chapter 4 and
again discussed in the Directions in Optimization of Contemporary Sys-
tems section in Chapter 6. The microprocessor is shown mounted in a
Zero Insertion Force (ZIF) socket compliant with the Socket 7 standard. The
term “Socket 7” was introduced in the text inset "Socket 7 Compatible" on
page 7.

As discussed further in Chapter 4, many microprocessors today
require two power-supply voltages, one for the core and one for the I/O
circuitry.   Such processors require a dual-voltage regulator, as shown.

3  An API, or Application Programming Interface, is the collection of software 
routines that comprise a particular system-software facility. Application pro-
grams and other system software use API calls to access the services provided 
by the facility. The API is formally defined by a set of human readable proce-
dure call definitions, including call and return parameters. 

4 Other than the operating system’s user interface, user-launched applications, a 
few of the utilities and services, and operating system facilities explicitly 
invoked by the user, the user is generally unaware of the many processes being 
executed.
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The North-Bridge and South-Bridge

Two of the most important components used to couple together the other
components on the motherboard are bridge chips referred to as the
North-Bridge and the South-Bridge. Here are formal definitions for these
components.

Peripheral Component Intercon-
nect Bus or PCI Bus

Based on this, we can define the North-Bridge and South-Bridge.

The North-Bridge serves a dual role as main memory controller and a bus
controller. The bus controller manages the selective coupling of the buses

DEFINITIONS

Bridge Chips, Chipset, Core Logic, System Logic

In a highly abstract view, bridge chips selectively couple (or isolate) two buses. In
a more general view, bridge chips couple collections of motherboard compo-
nents together. Bridge chips historically have been referred to as the chipset, core
logic, or system logic of the motherboard. The chipset includes control logic for
many of the platform components and I/O ports as well as providing data stag-
ing and selective coupling among the various buses and components of the plat-
form.

DEFINITIONS

North-Bridge and South-Bridge

The chipset is frequently partitioned into a North-Bridge device and a
South-Bridge device. In the abstract, the North-Bridge selectively couples
the processor to the primary peripheral bus (such as the present standard
Peripheral Component Interconnect Bus, or PCI Bus, discussed in the Back-
plane Bus — PCI section in Chapter 4). More generally however, the North-
Bridge typically has separate ports (interfaces) to the processor, main-mem-
ory, the primary peripheral bus, possibly an external cache, and possibly an
AGP (Advanced Graphics Port).

In the abstract, the South-Bridge selectively couples the primary periph-
eral bus with a secondary peripheral bus (such as the ISA Bus, defined
shortly in this section). More generally however, the South-Bridge typically
has ports coupling the high-performance primary peripheral bus with a
number of standard I/O ports and optional peripherals.

Other perspectives on the principal buses and ports of the
North-Bridge and South-Bridge can be found on the CD-ROM
in the data sheets for the AMD-640 System Controller and the
AMD-645 Peripheral Bus Controller. These devices are the
North-Bridge and South-Bridge shown in the motherboard

photo in Figure 1.3.

REPORT
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connected to the North-Bridge: the PCI Bus, the AGP (when present), the
processor’s local bus, and the main memory bus. The bus controller tries
whenever possible to isolate these buses in order to maximize the speed of
each and to permit concurrent operation of as many buses as possible.
However, the bus controller couples buses together whenever a crossing
transfer is necessary. The motherboard of Figure 1.3 on page 37 has three
32-bit PCI adapter card slots. 

Super I/O is a PC platform compo-
nent that implements many popu-
lar secondary peripheral buses and 
standard I/O ports.

The 16-bit PC Cards were origi-
nally called PCMCIA cards. A 
CardBus PC Card is a 32-bit 
device and is not electrically or 
physically compatible with the 
older PCMCIA slots.

The South-Bridge typically resides on the PCI Bus and in conjunction
with a separate or integrated Super I/O module, typically implements the
following secondary peripheral buses and standard I/O ports: a legacy Bus
(in particular the ISA Bus), dual interfaces for ATA/IDE drives (the most
common form of hard disk drive), parallel (compliant with the IEEE 1284
standard), dual legacy serial (compliant with the RS-232 standard), key-
board, legacy Floppy Disk Controller (FDC), and a pointing device (com-
pliant with a PS/2 mouse port). As discussed shortly, support for the ISA
Bus is being phased out, support for the Universal Serial Bus (USB) is
being added in the near term, and support for the IEEE 1394 (FireWire) is
to be added eventually. In laptops, instead of providing legacy bus slots,
the South-Bridge is typically used to couple credit-card size adapter cards
called PC Cards, via the CardBus, to the PCI Bus. PC Cards come in newer
32-bit, and older 16-bit, versions. All of these I/O ports are again discussed
in the PCI-based Ports section in Chapter 4.

Flash EPROM

shadow BIOS

Real Time Clock (RTC)
CMOS Memory

The South-Bridge usually provides access to an external nonvolatile5 mem-
ory, which holds the system BIOS. Increasingly, the nonvolatile memory is
in the form of Flash EPROM, permitting the BIOS to be upgraded with
revisions downloaded from the Internet. Typically, the BIOS is copied dur-
ing system initialization from the relatively slow nonvolatile memory, to an
otherwise unused portion of the faster DRAM that composes main mem-
ory. The North-Bridge memory controller subsequently transparently maps
requests for BIOS addresses to the shadow-BIOS in the DRAM. The South-
Bridge also implements the system Real Time Clock (RTC) and CMOS
Memory, a small memory for holding key system hardware configuration
parameters. Both the RTC and CMOS memory are provided with indepen-
dent battery backup, such that they remain functional when power is
removed. The large round object between the South-Bridge and the micro-
processor in Figure 1.3 on page 37 is the backup battery.

REPOR T ON CD-ROM

A significant amount of detail regarding the many
standard I/O ports associated with the Super I/O
component can be found on the CD-ROM in the
standard Microsystems Corporation (SMSC) data
sheet for their FDC37B78x part, a “128-pin Ultra I/O
with ACPI Support and Infrared Remote Control.”

REPORT

5 Nonvolatile memory retains its contents when power is removed.
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Legacy Issues

legacy

PC/AT

open-architecture

clones

legacy buses

ISA Bus
EISA Bus

Micro Channel Bus
proprietary

HISTORICAL COMMENT

Legacy Hardware

The term legacy is frequently used as an adjective to describe various PC hardware and
software standards that continue to be implemented long after the introduction of better
alternatives. The legacy standards live on primarily because of continuing market demand
for absolute backward compatibility with earlier generation products. Such compatibility
demands persist until the market perceives that the benefits of upgrading overwhelmingly
outweigh the costs to upgrade.

Generally, legacy PC platform standards are traceable to the PC/AT (Personal
Computer/Advanced Technology). This was IBM’s very successful 1984 PC-design that
firmly established the de facto industry standard for PCs. The PC/AT’s broad success has
been attributed to the fact that it was perceived to be a largely open-architecturea bdesign
endorsed by the world’s largest computer company. The only impediment to copying the
PC/AT was its copyrighted BIOS. Soon functionally equivalent but independently
developed BIOSes were written and less-expensive PC/AT clones were widely available.

Despite numerous and ongoing technology advances, the PC/AT architecture has
continued to have a pervasive residual impact on many aspects of the design of PC plat-
forms. A notable example is the existence of several legacy buses. The ISA Bus was the
peripheral (or expansion) bus used in the PC/AT, although the ISA terminology was not
coined until years later. The term Industry Standard Architecture (ISA) Bus was coined in
conjunction with the 1988 launch of the Extended Industry Standard Architecture (EISA)
Bus. The EISA Bus was intended to be a relatively open alternative to IBM’s 1987 Micro
Channel Bus, which was perceived to be a proprietary, or closed-architecture, design.c d

The Micro Channel Bus was intended as an ISA replacement for IBM’s new PS/2 (Personal
System/2) line of PCs, which in turn was intended to retake the PC market from the clone-
makers. The EISA Bus was an initiative primarily pushed by Compaq and other system
vendors. Like the ISA and EISA buses, the Micro Channel Bus is considered a legacy bus,
but it is much less common. The ISA Bus is the most important legacy bus as it is found in
the majority of desktops already in use. However, beginning in the early 1990s, servers
have frequently used the EISA Bus instead. 

a A fully open-architecture design is one whose associated intellectual property (such as patents, 
copyrights and trade secrets) is generally licensed to all interested parties with possibly only mod-
est administrative fees. 

b The PC/AT design was perceived to be largely open-architecture because it was built entirely 
from generally available components and sub-systems and key design documentation was not 
treated as a trade secret. However, IBM had never indicated that the design was freely licensed. 
IBM later began pursuing licensing fees for PC/AT-related patents from clone-makers that were 
not otherwise licensed for IBM patents.

c A proprietary, or closed-architecture, design is one whose associated intellectual property is not 
generally licensed. Many “de facto” standards have been “closed” during formulation but have 
been made “open” later. While very important, the ability to influence the standards development 
process is often less important than the ability to implement a given “standard.”

d Key Micro Channel Bus design documentation was treated as trade secret and it was believed 
that IBM was asking prohibitively high licensing fees to use the intellectual property associated 
with the new bus.
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Legacy Bus Bridge

The ubiquitous PCI Bus has replaced the various legacy buses as the pri-
mary peripheral bus in PC platforms. In past desktop and server plat-
forms, a Legacy Bus Bridge has been provided in the South-Bridge to
selectively couple the PCI Bus and a legacy bus. Such a bus bridge between
the PCI Bus and a legacy bus permits the continued use of legacy adapter
cards. This hardware compatibility with ISA and EISA adapter cards
greatly eased migration to PCI-based platforms, because expensive
peripheral upgrades could be deferred. 

In spite of the advantages of providing for backward compatibility,
industry platform design standards (a key subject discussed in Chapter 4)
proscribe certification of systems sold after mid-’98, if the ISA/EISA
adapter card slots are populated prior to sale. Legacy adapter card slots are
entirely proscribed from all systems sold after mid-’99. There are a num-
ber of reasons for this. These cards are discouraged because they generally
do not incorporate the latest Plug and Play features (discussed in the Plug
and Play Configuration and Maintenance section in Chapter 4), and
thereby generally pose system configuration problems. Legacy cards also
generally do not have power management features, and have generally
narrower bus-widths and generally slower circuitry than do PCI adapter
cards. Finally, the use of ISA adapter cards can reduce performance of the
execution thread utilizing the card to a small fraction of that possible with
PCI cards and may potentially starve other threads from execution while
the legacy card is being accessed. As the performance of systems and the
reliance on multiple threads of execution (e.g., to implement multi-media
and execute background tasks) has increased, this last issue has become
the foremost problem with the use of ISA cards. 

As discussed above, the Super I/O component provided now largely
obviates the need for legacy adapter cards. The Super I/O includes dedi-
cated ports for the most common legacy devices. Generally, integrated
ports are provided for a PS/2 mouse, serial devices (for modems and other
communications), a keyboard, floppy drives, parallel devices, and bus-
mastering ATA/IDE hard disks and CD-ROMs.42

USB, or Universal Serial Bus, is a 
new standard for low to medium 
speed serial peripherals designed for 
hot plug and play connectivity.

From 1998 and onward, platforms will likely provide a Universal Serial
Bus (USB) port, which is intended by its promoters to obsolete and obvi-
ate the need for legacy expansion cards or Super I/O integrated legacy
device ports, such as Sound Blaster audio, PS/2 mouse, and PC/AT-style
game, serial communications, keyboard, and parallel interfaces. The USB
is intended for replacement upgrade devices for the pointer/stylus
(mouse), keyboard, joy stick, modem, telephony, printer, scanner, and
digital audio devices. USB devices are low to medium speed serial periph-
erals designed for hot6 Plug and Play connectivity. In spite of USB pro-
moters intentions, the emergence of general purpose USB devices has

6 “Hot” connectivity indicates that devices can be regularly added or removed 
while the system is operating normally and without any adverse effects.
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been very slow. This is expected to change with the introduction of Win-
dows 98, which has integral support for USB.

IEEE 1394 is a new standard for 
high-speed serial peripherals 
designed for hot plug and play con-
nectivity.

Future platforms are also stated to include either an IEEE 1394 port,
or a Fibre Channel port. These ports are for high-speed serial peripherals
designed for hot Plug and Play connectivity. For example high-speed
devices are video capture, editing, and conferencing units; hard disks; and
Local Area Networks (LANs). 1394 has been touted as the serial technol-
ogy of the future for many years now, yet such devices have not been gen-
erally available. With integral support for 1394 in Windows 98, 1394
devices are expected to begin their ascension. The advent of the Device
Bay Standard (discussed in the Device Bay section in Chapter 4) should
further accelerate the usage of 1394 devices. 

Main Memory

The main memory controller arbitrates access to the main memory bus
and main memory from the other buses. By using sophisticated data stag-
ing (including caching, prefetching, and posting of write data and com-
mands), the North-Bridge creates the general illusion that the main
memory has ports dedicated to each of the other buses.

SIMM, or Single Inline Memory 
Module, is a popular type of 
DRAM packaging that has 72-pins 
and supports 32-bit wide memory 
data widths.

The main memory uses Dynamic RAM (DRAM)7 to provide volatile8

storage of executing code and data. Multiple pairs of 72-pin DRAM Single
Inline Memory Modules (SIMMs), with each SIMM supporting a 32-bit
(36-bits with parity, a method of detecting single-bit errors) wide memory
data width, have typically been installed into platforms via sockets on the
motherboard. 

DEFINITION

Sealed PC

The USB and 1394 serial ports enable a consumer-oriented easy-to-use
sealed PC. The sealed PC ideal is to provide a PC that never needs to be
opened for the installation of after-market adapter cards. The name
should not be taken too literally.

The 1394-1995 IEEE Standard for a High-Performance
Serial Bus is included on the CD-ROM.STANDARD

7 DRAM memory relies on charge storage techniques and requires periodic 
refresh (reading and rewriting) to maintain the integrity of its contents. 
DRAM is known for high-density storage.

8 Volatile memory loses its contents when power is removed.
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DIMM, or Dual SIMM, is an 
emerging type of DRAM packaging 
that has 168-pins and supports 64-
bit wide memory data widths.

More recently, one or more 168-pin DRAM Dual SIMMs (DIMMs) are
being used, with each DIMM supporting a 64-bit (72-bits with ECC, or
Error Correcting Code, a method of correcting single-bit errors) wide
memory data width. The motherboard of Figure 1.3 on page 37 uses three
168-pin DIMM sockets. 

Areas in main memory used for code may be allocated to the operat-
ing system, APIs, and applications. Areas used for data include system and
applications, graphics display lists, and graphics texture maps. Informa-
tion in both areas is typically dynamically arranged and allocated using a
virtual memory management mechanism. 3D graphics related APIs
include DirectDraw and particularly Direct3D. Main memory is accessed
frequently by the processor and cache, PCI bus-master peripherals, and
the AGP. Thus, there are a number of trade-offs to be made when design-
ing a platform centered around minimizing latency to instructions and
data while maintaining as high a bandwidth as possible. Memory organi-
zations are extremely important in optimizing system performance. In
Chapter 5, we will examine a variety of memory organizations such as the
waning mainstream EDO, the waxing mainstream SDRAM, and emerging
memory technologies such as Rambus DRAM and SLDRAM. 

Caches

A number of microprocessors like the K6 and the Pentium have on-chip
L1-Caches. Others, such as the K6 3D, also have on-chip L2-Cache.

External caches are connected to the microprocessor in two basic ways
which we will refer to as a front-side cache and a back-side cache.

DEFINITIONS

L1 Cache, L2 Cache, and External Cache

An L1-Cache, or Level-One-Cache, is the cache that is placed closest to
the processor in the memory hierarchy. An L2-Cache, or Level-Two-
Cache, is one level removed from the processor in the memory hierarchy
by the intervening L1-Cache. 

External caches intervene between the on-chip caches and main
memory in the memory hierarchy. Each higher-level of cache is further
removed from the processor (and closer to the main memory) and is
larger and higher in latency that the caches closer to the processor. Addi-
tional external caching typically supplements the on-chip caches, espe-
cially in higher performance systems.
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The external cache generally uses a variant of Static RAM (SRAM)9 to
hold recently used subsets of the code and data in the main memory. The
SRAM provides transfers that are lower in latency, and higher in through-
put, than the DRAM-based main memory. Properly managed, the combi-
nation of high-speed cache and large main memory virtualizes a single
memory that has the capacity of the main memory and approximates the
speed of the cache. Because the cache services most accesses, the processor
to main memory traffic is reduced. This means that more of the main
memory bus bandwidth is available for other sources and destinations,
such as PCI bus-masters and the AGP.

Mechanical and Electrical Considerations

PC motherboards are typically oriented in the ubiquitous tower-type (ver-
tically oriented and floor standing) system unit housing such that the
board edge shown at the bottom side of the photo is pointing toward the
front of the tower and the board edge shown at the left side of the photo is
near the bottom of the tower. The board edge shown at the topside of the
photo is near the back of the tower, with system chassis access cutouts for
the connectors shown in the top-right of the photo. External to the system
unit, USB devices, a mouse, and a keyboard are cabled directly to these
connectors. Additional cutouts are provided for mechanically securing
adapter cards into the various adapter card slots and permitting access to
adapter card connectors from the back of the tower. The board edge
shown at the right side of the photo is pointing toward the top of the
tower, generally just below the system power supply. In full-height towers,
the board only occupies the lower portion of the tower. 

DEFINITIONS

Front-Side Cache and Back-Side Cache

A front-side cache is placed on the processor's local bus. A back-side cache
uses a dedicated bus, separate from the processor local bus. A back-side
cache generally operates faster than front-side cache. A back-side cache
greatly reduces traffic on the local bus, while permitting more aggressive
code and data prefetching from the attached cache. The advantage
becomes less pronounced as the size of on-chip cache increases.

9 SRAM memory relies on active flip-flop (cross-coupled inverters) storage 
techniques and does not require refresh. SRAM is known for its high-speed 
storage.
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Connectors are cabled directly to their respective motherboard head-
ers for a pair of legacy Floppy Disk Drives (FDDs) and up to two pairs of
ATA/IDE drives, the drives being generally mounted in the front top por-
tion of the tower. (Only one device in each pair mentioned need be popu-
lated.) Connectors for the two legacy serial ports and the IEEE 1284
parallel port are generally mounted on the back of the tower either via
dedicated cutouts or via covers for unused adapter card slots. These con-
nectors are then cabled directly to their respective headers on the mother-
board.

Baby AT form factor

The dimensions of the original PC-AT motherboard are now known
as the full AT form factor. The full AT form factor has been largely
replaced for some time by a smaller variant (roughly two-thirds the size of
the full AT), the Baby AT form factor. The Baby AT board shown in Figure
1.3 on page 37 is 8.5” x 12” in size. Recently, several new motherboard
standards have been introduced that have new sizes, new board orienta-
tion, and new component placements. These include the NLX (New Low-
profile eXtension), ATX (AT eXtension), and mini-ATX standards, which
are briefly discussed in the Mechanical Design section in Chapter 4. These
new motherboard standards require the use of a system chassis that is spe-
cifically designed to accommodate the new boards. 

An ATX Power Supply is capable 
of being managed by the platform’s 
BIOS to provide energy savings.

A new power supply configuration was also developed in association
with the new ATX boards. The ATX Power Supply that is part of the ATX
standard specifies a new standby voltage (5VSB), a new power enable con-
trol signal (PS-ON), and a power status signal (PW-OK), that enable
motherboard BIOS control over the power supply to provide energy sav-
ings. New boards still using the Baby AT form factor, but providing BIOS
control for power supply management, are also implementing the new
ATX-style Power Supply Connector for the new control and status signals.
This permits Baby AT form factor boards to work with ATX power sup-
plies, which can be used in a chassis designed for the older Baby AT
boards.

DISPLAY ADAPTERS 
Display Adapter
video memory

The Display Adapter card shown in Figure 1.2 on page 36 includes video
memory, a 2D/3D graphics accelerator, and a video accelerator. The video
memory generally uses high-performance or specialty DRAM to provide
storage of bit-maps and related parameters. The video memory may
include data areas devoted to frame buffers, video buffers, a texture map
cache, cursors and sprites, a depth or z buffer, an alpha buffer, and window
coordinates. Platform features that access the video memory include the
graphics and video accelerators, the streaming video input, PCI bus-mas-
ter peripherals, and the AGP port.

Integrating some or all of the video memory, graphics accelerator,
video accelerator, and AGP functions of the display adapter onto the
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motherboard and possibly into the north-bridge is tempting. Display
adapter integration is commonplace in portable platforms and has been
attempted at the low-end of both the consumer and business markets in
efforts to increase the functionality of entry-level systems. More impor-
tantly, if a baseline for high-performance graphics functionality were
established, software developers could rely on the baseline in developing
their applications. All applications would benefit from the higher standard
and the overall experience of the end user would be enhanced.

Other than portable platforms, where display adapter integration is a
practical necessity, such integration is nevertheless generally not done,
even for low-end systems. This is due to a number of factors. Historically,
there has generally always been a wide range in performance, features, and
cost for display adapters corresponding to a large variation in end-user
needs. This makes the feature set selection difficult. Also, display technol-
ogy and software generally are evolving rapidly and a number of compet-
ing solutions will exist. This presents both development and marketing
risks. It is unlikely that the display adapter market will stabilize anytime
soon, so these problems can be expected to continue. In AGP systems,
providing both an integrated solution and the ability to later upgrade with
an expansion display adapter card may require a revision to the specifica-
tion. This is due to the extra loading that would exist on an interconnect
originally envisioned as having only a source and a single destination. 

During image composition, the frame buffer is generally written at
random (nonsequential) locations. The frame buffer need only be written
when a change is desired in the displayed image. 

During display, frame buffer locations are read sequentially, in con-
junction with the raster scanning of the attached video display. Because
the light emissions from the present phosphor-based CRT displays decay
with time, the displayed image needs to be continually refreshed, and
hence the frame buffer needs to be continually read.

DEFINITION

Frame Buffer

A frame buffer is that portion of the video memory used to compose
images for subsequent display. There is a dedicated memory location
corresponding to each addressable pixel of the active display area. In a
color system, the frame buffer usually consists of separate RGB “planes”
for each of the color components. There may also be additional planes
for special pixel attributes. Generally, each of the color planes has an 8-
bit byte, for a total color depth of twenty four bits.
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Pixel, or picture element, refers to 
the smallest resolvable or address-
able feature of a computer display.

raster

Implementations that use a single frame buffer must effectively man-
age contention between image-building writes, display-refresh reads, and
the refresh of the frame buffer's DRAM storage cells. Single frame buffers
built from standard DRAMs must generally be written only during peri-
ods when the CRT display is undergoing horizontal and vertical retrace.
This greatly restricts accesses, generally increasing the latency for perform-
ing frame buffer writes and dramatically reducing the effective read and
write bandwidth for other than display refresh.

front buffer
back buffer

In contemporary systems there are typically two frame buffers, having
the designations front buffer and back buffer. Frames are rendered to the
back buffer as the display is painted (refreshed) from the front buffer.   The
roles of the buffers are then reversed during the next frame.

video DRAMS or VRAM High-end frame buffers are often built from two-ported specialty
DRAMs known as video DRAMS or VRAM. One port is a conventional
random-access port that is used for the image-building writes. The second
port is a serial output port that shifts out sequential locations used by the
display refresh function. VRAMs increase the bandwidth available for
frame buffer accesses, but are substantially more expensive than conven-
tional DRAM.

2D and 3D graphics accelerators A 2D graphics accelerator is a special processor designed to execute the
graphics display lists set up in main memory to build and move bit-maps
and pixel maps in the video memory. A 3D graphics accelerator also creates
or renders 3D triangles into pixels in the frame buffer, often incorporating
texture maps in the process. PCI bus-master capability permits the graph-
ics accelerator to fetch the display commands and data from main mem-

HISTORICAL COMMENT

Raster Displays

A raster display is characterized as having a rectangular array of discrete
pixels (picture elements) of varying color or gray-scale intensity. Cath-
ode Ray Tube (CRT)-based displays were the first raster displays. Such
raster displays have horizontal and vertical deflection coils that are
driven by fixed frequency saw-tooth waveform “sweep” oscillators. The
active portion of the beam traces a rectangular scanning pattern on the
face of the CRT known as the raster. Raster displays are by far the most
prevalent paradigm for implementing computer displays. In contrast,
vector displays may create images from line segments of generally arbi-
trary length and orientation. While the underlying technology and low-
level electronics is quite different, LCD panels are managed at a high-
level like CRTs. Flat LCD panels are expected to eventually replace the
CRT for mainstream applications.
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ory without further involvement of the processor. Management of the
various dedicated areas of the video memory is closely associated with the
graphics accelerator. 

rasterizing
rendering

3D acceleration features provide hardware support for rasterizing and
rendering the 3D objects modeled by the 3D application running on the
microprocessor once the objects have been broken down into sets of trian-
gles with screen coordinates, color, and texture data computed by the
graphics software. 3D-specific acceleration includes depth queuing and
texture, transparency, and shading effects. 2D acceleration features pro-
vide hardware for 2D drawing (circles, triangles, lines, and points), raster
operations (including window management and acceleration), and VGA
(Video Graphics Adapter, a display adapter standard) register and mem-
ory compatibility. Display adapters intended for extensive 3D acceleration
should make use of the AGP.  

video acceleratorThe video accelerator’s primary job is to pump streams of pixel data to the
display. Digital pixel data is fetched from the frame buffer or video buffer
in video memory, the pixels having been rendered previously by the
graphics accelerator or previously received from the streaming video
input. The pixel data may be stored in memory in a variety of formats,
which have various color depths10 and associated storage packing densi-
ties, color spaces,11 and degrees of sub-sampling.12 After being fetched
from video memory, the various pixel data memory formats are respec-
tively unpacked, interpolated,13 color space converted, and scaled (if
desired), to convert all pixel data to fully sampled RGB (Red, Green, Blue). 

DEFINITION

Advanced Graphics Port (AGP)

The AGP provides a high-bandwidth path between main memory and
the display adapter for the large volume of texture data associated with
3D graphics. It also keeps this traffic off of the PCI Bus, increasing the
available PCI bandwidth.

10 “Color depth” relates to the number of available colors that can be explicitly 
specified for a pixel. 

11 “Color space” relates to different standard paradigms for specifying color.
12  “Subsampling” is a color-video specific data compression technique.
13  Interpolation is the inverse of subsampling.
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RasterOps

BitBLT (Bit-aligned Block 
Transfer)

  

RGB color space model Just as there are multiple coordinate representations (e.g. cartesian
and polar) for physical space, there are multiple coordinate representa-
tions for color space. Two popular representations are RGB and YUV.
RGB is a color space model that is directly usable by hardware at the sensor
and display level. If a different color space model is used elsewhere in the
system, color space conversion must be performed between the two. YUV
is a reference to the color video image coding components Y, U, and V,
which are formally defined for composite (single signal) analog color
video standards such as NTSC, PAL, and S-video. For component (three
signal) digital video, as used in computer graphics, the corresponding sys-
tem is correctly referred to as Y'CbCr. However, in the general PC plat-
form literature, the usage of the term YUV to connote computer digital
component video is nearly ubiquitous.

YUV color space model After digitization and before display, the YUV color space model is
common for the transmission and intermediate storage of digital “full-
motion” video images. YUV is related to RGB color-space via a 3x3-

DEFINITIONS

Rasterizing and Rendering

Rasterizing and rendering are terms for related processes. While the two
terms are often used synonymously, there are differences between the
two. Rasterizing is a pixel-centric process of taking image data in any
continuous form or model and processing it for storage, transfer, or dis-
play as a 2D matrix of modulated-pixel values. Rendering may be loosely
used to mean simply rasterizing, but it often connotes surface modeling
using a more comprehensive process that is image-perception-centric.
Specifically, the color or gray-scale intensity of each pixel in the 2D
matrix may be established through processing that may rely upon adja-
cent regions of pixels, textures, depth information, and other sophisti-
cated techniques.

Raster operations (frequently called RasterOps) are logical primi-
tives defined for manipulating and moving bit-map and pixel-map data.
BitBLT (Bit-aligned Block Transfer) is perhaps the most important Ras-
terOp. BitBLT moves a bit-mapped image from a source area at a first
bit-origin to an equal sized destination area, having a second bit-origin.
BitBLTs are extensively used for intra memory transfers from main
memory to the back buffer, and intra back buffer transfers. Other Ras-
terOps extend the basic BitBLT via an additional operand that defines
various pixel manipulations on the image being transferred. In the most
general case, the resulting data may be a function of the source data, the
preexisting destination data and the additional operand.
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matrix manipulation, enabling either representation to be derived from
the other. 

The technology associated with YUV color-coding is complex, relying
on the four disciplines of physics, perception, photography, and video. Y'
is the luma signal, which is a scaled and gamma corrected (end-to-end-
video-path compensated) representation of the luminance information in
the video image. A video industry standard defines luminance as an objec-
tive definition of brightness, given by Y' = 0.299R + 0.587G + 0.114B. The
different weightings given to each component take into account human
vision sensitivities to power at different visible wavelengths. 

Primes are used to represent that 
the signals are gamma corrected, 
which is a compensation necessary 
due to nonlinear intensity repro-
duction transfer functions inherent 
in video systems.

Collectively, U' and V' as a pair are representations of the chromatic or
chroma information in the video image. In component video, Chroma
(C) is a quadrature modulated signal given by C = U(cos t) + V(sin t).
Individually, U' and V' are scaled and gamma corrected color difference
signals. U' is defined to be Blue (B) minus Y', and is sometimes referred to
as the Blue Chroma component. V' is defined to be Red (R) minus Y', and
is sometimes referred to as the Red Chroma component. 

YUV systems often exploit the fact that human perception of color
resolution is coarser than perception of luminance resolution. These sys-
tems subsample (periodically omit samples of) the chroma in order to
transmit and store lower bandwidth signals without any human perceiv-
able degradation. Interpolation is the process of using the sub-sampled
chroma information to recreate the missing chroma samples prior to dis-
play.

When used on a PC, the Quick-
Time videos on the companion 
CD-ROM should generally be 
viewed with 16-bit or greater color 
depth.

Color depth is the number of bits assigned per pixel to represent its
color. The greater the number of bits, the deeper or higher the color depth,
and the more colors may be used. Unless further qualified, this view of
color depth implicitly means one is talking about RGB pixels in a form
ready for processing by the final stages of the video accelerator. In the con-
text of YUV pixels, and sub-sampling, one must find an effective number
of bits per pixel.

true color

high color

PC color-depth schemes may include 16-color, 256-color, 16-bit color,
and 24-bit color modes. The 24-bit color mode is known as the true color,
and generally corresponds to the highest capabilities of the display adapter.
The true color mode is suitable for photographic quality images such as
digitized photographs, or the results of photo-realistic graphics rendering,
both of which require smooth shading of geometric objects. 16-bit color is
known as high color, achieving very good quality images, but with some
degradation. 

pseudocolorThe 16-color and 256-color modes are also known as pseudocolor or
colormapped modes. They are also described as having “palletized” pixels.
In the pseudocolor modes, the color pixel value stored in the frame buffer
is not itself the ultimately displayed color, but is instead an index into a
Color Look Up Table (CLUT), also known as a colormap, or palette. The
CLUTs are used to convert palletized pixels to the desired high or true-
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color pixel data. Following color look up, which is required only for the
pseudocolor modes, the pixel data streams drive an RGB triplet of Digital
to Analog Converters (DACs), for generating analog waveforms suitable
for driving the display.

Thus a palletized pixel value corresponds to a higher true color only via
the defined palette mapping, and is otherwise arbitrary. The pseudocolor
modes have been analogized14 to “painting by numbers,” where the set of
numbers is relatively small, but each individual color can be chosen from
the full spectrum of colors. The pseudocolor modes are suitable for art-
work such as business presentations and drawn illustrations and for con-
trols and program displays in alphanumeric and GUI (discussed in the
Graphical User Interface (GUI) section in Chapter 4) based systems.
Pseudocolor modes are very space efficient for such uses. Additionally,
special effects may be achieved by dynamic changes to the color palette.

The choice of color mode is usually limited by the finite memory
installed in the display adapter in conjunction with the addressable resolu-
tion selected. Given that the installed memory is a constant, the address-
able resolution must be traded off against color-depth. That is, an increase
in one will often demand a decrease in the other.

packed pixels

unpacking

When low color depth is used, and in particular for hardware with
wide data paths, multiple pixels may be packed into a single data word. It is
also possible for packing to be done in such a manner that pixels straddle
word boundaries. Unpacking is the process of parsing a data word stream
to extract the individual pixels.

scaling Scaling is the magnification or reduction of a raster image. Pixel repli-
cation, or decimation, may be used to perform crude integer magnifica-
tion, or reduction, respectively. Noninteger scaling usually requires special
hardware support or else performance may dramatically suffer.

We have now completed an overview of the process of designing and
implementing a microprocessor and the issues involved in designing and

HISTORICAL COMMENT

RAMDAC

CLUTs are often implemented using embedded RAMs and the term
RAMDAC was coined to refer to a module that integrated both the
CLUTs and the DACs. The term is still used even though much higher
levels of integration are common today. Especially at the low-end, dis-
play adapter cards frequently consist of little more than video memory,
one or two display controller chips, and other minor components.

14 Charles A. Poynton, A Technical Introduction to Digital Video, John Wiley and 
Sons, 1996, p. 36.
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implementing microprocessor-based platforms and systems. Before sum-
marizing the chapter and discussing the road ahead, we have a small but
hopefully interesting side-tour to make.

PERSPECTIVES FROM

ECKERT-MAUCHLY

AWARD WINNERS

Each year since 1979, the IEEE Computer Society and the Association for
Computing Machinery (ACM) have jointly recognized substantial
contributions to computer and digital systems architecture by awarding
the prestigious Eckert-Mauchly Award to a single individual. We asked a
number of the recipients of this award the following two questions:

1. Looking back, what are the most important 5-6 books or articles
that affected the way that you approach the central issues in
computer architecture? 

2. Looking forward, what are the most important 5-6 books or
articles that you would recommend all of those interested in the
field—student or practitioner—to read because you believe they
are concerned with issues that will be increasingly important in
future architectures? 

Given the sustained contributions these individuals have made to the field
and the impact each has had on it, we thought that most readers of this
book could benefit from their responses to these questions. As you proba-
bly suspect, the answers are both interesting and insightful. The responses
are presented in reverse chronological order, starting with the most recent
award winner who we approached, and working backwards.

1997 Award Winner, Robert Tomasulo
Award Citat ion: For the ingenious “Tomasulo’s Algo-
rithm,” which enabled out-of-order executive proces-
sors to be implemented.

Looking Back
“Books played a negligible role in my development for two reasons. When

I started there were virtually no books in the field. Even useful articles or
papers were rare. Books also tend to lag too far behind practice in a rapidly
developing field. This is still the case today. By far the most significant influ-
ence was the people I worked with and the design community to which we
belonged. I learned the ABC’s of computer architecture from Amdahl, Brooks
and Blaauw, Cocke et al. I learned computer design from Anderson, Sparacio
and other colleagues on the Model 91 and subsequent projects.

 A powerful external influence was the work of Seymour Cray. A paper on
the 6600 and a video lecture (much later) come to mind. Sadly, much excel-
lent early work, even at IBM, was not well documented publicly. Starting



54 Chapter 1: Microprocessors, Platforms, and Systems

with the Model 91 the IBM Journal has changed that, at least with respect to
those of their designs that become products.”

Looking Forward
“I cannot improve on Prof. Flynn’s15 answer to this difficult question but

would like to add a greater emphasis on mastering the past. Technology
advances in both hardware and software have rendered most Instruction Set
Architecture conflicts moot (and I include CISC/RISC). Computer design is
focusing more on the memory bandwidth and multiprocessing interconnec-
tion problems. Neither of these is new. Even in his special field, Cray realized
that problems are ultimately memory (including I/O) limited. The micropro-
cessor field has recapitulated in the last ten years the past forty years of main-
frame evolution. Therefore, the problems it faces today were encountered ten
or twenty years ago by mainframe designers. A first step toward solving these
problems should be an understanding of past attempts, both those that suc-
ceeded in their day and, even more importantly, those that failed.”

1996 Award Winner, Prof. Yale N. Patt
Award Citation: For important contributions to instruc-
tion level parallelism and superscalar processor design.

Looking Back
“It is not clear that there are five or six books or articles that have affected

how I approach central issues in computer architecture. The fact is, I have
been influenced overwhelmingly more by lectures than by books or articles. I
have thought about this a lot (on airplanes etc.), trying to identify the books
and articles that have mattered to me, and frankly come up with the realiza-
tion that it was lectures, not books and articles, that mattered far more. One
exception: Knuth, Volume 1, which is not that it related directly to computer
architecture, but rather it provided clear insight into what computing is
about, where problems are, and how to approach problems.

As for lectures, I would count the following four, giving me the five that
you requested:

1. Professor W. K. Linvill, Systems Analysis, Stanford, 1964. Taught me
to cut through the complexity and big words and get at the heart of the
problem. Also taught me the value of analogies to understanding new
situations.

2. Professor W.K. Linvill, Doctoral Qualifying exam, Stanford, 1963.
Taught me that tough problems can be cracked if they can be trans-
formed into problems that I understand.

3. Professor Donald Epley, Switching Theory, Stanford, 1962. Taught
me that a body of knowledge, if organized systematically and compre-

15 Note: Prof. Flynn’s response appears later in this section.
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hensively, lends itself to understanding far better than a collection of
badly interconnected ideas.

4. Professor Michael Harrison, lecture at Duke University, 1973.
Taught me that an advancement of knowledge is best explained in the
context of simple ideas, and that only after conveying that should one
attempt to translate the advancement into heavy mathematics.

My response departs sufficiently from what you intended that I feel obliged to
add a statement, lest some regard it as frivolous. While none of my five are
limited to computer architecture, all five have had such a pronounced effect
on how I approach everything about computer architecture that they dwarf
any computer-architecture-specific books or articles that I could mention.

Looking Forward

1. “Harold Stone, textbook published by A-W on high-performance
computer architecture, because Harold writes lucidly, and provides a
careful foundation that is useful to everyone’s base of knowledge in
computer architecture.

2. John Wakerly, textbook on logic design, because one should have a
solid grounding in digital logic design if one wishes to deal with com-
puter architecture.

3. Martin Graham, textbook on high-performance circuit design, be-
cause one should be exposed to the lower levels of implementation as
part of one’s preparation to work at the higher level of microarchitec-
ture.

4. Stephen Melvin and Yale Patt, HICSS 1987, I believe. Hopefully I
have transcended the obvious self-serving element of referencing my
own work; this paper differentiates hardware/software interface from
dynamic/static interface from user/builder interface, and in so doing,
focuses on the important problems that must be dealt with to really
produce highest performance engines.

I hope the above is useful.”

1992 Award Winner, Prof. Michael J. F lynn
Award Citat ion:  For his important and seminal contribu-
tions to processor organization and classif ication, com-
puter ar ithmetic, and performance evaluation.

Looking Back
“I started in computer design when the field was relatively young. Aside

from von Neumann’s classic papers [2], most of the books or articles that
affected my personal approach to computer architecture were based upon
machines themselves—either instruction sets or implementations, or both.
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Thus, Buchholz’s book on the Stretch computer [1] was an important book
describing a deeply pipelined machine and many of the problems which still
exist in processor implementations (for instance, speculating on a branch was
a feature in the Stretch machine). Other works that emphasized the evolution
of instruction sets included System 360’s Principles of Operation [3]. The
DEC VAX and PDP-11 instruction sets [4] and the Burroughs B6500 series
[5] all illustrated important advances in our understanding of optimizing the
executable representation of programs. The Intel x86 instruction set and its
evolution was interesting for a different reason. As technology enabled more
robust implementations, it also enabled more fully functional instruction sets.

Machine implementations are equally important, especially machines
that were able to break new ground in achieving performance or functional-
ity. Books and papers on the CDC 6600 [6], the IBM System 360 Model 91
[7], and the CRAY-1 [8], all present to me valuable insights.

The reader will note that many of the items mentioned are of some vin-
tage. It is easier to see in the hindsight of, say, a decade, which machines have
changed and significantly influenced the field and hence all of our thinking. It
is much more difficult to assess the impact of machines introduced in current
months. Still, it is no less important to be aware of them.”

References:

1. W. Buchholz and R. S. Ballance, Planning a Computer System,
McGraw-Hill, 1962.

2. John von Neumann, Collected Works, Volume V, Pergamon Press,
1963.

3. IBM Corporation, IBM System/360 Principles of Operation, Tech-
nical Report GA22-6821-4, 1970.

4. C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer Engineer-
ing: A DEC View of Hardware System Design, Digital Press, 1978.

5. E. Organick, Computer Systems Organization: The B5700/B6700
Series, Academic Press, 1973.

6. J. E. Thornton, Design of a Computer: The Control Data 6600,
Scott, Foresman and Co., 1970.

7. D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM Sys-
tem/360 Model 91: Machine philosophy and instruction-handling,”
IBM Journal of Research and Development, 11(1):8-24, 1967.

8. R. M. Russell, The CRAY-1 Computer System, Communications of
the ACM, 21(1):63-72, January 1978.”

Looking Forward
“It is difficult to predict trends in a field where the technology is rapidly

changing, so the architect must be aware of possible avenues of machine
implementation. But, underlying these avenues are somewhat more perma-
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nent support tools. Computer architecture, like all engineering, is the art of
the possible: bringing together ideas for machine implementation with state-
of-the-art technology details to provide for the best possible system implemen-
tation at a given cost.

I think that the future computer architect is a systems architect, not sim-
ply a processor architect; so one must bring together software technology, sys-
tems applications, arithmetic, all in a complex system which has a statistical
behavior that is not immediately or simply analyzed, so the architect must be
aware of current techniques [1]. Here, basic books such as Hayes [2] or Hen-
nessy and Patterson [3] through advanced work by Hwang [4] represent a
sampling of the various avenues that the architect should be aware of. But just
as importantly, the architect should have basic familiarity with probability
and queuing theory, compiler theory, operating systems, and of course VLSI
technology. In the more distant future, as the system moves to the chip, the
architect needs to know signal processing, graphics, audio, and the human-
machine interface.”

References:

1. A good source includes Microprocessor Reports or IEEE Micro.

2. J. Hayes, Computer Architecture and Organization, McGraw-Hill,
1988.

3. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 1990.

4. K. Hwang, Advanced Computer Architecture: Parallelism, Scal-
ability, Programmability, Computer Engineering Series, McGraw-
Hill, 1993.”

1988 Award Winner, Prof. Daniel P. Siewiorek
Award Citat ion: For outstanding contributions to parallel
computer architecture, reliabi l i ty,  and computer archi-
tecture education.

“In my early career I studied the IBM 360 architectural papers, especially
the 360/Model 91 implementation papers, and the CDC 6600. Taken
together these were perhaps the first mass-produced, reduced instruction set
architectures with high-performance implementations. The concepts in these
two architectures fueled high-performance designs for over three decades. The
DEC PDP-11 architecture introduced me to the interface between hardware
implementation and software (both operating system and application pro-
grams). The single most influential book on my early career was C. G. Bell
and A. Newell, Computer Structures: Readings and Examples, McGraw-
Hill, 1971. Bell and Newell formalized the hierarchical levels in computer sys-
tems, initiated the concept of a computer space (taxonomies of alternatives
that made design decisions explicit), introduced ISP as a language to describe
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the programming interface (a language to which many concepts in contempo-
rary hardware description languages can be traced), and the concept of the
computer as a system reaching out beyond the data paths and controllers into
software and networks.

As you can guess, it is easier identifying historically important articles/
books than predicting the future. Hence there are more entries to your ques-
tion 1 than to question 2. After I cite each reference, I will make a brief
comment about it.

Looking Back

1. Arthur W. Burks, Herman H. Goldstine, and John von Neumann,
“Preliminary Discussion of the Logical Design of an Electronic Com-
puting Instrument,” in A. H. Taub (ed), Collected Works of John
von Neumann, Vol. 5, pp. 34-79, The Macmillan Company, 1963.
‘Introduces the basic organization of a processor, instruction set, mul-
tiple level storage hierarchy, number representations, reliability (e.g.,
duplicated processors), and graphics output.’

2. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner,
“One-level Storage System,” IRE Transactions, EC-11, Vol. 2, pp.
223-235, April 1962. ‘Introduces the principles of an automatically
controlled memory hierarchy.’

3. R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal, Vol. 11, January 1967, pp. 25-33.
‘Introduces basic algorithms for controlling multiple functional
units.’

4. L. G. Roberts and B. D. Wessler, “Computer Network Development
to Achieve Resource Sharing,” Proc. AFIPS SJCC, Vol. 36, 1970, pp.
543-549. ‘Introduces basic concepts for networking and wide area
network goals.’

5. Robert M. Metcalfe and David R. Boggs, “Ethernet: Distributed
Packet Switching for Local Computer Networks,” Comm. ACM,
Vol. 19, No. 7, July 1976, pp. 395-404. ‘Introduces local area network
concepts.’

6. C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and
D. R. Boggs, “Alto: A Personal Computer,” in D. P. Siewiorek, C. G.
Bell, and A. Newell, eds. Computer Structures: Principles and Ex-
amples, McGraw-Hill, 1982, pp. 549-572. ‘Introduces the concept of
a single user workstation with bit-mapped graphics, precursor to
widely adopted icon, mouse interface with ‘what you see is what you
get’ whole screen editors.’

7. C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer Engineer-
ing: A DEC View of Hardware System Design, Digital Press, 1978.
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‘Evolutionary design and computer families.’

8. M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R. Stringfellow,
“Reliability, Availability, and Serviceability of IBM Computer Sys-
tems: A Quarter Century of Progress,” IBM J. Res. and Develop-
ment, Vol. 25, September 1981, pp. 453-465. ‘The evolution of
reliability techniques.’

Looking Forward

1. A. S. Tanenbaum, Computer Networks, 3rd ed. Prentice Hall, 1996,
Upper “Computer networks.”

2. H. Cragon, Memory Systems and Pipeline Processors, Jones and
Bartlett Publishers, 1996. “Memory hierarchy and pipelining.”

3. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 2nd ed. Morgan Kaufmann, 1996.
“Uniprocessor/cache design.”

4. J. D. Foley and A. van Dam, Fundamentals of Interactive Comput-
er Graphics, Addison-Wesley, 1982 “Computer graphics.”

5. D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: De-
sign and Evaluation, 2nd Edition, Digital Press, 1992. Butterworth
Heineman Publishing Co. “System reliability continues to increase
in importance.”

1986 Award Winner, Prof. Harvey G. Cragon
Award Citation: For major contributions to computer
architecture and for pioneering the application of inte-
grated circuits for computer purposes. For serving as
architect of Texas Instruments, scienti f ic computer and
for playing a leading role in many other computing
developments in that company .

Looking Back
“There are two books and two papers that had a profound influence on

my early life as a computer architect. The two books are:

1. Planning a Computer System, Project Stretch edited by W. Buch-
holz, 1962. “This book spelled out the design decisions that went into
Stretch. To a young engineer, learning that design decisions come hard
to others was a revelation.”

2. “The second book is Design of a Computer: the Control Data 6600
by J. E. Thornton, 1970. The insight into the causes of dependencies
and their solutions in concurrent processors was revealing.”

“For the two papers, I still make reference to:

1. “Preliminary Discussions of the Logical Design of an Electronic Com-
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puting Instrument” by Burks, Goldstine, and von Neumann.” I have
a photo copy of the original. The insight shown in this paper is truly
astounding. And to think that we still follow this model today with
concurrency the only major change.”

2. “The second paper is the collection of papers found in the IBM Jour-
nal of Research and Development, Vol. 11, No. 1, January 1967.
“This collection of papers concerned the design of the IBM S360 91.
The paper topics include: floating-point arithmetic, the Common
Data Bus, memory system design, and a first look at multiple instruc-
tion issue (what we call Superscalar today).”

Looking Forward
“For contemporary reading, I will mention only two books.

1. The first is The Supermen, by Charles Murray. This is the story of
Seymour Cray and all of his machines, both successes and failures. An
important story that emerges is the never-ending battle between:
higher clock rates leading to higher circuit density leading to higher
power density leading to exotic cooling techniques. This is a battle that
is still fought today and will in the future as far as I can tell.” 

2. “The second book is the monumental work Computer Architecture,
Concepts and Evolution by G. Blaauw and Fred. Brooks Jr. This
book should be on the desk of an engineer who claims to be a computer
architect. The architecture design space that they have pulled together
is truly outstanding and is a valuable reference work.”

1985 Award Winner, John Cocke 
Award Citation: For contributions to the high-
performance computer architecture through look
ahead, paral lel ism and pipeline ut i l izat ion, and to
reduced instruction set computer architecture through
the exploitation of hardware-software trade-offs and
compiler ut i l ization.

Looking Back
“Here are the thoughts you asked me to send to you. First, in 1957 when I

was employed by IBM, there were few Computer Science departments and no
major books related to Computer Science. I read a 1946 report prepared for
the U.S. Army Ordnance Department by Burks, von Neumann, and Golds-
tine [1]. There were also available journal articles from the ACM, which con-
tained papers related to such things as error correcting codes, etc. The Bell
Systems Technical Journal contained articles by Shannon [2] related to
information theory. There was also a book by Richards, [3] which showed
how to design adders, etc. Most of the things I learned from people like Fred
Brooks and Jim Pomerene, who had worked designing computers at Harvard
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and the Institute of Advanced Study, respectively. Andrew Gleason gave the
Stretch Planning Committee some papers related to sorting, which were quite
informative. For many years there were no books which would be usable for a
Computer Science course, as far as I knew, until Knuth [4] started releasing
his books.”

Looking Forward
“In answer to the question you asked related to books that I feel are appropri-
ate for the new generation of computer architecture, I would recommend
Mike Flynn's [5] Computer Architecture book and the Computer Architecture
book by Fred Brooks and Gerrit Blaauw [6].”

1. Burks, Arthur W., Herman H. Goldstine, and John von Neumann
“Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument” (Pt. 1. Vol. 1) Report prepared for the U.S.
Army Ordnance Department 1946, in A. H. Taub (ed.) Collected
Works of John von Neumann, Vol. 5, pp. 34-79, The Macmillan
Company, 1963.

2. Shannon, C. E. “A Mathematical Theory of Communication,” Bell
System Technical Journal, Vol. 27, pp. 379-423, 623-656, 1948.

3. Richards, R. K., Arithmetic Operations in Digital Computers, D.
VanNostrand Company, Inc., 1955.

4. Knuth, D. E., The Art of Computer Programming, Vol. I, (1968),
Vol. II, (1969), Vol. III, (1975), Addison-Wesley.

5. Flynn, M. J., Computer Architecture, Jones and Bartlett Publishers,
1995.

6. Blaauw, G. and Frederick Brooks, Computer Architecture Con-
cepts and Evolution, Addison Wesley Longman, 1997.”

SUMMARY OF CHAPTER

AND HOW TO PROCEED

In this chapter, we reviewed the process of designing and implementing a
microprocessor in reasonable detail. In particular, we stated that the devel-
opment of appropriate representative workloads, the subsequent analysis
of the resulting performance measurement data, and the use of that analy-
sis in the design and implementation process is the “cornerstone of many,
if not most, architectural design decisions.” We explained the importance
of simulation and testing and emphasized the need for a “golden represen-
tation” of the microprocessor. We continued with a discussion of the
process of designing and implementing a 3D graphics PC platform. In this
section, we identified the key components and interconnections central to
contemporary platform architectures. This section will prove fundamental
to the discussions that occur in Chapters 4, 5, and 6. Lastly, we benefited
from the perspectives of several Eckert-Mauchly Award winners regarding
what influenced their individual views of computer architecture and what
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they think might prove to be important references in the field in the
future. 

We recommend that you examine the Table of Contents and then page
through each of the chapters to get a sense of the specific topics that are
covered and the depth to which the material is presented. Similarly, we
suggest you page through the cross-references and the combined glossary/
index at the rear of the book.

We suggest you have the companion CD-ROM in your CD-ROM
reader as you use the hard copy of the book in order to take advantage of
the many hyperlinked and cross-reference features of it. Furthermore,
during certain sections of the book, you may want to be connected to the
Web as a number of the hyperlinks will connect you to relevant Web sites.
We should also mention that the figures and tables that appear in each
chapter can be printed out from the Technical Presentations road map on
the CD-ROM on a chapter-by-chapter basis.

Chapter 2 and Chapter 3 should be read sequentially. However, Chap-
ters 4, 5, and 6 can be read in any order and independently of Chapters 2
and 3.

TECHNICAL PRESENTAT IONS ON CD-ROM

Two technical presentations by Bruce Shriver that
deal with various topics discussed in this chapter
might be of interest to the reader: (1) An Introduction
to Computer Architecture and (2) The Design and
Implementation Process.
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