
Advanced
Programmer’s Guide

to SuperVGAs

George Sutty
Steve Blair

Brady

New York London Toronto Sydney Tokyo Singapore

Copyright © 1990 by George Sutty and Steve Blair.

All rights reserved,
including the right of reproduction
in whole or in part in any form.

BRADY

Simon & Schuster, Inc.
15 Columbus Circle
New York, NY 10023

DISTRIBUTED BY PRENTICE HALL TRADE

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Sutty, George J.
Advanced programmer’s guide to SuperVGAs [computer

file].
1 computer disk ; 5V4 in. + 1 v.
System requirements: IBM PC, XT, AT, PS/2, or

compatibles; 640K; MS-DOS 3.0 or higher; one 1.2M disk
drive; monochrome monitor; SuperVGA board.

Title from t.p. of book.
Not copy-protected.
Audience: Adult reference/general.
Summary: Offers a graphics programming utility with

drawing routines for 256, sixteen, and four color
graphics. The text is designed to enable users to
utilize fully the many advanced features of the

SuperVGAs.
1. Computer graphics—Software. I. Blair, Steve.

II. Title.
T385.S84 1990 004.7 90-69814
ISBN 0-13-010455-8

Limits of Liability and
Disclaimer of Warranty

The authors and the publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.
The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential damages in
connection with or rising out of the furnishing, performance, or use of these programs.

Trademarks

IBM PC, PC/XT, PC/AT, PCjr, and PS/2 are trademarks of International Business
Machines Corporation.

Hercules is a trademark of Hercules Computer Techology, Inc.
MS-DOS is a trademark of Microsoft Corporation.
Turbo Pascal is a trademark of Borland International.
Multisync is a trademark of NEC Corporation.

Dedication

To our families for their support and encouragement.

Acknowledgments

We would like to thank all of the VGA manufacturers who were gracious enough to
supply us with technical material and sample products, especially those who partici¬
pated in the review of the manuscript. This book would not have been possible with¬

out their support.
We would particularly like to thank Mr. Gary Lorensen, whose expert and thorough

review of the manuscript (in several different versions) contributed greatly to the qual¬

ity of the finished result.
Special thanks are also due Susan Hunt and the rest of the team at Brady Books for

their patience, encouragement, and assistance with the manuscript.

vi Advanced Programmer’s Guide to Super VGAs

PART I—A VGA Review 1

Introduction 3

Why We Wrote this Book 3
The History of VGA 4
How the Book is Organized 5

1. Standard VGA Display Modes 7

Introduction 8
Standard VGS display Modes 9

Modes 0 and 1 (40-column Color Text) 9
Modes 2 and 3 (80-column Color Text) 10
Modes 4 and 5 (Four-color 320 x 200 Graphics) 10
Mode 6 (Two-color 640 x 200 Graphics) 11
Mode 7 (Monochrome Text) H
Mode D (Sixteen-color 320 x 200 Graphics) 11
Mode E (Sixteen-color 640 x 200 Graphics) 11
Mode F (Monochrome 640 x 350 Graphics) 12
Mode 10 (Sixteen-color 640 x 350 Graphics) 12
Mode 11 (Two-color 640 x 480 Graphics) 12
Mode 12 (Sixteen-color 640 x 480 Graphics) 13
Mode 13 (236-color 320 x 200 Graphics) 13

2. Architecture of the VGA 13

Introduction 16

Packed Pixels vs. Color Planes 16
Text Modes vs. Graphics Modes 17
Functional Blocks 18

Display Memory 19

Display Memory in Text Modes 20

Display Memory in Graphics Modes 25

The Graphics Controller 30

Processor Read Latches 30
Logical Unit 31
Color Compare 32
Data Serializer 32

The Attribute Controller and DACs 32
The CRT Controller 34
The Sequencer 35

Contents vii

3. VGA Registers 37

Introduction 38

Control Registers 41

Miscellaneous Output Register (I/O Address Write 3C2h, Read 3CCh) 41
Input Status Register 0 (I/O Address 3C2, Readonly) 42
Input Status Register 1 (I/O Address 3BAh/3DAh, Readonly) 42
VGA Enable Register (I/O Address 3C3h/46E8h) 42

The CRT Controller Registers 43
Index 0 - Horizontal Total 43
Index 1 - Horizontal Display Enable 45
Index 2 - Start Horizontal Blanking 45
Index 3 - End Horizontal Blanking 45
Index 4 - Start Horizontal Retrace 45
Index 5 - End Horizontal Retrace 45
Index 6 - Vertical Total 43

Index 7 - Overflow Register 46
Index 8 - Preset Row Scan 46
Index 9 - Maximum Scan Line/Character Height 46
Index OAh - Cursor Start 47

Index OBh - Cursor End 47

Index OCh - Start Address (High Byte) 48
Index ODh - Start Address (Low Byte) 48
Index OEh - Cursor Location (High Byte) 48
Index OF - Cursor Location (Low Byte) 48
Index lOh - Vertical Retrace Start 48
Index 1 lh - Vertical Retrace End 48
Index 12h - Vertical Display Enable End 49
Index 13h - Offset/Logical Screen Width 49
Index I4h - Underline Location Register 49
Index 15h - Start Vertical Blanking 49
Index I6h - End Vertical Blanking 49
Index 17h - Mode Control Register 49
Index 18h - Line Compare Register 50

Sequencer Registers 50

Index 0 - Reset Register 50
Index 1 - Clock Mode Register 51

Index 2 - Color Plane Write Enable Register 51

Index 3 - Character Generator Select Register 51

Index 4 - Memory Mode Register 52
Graphics Controller Registers 52

Index 0 - Set/Reset Register 52

Index 1 - Set/Reset Enable Register 53

viii Advanced Programmer’s Guide to Super VGAs

Index 2 - Color Compare Register 53
Index 3 - Data Rotate/Function Select Register 54
Index 4 - Read Plane Select Register 54
Index 5 - Mode Register 54
Index 6 - Miscellaneous Register 56
Index 7 - Color Don’t Care Register 56
Index 8 - Bit Mask Register 56

Attribute Controller and Video DAC Registers 57

Attribute Controller Registers 57
Video DAC Registers (I/O Addresses 3C6, 3C7, 3C8, and 3C9) 61

4. The ROM BIOS 63

What is the ROM BIOS 64
Individual BIOS Functions 64

Function 0 - Mode Select 64
Function 1 - Set Cursor Size 64
Function 2 - Set Cursor Position 64
Function 3 - Read Cursor Size and Position 65
Function 4 - No Standard Support (Get Light Pen) 65
Function 5 - Select Active Page 65
Function 6 - Scroll Text Window Up (or Blank Window) 65
Function 7 - Scroll Text Window Down (or Blank Window) 66
Function 8 - Read Character and Attribute at Cursor Position 66
Function 9 - Write Character and Attribute at Cursor Position 66
Function OAh - Write Character Only at Cursor Position 67
Function OBh - Set CGA Color Palette (Modes 4,5,6) 67
Function OCh - Write Graphics Pixel 67
Function ODh - Read Graphics Pixel 68
Function OEh - Write Character and Advance Cursor 68
Function OFh - Get Current Display Mode 69
Function lOh - Set EGA Palette Registers 69

Subfunction 0 - Program a Palette Register 69
Subfunction 1 - Set Border Color (Overscan) 69
Subfunction 2 - Set All Palette Registers 69
Subfunction 3 - Blink/Intensity Attribute Control 70
Subfunction 7 - Read a Single Palette Register 70
Subfunction 8 - Read Border Color (Overscan) Register 70
Subfunction 9 - Read All Palette Registers 70
Subfunction lOh - Set a Single DAC Register 71
Subfunction 12h - Set Block of DAC Registers 71
Subfunction 13h - Select Color Subset 71
Subfunction 15h - Read a Single DAC Register 72

X Advanced Programmer’s Guide to Super VGAs

5. Architecture of the SuperVGAs 97

Introduction 98
Mapping of Display Memory 98

Host Address Space / Host Window 98
Memory Planes vs. Memory Pages 100
Display Memory Paging 100
Graphics Programming with Paged Display Memory 104
Page Boundary Detection 104

Enhanced Modes 106

Enhanced Text Modes 107
Enhanced Graphics Modes 107

The BIOS 11°
Other Features 111

Application Software Drivers 111
16 Bit Data Buses 111
Automatic Display Detection 112

Adapter Identification 112
Selecting a SuperVGA 113

Know Your Application 113
Know Your Operating System 113
Evaluate Compatibility 114
Know Which Displays are Supported 114
Evaluate Features 114
Evaluate Performance 114

6. Programming Examples Overview 117

How The Programming Examples Are Organized 118
What is on the Diskette 119
How to Use the Programming Examples 120

Board- and Mode-Dependent Variables 121
Board- and Mode-Dependent Routines 122
Computing which Page to Select 123

Drawing Routines 124

Write Pixel 124
Read Pixel 125
Draw Solid Line 125
Draw Scan Line 125
Fill Solid Rectangle 125
Copy Block 125
Set Cursor, Move Cursor, Remove Cursor 126
Load DACs 126

Contents IX

Subfunction 17h - Read Block of DAC Registers 72
Subfunction 18h - Set PEL Mask 72

Subfunction 19h - Read PEL Mask 73

Subfunction lAh - Read Subset Status 73

Subfunction lBh - Convert DAC Registers to Gray Scale 73

Function llh - Load Character Generator 73

Subfunction 0 - Load Custom Character Generator 74

Subfunction 1 - Load 8x14 Character Set 74

Subfunction 2 - Load 8x8 Character Set 74

Subfunction 3 - Select Active Character Set(s) 74

Subfunction 4 - Load 8x16 Character Set 75

Subfunctions lOh, llh, 12h, 14h 73

Subfunction 20h - Initialize INT lFh Vector (Modes 4-6) 73

Subfunction 21h - Set Graphics Mode to Display Custom Character Set 73

Subfunction 22h - Set Graphics to 8 x 14 Text 76

Subfunction 23h - Initialize Graphics Mode to Display 8x8 Text 76

Subfunction 24h - Initialize Graphics Mode to Display 8x16 Text 77

Subfunction 30h - Return Information About Current Character Set 77

Function 12h - Get VGA Status (Set Alternate Print Screen) 78
Subfunction lOh - Return VGA Information 78

Subfunction 20h - Revector Print Screen (INT 05h) Interrupt 78
Subfunction 30h - Select Scan Line Count for Next Text Mode 78
Subfunction 31h - Enable/Disable Palette Load During Mode Set 79

Subfunction 32h - Enable/Disable VGA Access 79

Subfunction 33h - Enable/Disable Gray Scale Summing 79

Subfunction 34h - Enable/Disable CGA/MDA Cursor Emulation 79

Subfunction 35h - Switch Displays. 80
Subfunction 36h - Display On/Off 80

Function 13h - Write Text String §0
Function lAh - Read or Write Configuration 81

Subfunction 0 - Read Display Configuration Code 81
Subfunction 1 - Write Display Configuration Code 82

Function lBh - Return VGA Status Information 82
Function ICh - Save/Restore Display Adapter State 85

Subfunction 0 - Return Required Buffer Size 85
Subfunction 1 - Save Display Adapter State 86

Subfunction 2 - Restore Display Adapter State 86

The BIOS Data Area

PART II—SuperVGAs 93

Introduction 95

Contents xi

Load Palette 12"7

Write Raster, Read Raster 127

7. Programming Examples—256-Color Graphics 129

Introduction I^q
Display Memory Organization 130

Drawing Routines 131

Write Pixel 131

Read Pixel 132

Draw Solid Line 133

Draw Scan Line 140

Fill Solid Rectangle 142

Clear Screen 145

Copy Block i46

Set Cursor, Move Cursor, Remove Cursor I65

Load DA.Cs 172
Read Raster Line 174

Write Raster Line 1 yg

8. Programming Examples—16-Color Graphics 179

Introduction IgO
Display Memory Organization Igl
Drawing Routines Igl

Write Pixel Igl
Read Pixel lg4

Draw Solid Line 1 g^
Draw Scan Line 194

Fill Solid Rectangle 197

Clear Screen 200
Copy Block 201

Set Cursor, Move Cursor, Remove Cursor 210
Load Palette 216

9. Programming Examples—4-Color Graphics 219

Introduction 220
Four Planes 220

Write Pixel 222
Read Pixel 224

Two Even Planes 225

Write Pixel 226
Read Pixel 228

Advanced Programmer’s Guide to Super VGAs xii

Two Consecutive Planes 229
Write Pixel 230
Read Pixel 232

Four Aalternating Pplanes 233
Write Pixel 234
Read Pixel 236

Packed Ppixels 238

Write Pixel 239
Read Pixel 240

10. Ahead V3000 Ahead VGA Wizard/Deluxe 243

Introduction 244
Chip Versions 244
New Display Modes 244
Memory Organization 244

High Resolution Text Modes 244
2-Color Graphics Mode 243
4-Color Graphics Mode 243
16-Color Graphics Modes 245
256-Color Graphics Modes 246

New Registers 246
Master Enable Register 248
Programming Examples 249

Display Memory Paging 249
Detection and Identification 230

11. ATI 18800 ATI VGAWONDER 257

Introduction 238
Versions of the Adapter 258
New Display Modes 258
Memory Organization 259

High Resolution Text Modes 259
High Resolution Graphics Modes 260

New Registers 263
ATI Register 0 264
ATI Register 1-EGA Compatibility and Double Scanning Enable 264
ATI Register 2-Memory Page Select 265
ATI Register 3 265
ATI Register 4 266
ATI Register 5 266
ATI Register 6 267

Contents xiii

ATI Register 7 267
ATI Register 8 267
ATI Register 9 267
ATI Register A 267

ATI Register B 268
ATI Register C 268
ATI Register D 268
ATI Register E 268

The BIOS 269

Extended BIOS Functions 269
Extended BIOS Data Area 270

Programming Examples 271

Accessing Extended Registers 271
Display Memory Paging 271
Mode 65h-1024x768 16-Color Graphics 279
Eight Simultaneous Fonts 282
Detection and Identification 290

12. Cirrus CL-GD 510, CL-GD 520 MaxLogic MaxVGA 293

Introduction 294

Expanded Display Modes 294
Memory Organization 295

High Resolution Text Modes 295

16-Color Graphics Modes 295

256-Color Graphics Modes 295

Expanded Register Set 296
Programming Examples 299

256-Color Drawing 299

Graphics Cursor Control 301

Detection and Identification 312

13. Chips and Technologies 82C452 Boca 1024VGA 315

Introduction 3^
New Display Modes 31 g
Memory Organization 31 ^

High Resolution Text Modes 317

New Registers 317

Setup Control Register 31 c)
Extended Enable Register 319

Global ID Register 320

Extended Register Bank 320

xiv Advanced Programmer’s Guide to Super VGAs

The BIOS 325
Function 5Fh-Subfunction 00h: Return 82C54X Information 325
Function 5Fh-Subfunction Olh: Preprogrammed Emulation Control 326
Function 5Fh-Subfunction 02h: Auto-emulation Control 326
Function 5Fh-Subfunction 03h: Set Power-on Video Conditions 327
Function 5Fh-Subfunction 90h: Enhanced Save/Restore Video State Buffer

Size 327
Function 5Fh-Subfunction 91h: Save Video State 328
Function 5Fh-Subfunction 92h: Restore Video State 328

Programming Examples 328
Accessing Extended Registers 328
Display Memory Paging 329
Graphics Cursors 336
Detection and Identification 343

14. Genoa 6400 Genoa SuperVGA 345

Introduction 346
New Display Modes 346
Memory Organization 347

High Resolution Text Modes 347
256-Color Graphics Modes 348
16-Color Graphics Modes 348
4-Color Graphics Modes 348

New Registers 348
Interface Control Register 349
Herchi Register 349
Configuration Register 349
Memory Page Select Register 349
Enhanced Control Register 2 350
Enhanced Control Register 3 350
Enhanced Control Register 4 350
Program Status Registers 1 and 2 350

Programming Examples 351
Display Memory Paging 351
Detection and Identification 356

15. Headland HT-208 (V7VGA) Headland Video Seven VGA1024i 357

Introduction 358
New Display Modes 358
Memory Organization 359

High Resolution Text Modes 359

Contents xv

2-Color Graphics Mode 360

4-Color Graphics Mode 360

16-Color Graphics Mode 36O
256-Color Graphics Mode 360

New Registers 36O

Index 6-Extension Control Register 362

Index lFh-Identification Register 362

Index 8Fh and Index 8Fh-VGAS Chips Revision Register 362
Hardware Graphics Cursor 363

Index AOh through A3h-Graphics Controller Data Latches 365
Foreground/Background Operations 365

Display Memory Paging 368

Index FFh-Thel6 Bit Interface Control Register 369

The BIOS 3-70

Interrupt Vectors Used by the BIOS 370

Added BIOS Functions 370

Programming Examples 373

Display Memory Paging 373

Graphics Cursor Control 380
Detection and Identification 392

16. Trident TVGA 8800CS Everex Viewpoint VGA 393

Introduction 396

Chip Versions 396

New Display Modes 396

Memory Organization 396

High Resolution Text Modes 398

High Resolution Graphics Modes 398

New Registers 399

Hardware Version Register 400
Mode Control Register 400
Scratch Pad Register 400
Processor Latch Read Back Register 401
Attribute Controller Index Read Back 401

The BIOS 401

Extended Mode Select 401
Return Emulation Status 402
Set Operating Mode 403

VGA Register Protect 403

Enable/Disable Fast Mode 403

Get Paging Function Pointer 403

Get Mode Supported Information 404

xvi Advanced Programmer’s Guide to Super VGAs

Program Mode Parameters 405
Everex Set Mode 405

Programming Examples 406

Display Memory Paging-Version 1 Mode 406
Display Memory Paging-Version 2 Mode 406
Detection and Identification 412

17. Tseng ET 3000 STB VGA EM-16 415

Introduction 416
New Display Modes 416
Memory Organization 417

High Resolution Text Modes 417
16-Color Graphics Modes 417
256-Color Graphics Modes 418

New Registers 418
Hardware Zoom Registers 418
Start Address Overflow Register 420
Compatibility Control Register 421
Auxiliary Overflow Register 421
Segment Select Register 421
TS Auxiliary Mode 422
CRTC Vertical Sync End 423

Programming Examples 423
Display Memory Paging 423
Hardware Zooming 429
Displaying Eight Simultaneous Fonts 435
Detection and Identification 443

18. Western Digital WD90C00 Western Digital Paradise VGA 1024 445

Introduction 446
AT and Micro Channel Versions 446
New Display Modes 447
Memory Organization 447

High Resolution Text Modes 447
2-Color Graphics Modes 59H and 5Ah 448
4-Color Graphics Modes 5Bh 448
16-Color Graphics Modes 449
256-Color Graphics Modes 449

New Registers 449
Module Disable 450
POS Sleep Bit Register 451

Contents xvii

Extended Register Bank 451
Address Offset A 451

Address Offset B 452

Memory Size 453

Video Select 433

CRT Lock Control 454

Video Control 435

General Purpose Status Bits 456
Unlock Second Bank 456

EGA Switches 456

Scratch Pad 457

Interlace H/2 Start 457

Interlace H/2 End 457

Miscellaneous Control 1 458
Miscellaneous Control 3 459

The BIOS 459

Parametric Mode Set 459

Enable/Disable Emulation Mode 460
Inquire Emulation Status 460
Lock Emulation Mode for Reset 460
Enable MDA/Hercules Emulation 461
Enable CGA Emulation 461
Set Monochrome VGA Mode 461
Set Color VGA Mode 462
Read Paradise Extended Register 462
Write Paradise Extended Register 462
Set Hardware EGA Emulation 462

Programming Examples 463

Accessing Extended Registers 463
Display Memory Paging 464
BITOLT with Two Pages 471
Detection and Identification 472

19. ZyMOS Poach 51 TruTech HiRes VGA 475

Introduction 476

Chip Versions 476

New Display Modes 476

Memory Organization 476

High Resolution Text Modes 476

16-Color Graphics Modes 477

256-Color Graphics Modes 477

New Registers 477

xviii Advanced Programmer’s Guide to Super VGAs

Hardware Version Register 478
Mode Control Register 1 478
Processor Read Back Latch Register 479
Attribute Controller State Register 479
Attribute Controller Index Read Back 479

Programming Examples 479

Display Memory Paging 479
Detection and Identification 485

20. The VESA Standard 487

Introduction 488
VESA Display Modes 488
The VESA BIOS 489

Function OOH-Return SuperVGA Information 489
Function Olh-Return SuperVGA Mode Information 490
Function 02h-Set SuperVGA Display Mode 492
Function 03h-Return Current Display Mode 492
Function 04h-Save/Restore SuperVGA Video State 493
Function 05h-Display Memory Widow Control 494

Programming Examples 495

Display Memory Paging 495
Detection and Identification 501

21. Displays for SuperVGAs 505

Introduction 506
Operation of CRT Displays 506
Factors Affecting Display Resolution 508

Scan Frequency vs. Resolution 508
Shadow Mask and Gun Arrangement 509
Dot Pitch and Spot Size 510
Human Eye and Resolution 511

Specifications for Common SuperVGA Displays 512

Interface Type 512
Video Connector Type 512

Selecting a Display for SuperVGA 513
Popular VGA-Compatible Displays 516

Appendix A VGA BIOS Summary 521

Appendix B VGA Register Summary 545

Contents xix

Appendix C Character Set 553

Appendix D Standard VGA Modes 555

Appendix E Examples Summary 557

Appendix F VGA Boards 561

Appendix G VGA Displays 569

Appendix H Debugging Video 573

Glossary
575

Index
583

Parti

A VGA Review

Introduction 3

Introduction
Since the introduction of the Apple Macintosh computer system in 1984, which

gained wide acceptance as an easy-to-learn and easy-to-use tool to increase productiv¬
ity, nearly all new user interfaces for computers have been graphics based. Such popu¬
lar interfaces as Microsoft Windows, IBM Presentation Manager, GEM by Digital
Research, NewWave by Hewlett-Packard, X-Windows, NextStep, NeWS and Open Look
are all graphics based. Graphical interfaces offer many advantages over text-based
interfaces, and are especially useful in personal computers where a user-friendly,
interactive interface can have big payoffs in productivity and ease of use.

Increasingly, today’s most popular software applications (Aldus Pagemaker,
Microsoft Excel, Ventura Publisher, and others) rely on Graphical User Interfaces
(GUIs) to interact efficiently with the user. It appears that GUIs are destined to become
the standard for personal computers. This also means that graphics programming is
becoming less of a programming specialty and more the standard method of imple¬
menting applications.

The increasing popularity of GUIs has been made possible by rapid advances in
graphics technology. In just a few years, personal computer graphics has progressed
from nonexistent to the breathtaking quality of the VGA and SuperVGA, which are
quickly becoming the most prevalent graphics adapters for IBM-compatible com¬
puters. The superior features and affordable price of the VGA guarantee it an increas¬
ing share of the IBM-compatible video market. International Data Corporation
predicted that in 1989 1.7 million EGA boards will be shipped, compared with 1.4 mil¬
lion VGA boards. By 1993, however, IDC predicts that VGA (including SuperVGA) will
be the most prevalent display adapter in use, with more than 11 million units installed.

Why We Wrote this Book
The IBM VGA has been well documented in several texts. We are partial to our previ¬

ous text, the Advanced Programmer's Guide to EGAJVGA, as a convenient reference on
the subject. Most of the VGA boards on the market, however, offer significant features
(such as high resolution display modes) that are not available on the IBM product and
are not covered in any of the texts on VGA. The added benefits of SuperVGA boards are
not at all trivial; SuperVGAs can now be used in applications for which the original IBM
VGA is ill-suited.

This book contains the information you need to know to write software that takes
advantage of the benefits of SuperVGAs. Its sole purpose is to provide a complete and
comprehensive tutorial on SuperVGAs. It tells you, among other things, what
SuperVGA features are available, how to select a SuperVGA that suits your needs, how
to utilize advanced SuperVGA features in your software, and how to write graphics
drawing routines that will work in the high resolution modes of your SuperVGA. It

4 Advanced Programmer’s Guide to Super VGAs

explains the differences between SuperVGAs, as well as their similarities. It describes
what displays are available and offers suggestions on how to select one.

In short, this book is designed to enable you to utilize fully the many advanced fea¬

tures of the SuperVGAs.

The History of VGA
While IBM has repeatedly demonstrated its ability to use a combination of engineer¬

ing and marketing to set important standards for personal computing, many competi¬
tors have shown their ability to improve on IBM’s standards by introducing products
that are IBM compatible but with additional features and enhancements which are not

included in the IBM product.
Introduced in 1982 with the IBM PC, the Monochrome Display Adapter (MDA) was

IBM’s first video product for personal computers. The MDA is a text mode display
adapter, and offers no graphics or color capabilities. Shortly thereafter, Hercules Com¬
puter Technology Inc. introduced the Hercules Monochrome Graphics Adapter, which
is MDA compatible but offers a graphics mode as well. Hercules established the first

independent video standard for IBM computers.
MDA was followed by the Color Graphics Adapter (CGA), which offers relatively

crude color graphics modes. CGA text is actually less readable than that of the MDA,
and CGA gained acceptance only among those who had a strong desire for its color
graphics capabilities. Several manufacturers introduced enhanced CGA products, but
due to a lack of standardization their product enhancements were largely ignored.

In 1985 IBM introduced the Enhanced Graphics Adapter (EGA). The EGA offers
color graphics modes which are superior to those of the CGA, and includes some com¬
patibility with MDA and CGA as well. With EGA, IBM began a new product trend; it was
the first PC video adapter to be based on proprietary (VLSI) technology. This made the
task of building a compatible product much more difficult for IBM’s competitors.
Around the same time the Professional Graphics Controller (PGC) became available.
Although this board provided 256 colors in 640x480, the high cost of the adapter and
even higher cost of display needed caused this board to capture only a very small seg¬

ment of the PC market.
Despite its advantages, the cost of the IBM EGA kept it from becoming widely

accepted until several chip manufacturers (Chips and Technologies, Paradise, Tseng
Labs, ATI, and others) engineered the VLSI devices required to clone the IBM product,
adding enhancements as they did so. IBM quickly became an insignificant force in the

EGA market.
The IBM Video Graphics Array (VGA) was introduced by IBM in April 1987 as the

standard display interface for the PS/2 line of personal computers, except models 25
and 30 which are equipped with the Multi-Color Graphics Array (MCGA). VGA is simi¬
lar to EGA, but is the first IBM display adapter to use an analog display interface (previ-

Introduction 5

ous adapters used digital display interfaces). This gives the VGA much greater color
capabilities than the EGA. Before VGA, 256-color capability in the IBM PC-compatible
arena was available only with high-end graphics products. The MCGA has not become
popular and is found only in low-end PS/2 products from IBM.

While the PS/2 and its Micro Channel have managed to capture only a small percent¬
age of the personal computer market, the VGA quickly gained widespread market
acceptance as the display standard of the future. EGA chip manufacturers soon
repeated their success by cloning the IBM VGA. Their enhanced VGA products, which
offer higher resolutions and more colors than the IBM product, have been nicknamed
the SuperVGAs.

By October 1987, STB Systems and Sigma Designs were shipping register-compati¬
ble VGA boards, and many other vendors were announcing similar products. By late
1987, enhanced VGA products were appearing with 800 by 600 resolution, the greater
detail quickly becoming popular for desktop publishing and Computer-Aided Design
(CAD). By late 1988 many vendors were offering 256-color modes at resolutions of 640
by 400, 640 by 480, and even 800 by 600.

Unfortunately, the displays available at the time were less than ideal at this resolu¬
tion, exhibiting noticeable flicker and data degradation. As displays with higher
bandwidth and scanning rates became available, VGA board vendors added support for
1024 by 768 resolution.

VGA chip vendors now appear to be the driving force behind the personal computer
graphics industry. By designing newer and better VGA chips, they have defined the fea¬
tures and enhancements that are found in the newest SuperVGA products.

The fly in all this graphics ointment is that there is a lack of standardization among
SuperVGA vendors as to how enhancements have been added. This has made it diffi¬
cult for software developers to utilize the enhanced features. SuperVGA board vendors
have partially alleviated this problem by supplying drivers with their products to utilize
the enhanced features with popular software packages such as Microsoft Windows,
GEM, Autocad, Lotus 1-2-3, and others.

Recognizing the virtues of standardization, a number of SuperVGA vendors have
now banded together to form the Video Electronics Standards Association (VESA), a
standards committee committed to, among other things, the development of an
expanded VGA standard. VESA has also assumed the task of standardizing the interface
for the high resolution displays that are needed to take advantage of SuperVGA tech¬
nology. It will be a rare accomplishment if this industry organization succeeds in set¬
ting a personal computing standard without the assistance of IBM.

How the Book is Organized
The Advanced Programmer’s Guide to SuperVGAs is intended to satisfy the growing

need for detailed information regarding enhanced VGA products. It explains how to

6 Advanced Programmer’s Guide to Super VGAs

write software that can utilize the advanced modes and features of the SuperVGAs. It
includes useful graphics algorithms tailored for the SuperVGA. The book is intended
to be used both as a tutorial text and as a reference source where answers to VGA
related questions can be found. It is a companion text to the Advanced Programmer's
Guide to EGA/VGA, which offers the reader a complete tutorial regarding the IBM EGA
and VGA display adapters and compatible products. An understanding of the informa¬
tion in that text is prerequisite for much of the information that is presented here. This
text will concentrate on SuperVGA features that are not found on the standard VGA. It
is assumed that the reader has some familiarity with the BIOS, register set, and display
memory of the standard IBM VGA, as well as the Intel 8086/80286 assembly language
instruction set.

The book consists of two major sections:
Part I contains an overview of the VGA architecture. Basic principles of the VGA, its

register set, display memory, and ROM BIOS are discussed. This chapter is not
intended to be a substitute for the in-depth description of the VGA given in our previ¬
ous text, the Advanced Programmer's Guide to EGAJVGA. It is included here as a sum¬
mary and reference source.

Part II covers basic principles that are common among SuperVGAs. While SuperVGA
implementations differ from vendor to vendor, basic design requirements are the
same for all. These include issues such as how to address the much larger display
memory that is required, what new display resolutions to support, what new BIOS sup¬
port to add, and what software drivers to supply. It includes a discussion of the incom¬
patibilities between some of the popular SuperVGA products. Programming examples
illustrate how to manipulate registers and read back VGA status information. Only
products that are capable or 256 colors at resolutions of 640x400 or better are consid¬
ered here to be SuperVGAs.

Part II of the book provides detailed descriptions of some of the most popular
SuperVGA products (one per chapter). The characteristics of a particular VGA product
are for the most part determined by the manufacturer of the VLSI integrated circuit that
is the heart of any VGA design. VGA products from several different board vendors may
be very compatible if they are based on the same VLSI device. This section describes
VGA products based on commonly found VLSI devices. The result is that most VGA
products currently on the market will conform closely to one of these descriptions.

The final chapter of the book is dedicated to VGA-compatible displays. A large
number of high quality, high resolution color displays are now available, each with its
own advantages and disadvantages. Included is a summary of display terminology and
information needed to evaluate different displays. Resolution, bandwidth, pixel size,
tube size, aspect ratio and sync timing are just some of the factors that affect the quality
and flexibility of a display.

The appendices of the book contain tables that summarize VGA information for
quick reference, along with a glossary of terms.

Standard VGA Display
Modes

8 Advanced Programmer’s Guide to Super VGAs

Introduction
IBM introduced the Video Graphics Array (VGA) display adapter in 1985 as the stan¬

dard display adapter for their PS/2 computer systems. While acceptance of the PS/2 and
its Micro Channel has been mixed, the VGA has been widely embraced as the graphics
adapter technology of today and tomorrow.

Unlike most earlier display adapters, which drive displays with a TTL digital inter¬
face, VGA adapters drive analog displays. This makes it possible for the VGA to display
many more colors than other display adapters (including EGA). It also means, how¬
ever, that the VGA is incompatible with many existing displays.

As the VGA and its analog monitors become more widespread, compatibility will
become much less of an issue. Many programs written for other color display adapters
cannot operate with monochrome displays, and vice versa. This is not a problem with
the VGA; if a monochrome display is attached, color information is automatically con¬
verted to shades of gray. Monochrome information can also be shown on a color
screen.

Both color and monochrome VGA-compatible displays are available from a wide
variety of sources. Part 3 of this text discusses popular VGA displays.

Like its predecessors, the VGA is a nonintelligent display device; it has no on-board
drawing or processing capability. The system processor must perform all drawing
functions by writing directly to display memory. Essentially, writing one bit into display
memory is equivalent to lighting one pixel on the display screen. Most of the circuitry
of the VGA is dedicated to the task of transferring the data in display memory onto the
display screen. This process, called display refresh, must be performed between 50

and 70 times each second.
In color display systems, the number of colors that can be displayed on the screen at

one time is governed by the number of bits of display memory that are dedicated to
color information for each pixel. If n bits per pixel are used, 2n colors can be gener¬
ated. VGA uses from one to eight bits per pixel, permitting up to 256 (28) colors to be
displayed on the screen at the same time. In other words, the VGA is capable of 256

simultaneous colors.
In order to standardize the video interface for applications software, IBM defined a

set of standard display modes for the VGA. SuperVGA vendors have added to the list of
standard modes by creating new high resolution display modes. These modes do not
represent all configurations in which the display adapter can operate, but there are few
good reasons to stray from the defined standard modes. Many of the standard VGA dis¬
play modes have been carried forward from the MDA, CGA, and EGA display adapters.

Table 1.1 lists the display modes that are available for the standard VGA.

Standard VGA Display modes 9

Table 1-1. Standard IBM VGA video modes

Mode Type Resolution Colors
0,1 Text 40 columns x 23 rows (320x200, 8x8 char cell) 16
0* Text 40 columns x 23 rows (320x350, 8x14 char cell) 16
0 + Text 40 columns x 25 rows (320x400, 9x16 char cell) 16
2,3 Text 80 columns x 25 rows (640x200, 8x8 char cell) 16
2* Text 80 columns x 25 rows (640x350, 8x14 char cell) 16
2 + ,3 + Text 80 columns x 25 rows (640x400, 9x16 char cell) 16
4,5 Graphics 320 horizontal x 200 vertical 4
6 Graphics 640 horizontal x 200 vertical 2
7 Text 80 columns x 25 rows (720x350, 8x14 char cell) Mono
7 + Text 80 columns x 25 rows (720x400, 9x16 char cell) Mono
D Graphics 320 horizontal x 200 vertical 16
E Graphics 640 horizontal x 200 vertical 16
F Graphics 640 horizontal x 350 vertical Mono
lOh Graphics 640 horizontal x 250 vertical 16
llh Graphics 640 horizontal x 480 vertical 2
12h Graphics 640 horizontal x 480 vertical 16
13h Graphics 320 horizontal x 200 vertical 256

Since the introduction of the IBM Color Graphics Adapter (CGA), all IBM display
adapters have included 40 column text modes. These modes were created to allow
text to be displayed on home television sets, which have much poorer resolution
than computer displays and cannot display 80 columns of text Other than a small
number of computer games which have been written using 40-column text, these
modes are not commonly used.

Special adapter circuitry is required to connect an IBM compatible computer to a
television set (unless the TV set can accept composite video input).

Standard VGA Display Modes

Modes 0 and 1 (40-column Color Text)

On the VGA there is no functional difference between mode 0 and mode 1. These
two modes were brought forward from the CGA video adapter and the distinction
between them disappeared with the CGA Composite Video output jack. Modes 0 and 1
display color text at a resolution of 40-character columns by 25-character rows.

CGA compatibility is not complete, and not all CGA software will run properly in
these modes. In general, software which makes use of BIOS video services and avoids
any direct access to I/O registers on the video adapter will usually run without prob-

10 Advanced Programmer’s Guide to Super VGAs

lems. Direct processor access to display memory does not cause compatibility

problems.

Modes 2 and 3 (80-column Color Text)

Modes 2 and 3 are the 80-column counterparts to the 40-column modes 0 and 1. On
the VGA, there is no functional difference between mode 2 and mode 3. As with modes

0 and 1, these two modes were brought forward from the CGA video adapter and the
distinction between them disappeared with the CGA Composite Video output jack.

Modes 2 and 3 display color text at a resolution of 80-character columns by 25-charac¬

ter rows.

Double Scanning

When operating in CGA-compatible graphics modes, the VGA display adapter uses a

technique known as DOUBLE SCANNING to display the low resolution (200 scan
line) CGA display on the high resolution (400 scan line) VGA display. Each of the
200 horizontal scan lines is displayed twice, increasing the vertical screen resolu¬
tion from 200 scan lines to 400 scan lines. This improves the quality of the display,

and helps compensate for the different aspect ratio of the VGA display. Double Scan¬

ning is used for modes 4,5,6,D, and E.

Modes 4 and 5 (Four-color 320x200 Graphics)

Modes 4 and 5 are very popular CGA graphics modes which were also carried for¬

ward to EGA and VGA. The distinction between these modes disappeared with the CGA
Composite Video output jack. Display resolution is 320 pixels horizontally by 200 pix¬

els vertically. The VGA uses double scanning to increase this to 400 lines vertically.
Four-color pixel data is stored in a packed pixel format with two bits per pixel.

Details are given in the section “Display Memory in Graphics Modes.”
As with all standard CGA modes, compatibility is not complete. Software which

writes directly to I/O registers of the CGA may not function properly on VGA. Software
which makes use of BIOS calls to configure the registers will usually operate properly.

CGA Graphics Modes

These modes present an unusual set of challenges for the graphics programmer

because die display memory is not linearly mapped. A computation Is required to
translate from a pixel location on screen to a location in display memory. For an
explanation of the CGA graphics memory map, see the section “Display Memory in
Graphics Modes”,

Standard VGA Display modes 11

Mode 6 (Two-color 640x200 Graphics)

Mode 6 is the highest resolution graphics mode of the CGA, carried forward to VGA.
A screen resolution of 640 pixels horizontally by 200 lines vertically is supported, but
only in two colors. The VGA uses double scanning to increase this to 400 lines
vertically.

As with all standard CGA modes, compatibility is not complete. Software which
writes directly to I/O registers of the CGA may not function properly on EGA. Software
which makes use of BIOS calls to configure the registers will usually operate properly.

As explained for modes 4 and 5, the display memory is not linearly mapped. A com¬
putation is required to translate from a pixel position on the screen to an address in
display memory. Details are given in the section “Display Memory in Graphics Modes.”

Mode 7 (Monochrome Text)

In mode 7 the VGA is partially software compatible with the Monochrome Display
Adapter (MDA). The display is formatted as 80 character columns by 25 character rows.

In monochrome text mode, character attributes do not control character color but
represent other display characteristics. Monochrome text attributes include character
blink, intensify, underline, and reverse video. Monochrome text attributes are
described in detail later in this chapter.

Mode D (Sixteen-color 320x200 Graphics)

Unlike previously described modes, this mode is not a backward compatibility
mode for CGA or MDA; it exists for EGA and VGA only. It is loosely patterned after
mode 4 (CGA 4-color graphics), but offers more colors. The limited resolution of
mode D (320 horizontal pixels by 200 vertical lines) makes it undesirable for new soft¬
ware applications, yet it is not software compatible with any older applications. The
result is that mode D is rarely used. The VGA uses double scanning to increase the
screen size to 400 lines vertically.

Mode D does not suffer from the nonlinear memory mapping that CGA compatible
graphics modes do, and translating from a pixel position on the screen to a location in
display memory is relatively straightforward. The memory map for mode D is
described in the section “Display Memory in Graphics Modes”.

Mode E (Sixteen-color 640x200 Graphics)

Like mode D, mode E exists for the EGA and VGA only. It is loosely patterned after
CGA mode 6 (two-color graphics), but offers more colors. Its limited resolution (640
pixels horizontally by 200 lines vertically) makes it unpopular for new software devel-

12 Advanced Programmer’s Guide to Super VGAs

opment, and it is not compatible with any older existing software. The result is that

mode E is rarely used. The VGA uses double scanning to increase the screen size to 400

lines vertically.
Mode E does not suffer from the nonlinear memory mapping that CGA compatible

graphics modes do, and translating from a pixel position on the screen to a location in
display memory is relatively simple. Details are given in the section “Display Memory

in Graphics Modes.”

Mode F (Monochrome 640x350 Graphics)

Graphics mode F is unique to the EGA and VGA. Resolution in mode F is 640 pixels
horizontally by 350 lines vertically, which is less than the 720 horizontal by 348 vertical

resolution of the Hercules monochrome graphics adapter.
Mode F does not suffer from the nonlinear display memory address mapping of the

Hercules adapter. The display memory is linearly mapped.
Two “color” planes of display memory are used, giving each monochrome pixel

four attributes. These attributes are:

00 - black

01 - white
10 - blinking
11 - intensified

The memory planes can be enabled and disabled independently by writing to the

plane enable register, index 2 in the Sequencer.

Mode 10 (Sixteen-color 640x350 Graphics)

Mode 10, which is unique to the EGA and VGA, is the most popular mode for new
color graphics applications. It supports a resolution of 640 horizontal pixels by 350 ver¬
tical pixels. Four color planes are used, yielding up to 16 simultaneous colors. Color

planes are enabled and disabled by writing to the plane enable register in the

Sequencer.

Mode 11 (Two-color 640x480 Graphics)

Mode 11 supports the IBM VGA at its highest standard resolution (640 pixels hori¬
zontally by 480 lines vertically), but supports only two simultaneous colors. This mode

can be used to display 30 rows of 80 column text.

Standard VGA Display modes 13

Mode 12 (Sixteen-color 640x480 Graphics)

Mode 12 supports the VGA at its highest resolution (640 pixels horizontally by 480
lines vertically), with 16 simultaneous colors. This is a popular mode for new color
graphics applications. Four color planes are used, yielding up to 16 simultaneous col¬
ors. Color planes are enabled and disabled by writing to the plane enable register,
index 2, in the Sequencer.

Mode 13 (256-color 320x200 Graphics)

This mode, which is unique to the VGA, is the only 256-color mode of the standard
VGA. Resolution is limited to only 320 pixels horizontally by 200 lines vertically, which
is double scanned to increase the vertical height to 400 lines.

Architecture of the VGA

16 Advanced Programmer’s Guide to Super VGAs

Introduction
With the exception of the video output DAC (Digital to Analog Converters), the

architecture of the VGA closely resembles that of the EGA. The VGA includes a few
additional registers, and lacks the light pen support of EGA. Unlike many of the EGA
registers, most VGA registers include read-back capability; the lack of read-back ability
was such a drawback in the original EGA that it was added later by most EGA chip

manufacturers.

Packed Pixels vs. Color Planes

Two common techniques for storing color information are the packed pixel method
and the color plane method. The original EGA is color plane oriented, except for the
CGA-compatible modes, modes 4 through 5, which use packed pixels. VGA has one

added mode, the 256-color packed pixel mode.
With packed pixels, all color information for a pixel is packed into one word of

memory data. For a system with few colors, this packed pixel may require only part of
one byte of memory; for very elaborate systems, a packed pixel might be several bytes
long. Using 8 bits per pixel, a packed pixel looks as shown in Figure 2-1.

Figure 2-1. Packed pixels

With the color plane approach, the display memory is separated into several inde¬
pendent planes of memory, with each plane dedicated to controlling one color com¬
ponent (such as red, green, or blue). Each pixel of the display occupies one bit
position in each plane. This approach is shown in Figure 2-2.

Architecture of the VGA 17

Figure 2-2. Planar pixels

Text Modes vs. Graphics Modes

Two basic types of operating modes exist for the VGA: text mode and graphics mode.
In graphics modes (which IBM frequently refers to as All Points Addressable
modes), a set of bits in display memory represents a single pixel on the display screen.
In text modes, however, a single byte ASCII character code placed in display memory
causes an entire text character to be displayed on the screen. Text modes require
much less display memory and place less burden on the system processor, but they are
very limited in that only text and crude block graphics objects can displayed. Figure 2-3
illustrates the basic operation of a text mode, and Figure 2-4 shows the operation of a
graphics mode.

Figure 2-3. Text mode operation

18 Advanced Programmer’s Guide to Super VGAs

Figure 2-4. Graphics mode operation

Functional Blocks

Figure 2-5 illustrates the basic architecture of the VGA, which consists of six major
functional blocks:

• The Display Memoty is a bank of 256 K (or more) of dynamic random access
memory (DRAM or VRAM), divided into four planes, which holds the screen display

data.
• The Graphics Controller resides in the data path between the processor and dis¬

play memory. It can be programmed to perform logical functions (such as AND, OR,
XOR, or ROTATE) on data being written to display memory. These logical functions
can provide a hardware assist to simplify drawing operations.

• The CRT Controller generates timing signals (such as syncing and blanking) to
control the operation of the CRT display and display refresh timing.

• The Data Serializer captures display information which is taken from display
memory one or more bytes at a time, and converts it to a serial bit stream to be sent
to the CRT display. Some boards use VRAM to serialize data.

• The Attribute Controller contains one of two color lookup tables (LUTs) that
translate color information from the display memory into color information for the
CRT display. The first lookup table is controlled via Palette registers of the attribute
controller, and the second table is contained in video DACs. Because of the rela¬
tively high cost of display memory, a practical display system will typically use a dis¬
play that supports many more colors than the matching display adapter can
simultaneously display. By programming a color lookup table on the display
adapter, a programmer can select which subset of the display’s colors will be sup¬
ported for his software.

• The Video DACs (Digital to Analog Converters) convert digital color data into an
analog signal. They also contain the second color lookup table.

• The Sequencer controls the overall timing of all functions on the board. It also con¬
tains logic for enabling and disabling color planes.

Architecture of the VGA 19

Figure 2-5. VGA block diagram

Display Memory
The VGA contains 256 K (or more) of display memory, divided into four indepen¬

dent 64 K (or 128 K) sections of memory called color planes. These memory planes
all reside in the same processor memory space. Which color planes are being written
to or read from at any time is determined by the settings of several I/O registers.

With all four memory planes residing in the same address space, the processor can
write to all four planes (or any combination thereof) with a single memory write cycle.
This capability can be very useful for some drawing operations, such as fast screen fills.
In other drawing operations, it may be desirable to disable writing to all but a single
memory plane. Color planes are enabled and disabled for writing via the Color Plane
Write Enable register of the Sequencer.

Since it would not be meaningful for the processor to attempt to read data from
more than one source at a time, only one memory plane may be enabled for reading. A
color plane is enabled for reading via the Read Plane Read Select register of the Graph¬
ics Controller. A special mode is provided, however, to read data from multiple color
planes, compare it to some preset reference data, and return status to the processor
declaring if the colors matched. The color compare function is useful for finding cer¬
tain patterns in display memory during operations such as area fills. This mode is con¬
trolled by the Color Compare register of the Graphics Controller.

20 Advanced Programmer’s Guide to Super VGAs

In some operating modes, the organization of display memory will be altered. The
best example of this is text mode, where even memory addresses (containing ASCII
data) are in memory plane 0, odd memory addresses (containing text attributes) are in
memory plane 1, memory plane 2 is reserved for the character generator, and memory

plane 3 is unused.
For many operating modes, the 64K address space of the EGA is divided into several

display pages. Application software may then control which page is active (being
viewed) at any time, and drawing operations can take place in off-screen display

memory.
The processor address space used by the EGA and VGA depends on the operating

mode. This address space may begin at address A0000, B0000, or B8000, depending on

the mode.

Display Memory in Text Modes

Text mode displays have been in common use much longer than graphics displays,
and are still very useful in applications which do not require graphics (or in which
simple block graphics will suffice). Text modes place a much lower burden on the sys¬
tem processor, which only has to manipulate ASCII character codes rather than indi¬

vidual pixels.
In standard text modes, the display screen is divided into 25 lines of text, with either

40 or 80 columns of text per line. In 40-column modes, 1000 characters can be dis¬
played on the screen; in 80-column modes, 2000 characters can be displayed (see Fig¬
ure 2-6). Two bytes of display memory are used to define each character; the first byte,
mapped at an even memory address, contains the ASCII character code, and the second
byte, mapped at an odd memory address, contains color information called the Char¬
acter Attribute. 2000 bytes of display memory are needed to define one 40 column
page, or 4000 bytes to define one 80 column page. A page of display memory is 4096
bytes long, leaving 96 bytes unused at the end of each page.

Preserving display memory during a Mode Select

BIOS mode select functions will optionally preserve the contents of display mem¬
ory if the desired mode number is QRed with the value 80h before the BIOS call is
made. This capability is limited in text modes, however, since these modes utilize
display memory plane 2 for storage of character generators. It is therefore not possi¬
ble to enter and exit a text mode without corrupting at least part of the display
memory.

Architecture of the VGA 21

7/Tb

7=a.
Display Memory =

Figure 2-6. Display memory format—text modes

Character Generators

To convert an ASCII character code into an array of pixels on the screen, a transla¬
tion table or Character Generator is used. On older display adapters such as MDA
and CGA, the character generator is located in ROM (Read Only Memory.) The VGA
does not use a character generator ROM; instead, character generator data is loaded
into plane 2 of the display RAM. This feature makes it easy for custom character sets to
be loaded. Multiple character sets (up to 8) may reside in RAM simultaneously. A set of
BIOS services are available for easy loading of character sets. Figure 2-7 illustrates how
character codes are used as an index into a character generator.

A000:0003
A000:0002
A000:0001
A000:0000

07h
42h
07h
41 h

Attributes
in odd bytes

ASCII codes

in even bytes

Plane 3
(Not Used)

Plane 2|

(Character generator)

Plane 11

Host Address Space
HTh

(Attributes)

TW1- Plane 0

(ASCII Codes)

Plane 2

ASCII Code

Figure 2-7. Character code as index into character generator

Advanced Programmer’s Guide to Super VGAs

Either one or two character generators may be active, giving the VGA the capability
to display up to 512 different characters on the screen simultaneously. When two char¬
acter generators are active, a bit in each character attribute byte selects which character
set will be used for that character. A register in the Sequencer is used to select the two

active character generators.
Character width is fixed at eight pixels. Character height is selectable from 1 to 32

pixels through an output register. Figure 2-8 illustrates how a character generator is

designed.

Figure 2-8. Character generator format

The location of character generators in memory is shown in Table 2-1. Regardless of
the character height which is being used, characters always begin on 32-byte bounda¬
ries. For instance, the 8 pixel by 14 pixel character set requires 14 bytes per character,

so 18 bytes per character go unused in the character generator.

Architecture of the VGA 23

Table 2-1. Location of RAM-resident character generators

Character Map A

OOOOh to OOlFh - Char. 0
0020h to 003Fh - Char. 1
0040h to 005Fh - Char. 2

Character Map E

2000h to 201Fh - Char. 0
2020h to 203Fh - Char. 1
2040h to 205Fh - Char. 2

IFEOh to IFFFh - Char. 255 3FE0h to 3FFFh - Char. 255

Character Map B

4000h to 401Fh - Char. 0
5FE0h to 5FFFh - Char. 255

Character Map F

6000h to 601Fh - Char. 0
7FE0h to 7FFFh - Char. 255

Character Map C

8000h to 801Fh - Char. 0
9FE0h to 9FFFh - Char. 255

Character Map G

AOOOh to AOlFh - Char. 0
BFEOh to BFFFh - Char. 255

Character Map D

COOOh to COlFh - Char. 0
DFEOh to DFFFh - Char. 255

Character Map E

EOOOh to EOlFh - Char. 0
FFEOh to FFFFh - Char. 255

To learn more about character generators, see the following topics in Chapters 3
and 4:

• The ROM BIOS - Function llh (Load Character Generator)

• VGA Registers - Sequencer Index 3 (Character Generator Select Register)

• VGA Registers - CRT Controller Index 9 (Maximum Scan Line/Character Height)

Text Attributes

Each ASCII character being displayed on the screen has a corresponding attribute
byte to define the colors and other attributes that character will have. The interpreta¬
tion of text attributes depends on operating mode.

Standard Color Text Attributes Figure 2-9 shows the bit definitions for text attri¬
bute bytes when operating in a standard color text mode. Bits D0-D2, Foreground
Color, select the color for the body of the character. Bits D4-D6, Background Color,
select the color for the rest of the character cell.

24 Advanced Programmer’s Guide to Super VGAs

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

Background 1 1 1 Foreground
Intensity 1 I

Intensity
or Background Color or

Generator
Foreground Color

Blink 1 i Select ! 1

Figure 2-9. Color text attributes

Attribute bit D3 can be used as a foreground color intensity control, effectively doub¬

ling the number of foreground colors from 8 to 16.
If two character sets are being used simultaneously (as defined by the Character

Generator Select register of the Sequencer,) bit D3 selects which character set will be
used. In this case, the color palette registers of the Attribute Controller should be mod¬

ified to disable D3 from affecting color.
Attribute bit D7 can be used either as a foreground blink enable, causing the charac¬

ter to blink, or as a background intensity control, doubling the number of background
colors from 8 to 16. The function of bit D7 is defined in the mode register of the Attri¬

bute Controller. The default setting enables blinking.
Table 2-2 shows the standard colors which are used for both foreground and

background.

Table 2-2. Standard color attributes

Attribute Standard Color Intensified Color

000 Black Dark Gray

001 Blue Light Blue

010 Green Light Green

Oil Cyan Light Cyan

100 Red Light Red

101 Magenta Light Magenta

110 Brown Yellow

111 Light Gray White

Monochrome Text Attributes Table 2-3 shows the bit definitions for a mono¬
chrome text attribute byte, which is similar in function to a color text attribute byte.
Bits D0-D2 control foreground attributes, which can be normal, blanked, or under¬
lined. Bit D3 will intensify the character foreground. Bits D4-D6 can select a reverse
video character. Bit D7 can be used as either foreground blink enable or background
intensity control; this function is controlled in the Mode Control register of the Attri¬
bute Controller. The default setting enables foreground blinking.

Architecture of the VGA 2 5

As with color attributes, bit D3 can be used to select between two active character
sets.

As can be seen from Table 2-3, there are only a small number of valid text attributes
in monochrome mode. All attribute values not shown in Table 2-3 should be consid¬
ered invalid. Use of invalid attributes will create compatibility problems when the soft¬
ware is run on different types of monochrome display adapters (MDA, EGA, VGA, and
Hercules.)

Table 2-3. Monochrome (MDA) text attributes

Monochrome Display Attributes
00000000 Blank

00000111 Normal character
10000111 Blinking character

00001111 Intensified character

10001111 Blinking intensified character
00000001 Underlined character
10000001 Blink underlined character

00001001 Intensified, underlined character

10001001 Blinking, intensified, underlined character
01110000 Reverse video

11110000 Blinking reverse video

It should be noted that if a character is reverse video it cannot be underlined or
intensified.

To learn more about text attributes, see the following topics in Chapter 4:

• Function 8 - Read Character and Attribute at Cursor Position
• Function 9 - Write Character and Attribute at Cursor Position
• Function lOh - Set VGA Palette Registers

Display Memory in Graphics Modes

Mode 6 (CGA Two-color Graphics)

At 640 pixels horizontally and 200 lines vertically, Mode 6 is the highest resolution
mode of the CGA adapter. It uses only one bit per pixel (eight pixels per byte). A pixel
value of zero displays black, and a pixel value of one displays white. Pixel data is stored
in color plane 0. Display data is serialized most significant bit first, so the first bit posi¬
tion in the upper left corner of the screen displays the data in bit D7 of byte 0 of display
memory.

Limitations of the 6845 CRT Controller which was used on the CGA resulted in a
nonlinearly mapped display memory address space for all graphics modes. This com-

26 Advanced Programmer’s Guide to Super VGAs

plicates drawing algorithms, since a computation is required to translate between a
pixel position on the display screen and a bit position in display memory.

Figure 2-10 illustrates the translation that occurs between the display memory and
the display screen. The first half of display memory contains the data for all even num¬
bered CRT scan lines. The second half of display memory contains the data for all odd
numbered scan lines. To translate from a pixel position (x,y) on the display screen
where x is the horizontal coordinate in the range 0-639 and y is the vertical coordinate
in the range 0-199, to a bit position in display memory, use the following formula:

Byte address = 80*(y/2) + (x/8) if y is even
Byte address = 8192 + 80*((y-l)/2) + (x/8) if y is odd
bit position (0-7) = 7 - (x modulo 8)

(The modulo operator is equivalent to taking the remainder of x/8).

Modes 4 and 5 (CGA Four-color Graphics)

These are the most colorful, as well as most popular, graphics modes of the CGA
adapter. The resolution is low; only 320 pixels horizontally by 200 lines vertically. The
display memory map uses packed pixels, two bits per pixel, packed four pixels per
byte. Pixel data is stored as one plane (planes 0 and 1 chained to form one plane). Dis¬
play data is serialized most significant bit first, so the first bit position in the upper left
of the screen displays the data in bits D7 and D6 of byte 0 of display memory.

As with all CGA graphics modes, the display memory is nonlinearly mapped. A com¬
putation is required to translate from a pixel location on the display screen to a bit

7 6 5 4 3 2 1 0

IPixel Pixel
1

Pixel
2

Pixel
3

Pixel
4

Pixel
5

Pixel Pixell

B800:2000
B800:2050

□
—i— ■-1 KJKJm

r

Figure 2-10. Memory map—CGA graphics mode 6

Architecture of the VGA 27

location in display memory. Figure 2-11 illustrates the memory map for modes 4 and 5.
The first half of display memory contains the data for all even numbered scan lines.
The second half of display memory contains the data for all odd numbered scan lines.

To translate from a pixel location (x,y) on the screen to a bit location in display
memory, where x is a horizontal coordinate in the range 0—319 and y is a vertical coor¬
dinate in the range 0-199, use the following formula:

Byte address = 80*(y/2) + (x/4) if y is even
Byte address = 8192 + 80*((y-l)/2) + (x/4) ifyisodd
Bit position (0,2,4,6) = (x modulo 4) * 2

Two standard color sets are supported in modes 4 and 5. A BIOS call (BIOS function
OBh) is used to select colors. The standard colors for modes 4 and 5 are shown in Table
2-4.

Table 2-4. Standard colors—modes 4 and 3

Pixel Value Standard Color Alternate Color
00 Black Black
01 Light Cyan Green
10 Light Magenta Red
11 Intensified White Brown

7 6 5 4 3 2 1 0

Figure 2-11. Memory map—CGA graphics modes 4 and 5

28 Advanced Programmer’s Guide to Super YGAs

Mode F - Monochrome Graphics

Mode F, which is unique to EGA and VGA, does not suffer from the nonlinear
addressing problems of CGA graphics modes. Resolution is 640 pixels horizontally by

350 pixels vertically. Two color planes are used (planes 0 and 1). Each pixel occupies
one bit in each color plane. The four “colors" supported by these two-bit pixels are
black, white, intensified white, and blinking. The two color planes are independently
enabled and disabled for writing through the Color Plane Write Enable register of the

Sequencer.
Organization of the memory is similar to that in Figure 2-12, except that only planes

0 and 1 are used. To translate from a pixel (x,y) on the screen to a bit location in display

memory, where x is a horizontal coordinate in the range 0-639 and y is a vertical coor¬

dinate in the range 0-349, use the following formula:

Byte address = y*80 -P x/8
Bit position (0-7) = 7 - (x modulo 8)

Figure 2-12. Memory map—Planar modes (Dh, Eh, Fh, lOh, 1 lh, 122h)

Mode 10 - Enhanced Color Graphics

Mode 10, which is unique to EGA and VGA, is the most popular mode for new color
graphics applications. Resolution is 640 pixels horizontally by 350 lines vertically. All
four color planes are used. Color planes are independently enabled and disabled for
writing through the Color Plane Write Enable register of the Sequencer. Each pixel

Architecture of the VGA 29

occupies one bit in each color plane. These four-bit pixels permit 16 simultaneous col¬
ors to be displayed.

Figure 2-12 illustrates the memory map planar modes such as mode lOh. To trans¬
late from a pixel (x,y) on the screen to a bit location in display memory, where x is a
horizontal coordinate in the range 0-639 and y is a vertical coordinate in the range 0—
349, use the following formula:

Byte address = y*80 + x/8
Bit position (0-7) = 7 - (x modulo 8)

Modes D and E (Sixteen-color Graphics)

Modes D and E are very similar to mode 10 in operation, differing only in screen
resolution. Mode D operates at a resolution of 320 pixels horizontally by 200 pixels
vertically. Mode E operates at a resolution of 640 pixels horizontally by 200 pixels verti¬
cally. These modes have not become popular because of the limited resolution they
offer.

Mode 11 (Two-color Graphics)

Mode 11 is unique to the VGA adapter. Resolution is 640 pixels horizontally by 480
pixels vertically, but only two colors are supported. Display data is stored in plane 0,
and the other planes are unused. Each pixel occupies one bit in display memory.

Display memory is similar to that shown in Figure 2-12, except that only one plane is
used. To translate from a pixel (x,y) on the screen to a bit location in display memory,
where x is a horizontal coordinate in the range 0-639 and y is a vertical coordinate in
the range 0-479, use the following formula:

Byte address = (y*80) + (x/8)
Bit position (0-7) = 7 - (x modulo 8)

Mode 12 (Sixteen-color Graphics)

Mode 12, which is unique to VGA, is similar to mode 10 hex except that the vertical
resolution is expanded from 350 lines to 480 lines. All four color planes are used, and
16 simultaneous colors are supported. The organization of memory is the same as in
Figure 2-12.

Mode 13 (256-color Graphics)

Mode 13, which is also unique to VGA, allows 256 simultaneous colors to be used at
a low resolution (320 pixels horizontally by 200 lines vertically.) Memory is linearly
mapped as shown in Figure 2-13. To translate from a pixel (x,y) on the screen to a bit

30 Advanced Programmer’s Guide to Super VGAs

location in display memory, where x is a horizontal coordinate in the range 0-319 and
y is a vertical coordinate in the range 0-199, use the following formula:

Byte address = (y*320) + x

Figure 2-13. Memory map—VGA graphics mode 13

The Graphics Controller

The Graphics Controller resides in the data path between the processor and display
memory. In its default state, the Graphics Controller is transparent. Data can be written
to and read from display memory with no alterations. The Graphics Controller can,
however, be programmed to assist in drawing operations by performing tasks that
would otherwise have to be performed by the main processor.

Processor Read Latches

Each time the system processor reads data from display memory, the data is also
latched into the VGA’s on-board read latches. During write cycles, the data in these
read latches can be logically combined with write data from the processor. If properly
used, this function can assist the processor in performing drawing operations. While
the processor can only read data from one plane at a time, the read latches latch data
from all four planes simultaneously. This can be used to quickly copy data from one
region of display memory to another.

Architecture of the VGA 31

Logical Unit

During display memory write cycles, the Graphics Controller can perform any of the
following functions on the write data:

• Write data unmodified

• Logical OR write data with data in read latches
• Logical AND write data with data in read latches
• Logical XOR write data with data in read latches
• ROTATE write data

Logical AND/OR/XOR functions are useful for adding and removing foreground dis¬
play elements over the background (such as graphics cursors and sprites). Data rota¬
tion is useful when performing block transfers of non-byte-aligned data.

The function of the Graphics Controller during write operation is illustrated in Fig¬
ure 2-14. To learn more about the proper use of the read latches and logical unit, see:

• Data Rotate and Function Select register, index 3, of the Graphics Controller -
Chapter 3

• Mode register, index 5 of the Graphics Controller - Chapter 3

Figure 2-14. Graphics controller write operation

32 Advanced Programmer’s Guide to Super VGAs

Color Compare

During processor read cycles, the Graphics Controller can perform a function called
Color Compare, which is useful for drawing algorithms such as Flood Fill where a spe¬
cific screen color or change in color must be detected. Using normal display memory
read cycles, the processor may only interrogate one color plane at a time. With Color
Compare, however, the processor enters a reference color into a register in the Graph¬
ics Controller. During a read cycle, the Graphics Controller compares the data in all
four planes (or any selected subset of the four planes) against the reference color and
indicates whether a color match was found.

Color Compare provides the ability to search display memory for an object of a spe¬
cific color, especially when used with the 8086 REP SCASB instruction.

To learn more about the Color Compare function, see:

• The Color Compare Register, index 2 of the Graphics Controller - Chapter 3
• The Color Don’t Care Register, index 7 of the Graphics Controller - Chapter 3
• The Mode Register, index 5 of the Graphics Controller - Chapter 3

Data Serializer

The Data Serializer captures the data read from display memory during display
refresh cycles and converts it into a serial bit stream to drive the CRT display. Display
data is serialized most significant bit first. Some boards use VRAM for their display
memory, and in such cases VRAM is used to serialize data.

The Attribute Controller and DACs
The Attribute Controller and DAC registers determine which colors will be dis¬

played for both text and graphics. The heart of the Attribute Controller is a color
lookup table (LUT) that in planar modes translates four-bit color codes from display
memory into six-bit color codes. These color codes are combined with a Color Select
register value to form 8-bit codes that are fed to the video DAC. A second color
lookup table, internal to the DACs, converts this eight-bit code into an eighteen-bit
code (six bits each for the red, green and blue guns). In 256-color modes, attribute
controller registers are setup to pass the eight-bit codes from display memory directly
to video DAC, without translation.

As part of a BIOS mode select operation, the color lookup tables are initialized with
Hata appropriate for that mode. For monochrome modes, the tables are initialized to
display only two colors. For CGA modes, the tables are initialized to support the lim¬
ited colors available with that adapter. For EGA and VGA modes, the tables are initial¬
ized to support the richer colors of those adapters. Application software may at any

Architecture of the VGA 33

Palette in Typical Graphics Mode

Palette in Typical Text Mode

Figure 2-13. Color lookup tables

time redefine the color palette by reprogramming the Attribute Controller and/or the
DAC registers.

Figure 2-13 illustrates the function of the color lookup tables during a screen refresh
cycle for a typical planar mode. In the diagram a pixel color value of 0101 (binary 3)
has been read from the color planes. This color value is used as an address to select a
register in the color lookup table. Register 5 in the lookup table contains the binary
data value 000101, which results in a magenta pixel on the screen (assuming default
values in DAC registers).

34 Advanced Programmer’s Guide to Super VGAs

Figure 2-16. Plane write enable function of the sequencer

Note that the color (attribute) is represented differently in text modes than in graph¬

ics modes.
To learn more about the color lookup tables, see:

• Function OBh - Set CGA Color Palette - Chapter 4
• Function lOh - Set EGA Palette Registers - Chapter 4
• The Attribute Controller registers - Chapter 3
• The Video DAC registers - Chapter 3

The CRT Controller
Most registers of the CRT Controller are set by the BIOS to define CRT timing and

should not be modified. Other CRT Controller registers define cursor shape and posi¬
tion and perform vertical scrolling.

Architecture of the VGA 35

The VGA CRT Controller is functionally very similar to the Motorola 6845 CRT Con*
troiler used on the MDA, CGA and Hercules display adapters, but it is not register
compatible. Software which directly addresses 6845 registers will not, in general,
run property on the EGA or VGA (or vice versa.) To make matters even more com¬
plicated, the CRT Controller of the VGA is not identical to that of (he EGA. For (he
sake of compatibility, it is a good idea to use the BIOS functions when possible in
order to avoid making direct accesses to registers in the CRT Controller.

The Sequencer
The Sequencer generates the dot and character clocks that control display refresh

timing. It controls the timing of display memory read and write cycles, and generates
wait states to the processor when necessary.

The Sequencer also contains logic for enabling and disabling processor access to
specific color planes. It is this function that makes the Sequencer interesting to pro¬
grammers. Its action is illustrated in Figure 2-16.

VGA Registers

37

38 Advanced Programmer’s Guide to Super VGAs

Introduction
The VGA contains more than 60 registers. To avoid monopolizing a large piece of

the processor I/O space, the registers of the VGA are multiplexed into a small number

of I/O addresses. In most cases, register access is a two-step procedure of selecting a
register through one I/O port, then reading or writing data through a second I/O port.

The I/O addresses used depend on the operating mode. To achieve compatibility

with both the MDA and CGA display adapters, some I/O addresses must be mapped

differently for color modes than for monochrome modes. Tables 3-1 and 3-2 list the

I/O addresses used in color and monochrome modes.

Table 3-1. VGA monochrome I/O map

I/O Address Registers

3CCh Miscellaneous Output register (read-only)

3C2h Miscellaneous Output register (write-only)

Input Status register 0 (read-only)

3BAh Feature Control register (write-only)

Input Status register 1 (read-only)

3C4h,3C5h Sequencer

3B4h,3B5h CRT Controller

3CEh,3CFh Graphics Controller

3COh,3Clh Attribute Controller

3C3h/46E8 VGA Enable

3C6h,3C7h,3C8h,3C9h VGA Video DAC

Table 3-2. VGA color I/O map

I/O Address Register

3CCh Miscellaneous Output register (read-only)

3C2h Miscellaneous Output register (write-only)

Input Status register 0 (read-only)

3DAh Feature Control register (write-only)

Input Status register 1 (read-only)

3C4h,3C5h Sequencer

3D4h,3D5h CRT Controller

3CEh,3CFh Graphics Controller

3C0h,3Clh Attribute Controller

3C3h/46E8h VGA Enable

3C6h,3C7h,3C8h,3C9h VGA Video DAC

VGA Registers 39

VGA I/O register addresses can be grouped logically according to function. The CRT
Controller, Graphics Controller, Attribute Controller and Sequencer each have their
own set of addresses. Later sections will describe each of these in detail. The remaining
registers, which do not belong to any of the major functional blocks, are described in
the next section “Control Registers”.

Most of the registers of the VGA are not of practical interest to programmers. Once
they are properly initialized by the BIOS for the display mode being used, most reg¬
isters require no further servicing and can effectively be ignored.

With older adapters, including EGA, there can be danger involved in modifying tim¬
ing registers. Some inexpensive displays will literally burn up if driven with
improper timing as a result of improper register settings. This is less of a problem
with VGA only because today's newer displays tend to be sturdier in this regard

A small number of VGA registers can be used by the programmer to perform such

functions as cursor control, panning and scrolling, split screen displays, and others.

When referencing the bits of a register or memory byte, conventions shown in Fig¬
ure 3-1 will be used.

Index registers retain their current value until modified. If a particular register is
going to be written to or read from repetitively, the index only needs to be set once;
the data register can then be written or read as many times as needed

Before modifying any VGA registers, read the register description provided in this
book carefully. In general, the following rules must be adhered to when modifying
registers:

Before modifying some registers of the Sequencer, the Sequencer must be placed into
a reset state using its Reset register. While the sequencer is in a reset state, all func¬
tions of the VGA, including memory refresh, are halted.

Advanced Programmer’s Guide to Super VGAs

Before modifying the palette registers of the Attribute Controller, the PALETTE
ADDRESS SOURCE bit must be reset in the Attribute Controller index register. While
this bit is reset, the display will be blanked.

The I/O addresses of several VGA registers depend on the type of display being used
(monochrome or color.)

CRT Controller registers that are involved in video timing require special care since
incorrect register values may cause damage to the display. Any routine that loads
video timing registers must be written in assembly language. A high level language
(such as C or Pascal) will execute too slowly, possibly resulting in invalid display
timing for an unacceptable length of time. It is also recommended that the display be
blanked while timing registers are modified.

For the majority of applications which use the VGA in one of its standard operating
modes, initialization of video timing registers should be left to the BIOS. Access to
these registers can then be avoided entirely.

The important criteria to be considered when modifying VGA registers are summa¬
rized by the following pseudocode:

if (Miscellaneous Register is being modified)
No special care needed, write directly to register
(if clock changes then do synchronous reset on Sequencer)

else if (CRT Controller register is being modified)
{

is CRTC in monochrome mode (address 3B4) or color mode (address 3D4)?
is it locked register? (unlock if so)
is it dangerous register? (may want to turn video off)
output register index to address 3BZ or 3DZ
output register data to address 3B5 or 3D5

else if (attribute Controller register is being modified)
{

Is the current mode color or monochrome?
Reset attribute controller Index/Data flip-flop by reading address 3BA or 3DA.
If (this is a color palette register)

{

output register index, with PALETTE ADDRESS SOURCE bit clear, to
address 3CD

output register data to address 3CD
output EDh to address 3CD to re-enable video
}

else
{

output register index, with PALETTE ADDRESS SOURCE bit set, to
address 3C0

output register data to address 3C0
}

}

else if (Graphics Controller register is being modified)
{

output register index to address 3CE
output register data to address 3CF
}

else if (Sequencer register is being modified)
{

if (Clock Mode Register)
{

VGA Registers 41

output □ to index register (3C4)
output Dl to data register (3C5) to synchronously halt the

sequencer
output register index to index register (3C4)
output register data to data register (3C5)
output 0 to index register (3C4)
output 3 to data register (3C5) to re-enable sequencer

else
{

output register index to index register (3C<)
output register data to data register (3C5)

Control Registers

Miscellaneous Output Register (I/O Address Write 3C2h,
Read 3CCh)

Care must be taken when modifying this register because it controls, among other
things, the polarity of the sync outputs to the display and the video clock rate. There are
two register bits here, however, that may be of interest to some programmers.

D7 - Vertical Sync Polarity
D6 - Horizontal Sync Polarity
D5 - Odd/Even Page
D4 - Disable Video
D3 - Clock Select 1
D2 - Clock Select 0
Dl - Enable/Disable Display RAM
DO - I/O Address Select

Sync Polarity bits are set as shown in Table 3-3 for VGA displays that use sync polar¬
ity to determine screen resolution. Many newer multiple frequency displays are insen¬
sitive to sync polarity.

The Disable Video bit should not be used as a general purpose display on/off con¬
trol, since it disables CRT sync signals as well as video output. It can be used to permit
another device access to the display through the feature connector.

Table 3-3- Sync polarity vs. vertical screen resolution

D7 D6 Resolution
00 Invalid
01 400 lines
10 330 lines
11 480 lines

42 Advanced Programmer’s Guide to Super VGAs

Enable/Disable Display RAM can be used to disable the display memory from

being written or read by the host.
I/O Address Select, when set to zero, selects the monochrome I/O address space

(3Bx). When set to one, it selects the color I/O address space (3Dx).

Input Status Register 0 (I/O Address 3C2, Read only)

D7 - Vertical Retrace Interrupt Pending
D6 - Feature Connector Bit 1
D5 - Feature Connector Bit 0
D4 - Switch Sense
DO to D3 - Unused

Vertical Retrace Interrupt Pending can be polled by an interrupt handler to
determine if vertical retrace was the cause of an interrupt. It is cleared through the
Vertical Retrace End register in the CRT Controller. Vertical Retrace is available as an
interrupt source on IRQ2 on most VGA implementations.

Input Status Register 1 (I/O Address 3BAh/3DAh, Read only)

D7 - Unused
D6 - Unused
D5 - Diagnostic
D4 - Diagnostic
D3 - Vertical Retrace
D2 - Unused
D1 - Unused
DO - Display Enable

Vertical Retrace gives the real-time status of the vertical sync signal (1 = sync

pulse active).
Display Enable gives the real-time status of the display blanking signal.
For EGA, the Diagnostic bits are the only means of reading back the contents of the

color lookup table in the Attribute Controller. For VGA, these registers can be read

directly.

VGA Enable Register (I/O Address 3C3h/46E8h)

D7-D1 - Reserved
DO - VGA Enable/Disable (3C3h only)

Register 3C3h enables and disables reads and writes to VGA memory and I/O
(except this register). On the IBM add-in VGA (not the motherboard resident VGA),

VGA Registers 43

and on some SuperVGAs, an alternate I/O address 46E8h is used instead of or in addi¬
tion to 3C3h. Since support for register 46E8 is not well standardized, it is best to use
BIOS function 12h, subfunction 32h, (Enable/Disable VGA Access).

The CRT Controller Registers
Two I/O addresses are used by the CRT Controller. The first address is an index reg¬

ister which is used to select one of the 25 internal registers of the CRT Controller (see
Table 3-4). The second address is used to read data from or write data to the selected
register.

The I/O addresses of the CRT Controller depend on the operating mode. In mono¬
chrome modes, the index register is mapped at I/O address 3B4 and the data register is
at address 3B5. In color modes, the index register is at address 3D4 and the data regis¬
ter is at address 3D5.

Table 3-4. CRT Controller registers

Index Register
0 Horizontal Total
1 Horizontal Display Enable
2 Start Horizontal Blanking
3 End Horizontal Blanking
4 Start Horizontal Retrace
5 End Horizontal Retrace
6 Vertical Total
7 Overflow
8* Preset Row Scan

Maximum Scan Line / Text Character Height
OAh* Cursor Start
OBh* Cursor End
OCh* Start Address (High Byte)
ODh* Start Address (Low Byte)
OEh* Cursor Location (High Byte)
OFh* Cursor Location (Low Byte)
lOh Vertical Retrace Start
llh Vertical Retrace End
12h Vertical Display Enable End
13h* Offset Register/Logical Screen Width
I4h* Underline Location
15h Start Vertical Blanking
I6h End Vertical Blanking
17h Mode Control
18h* Line Compare

44 Advanced Programmer’s Guide to Super VGAs

Many of the compatibility problems that arise between VGA and CGA or MDA are
due to the register differences between the VGA and the 6845 CRT Controller that is
used on the other adapters. The differences are summarized in Table 3-5-

Table 3-5. VGA CRT Controller vs. 6845 CRT Controller

Index 6843 VGA

2 Horizontal Sync Position Start Horizontal Blanking

3 Sync Width End Horizontal Blanking

4 Vertical Total Start Horizontal Retrace

3 Vertical Total Adjust End Horizontal Retrace

6 Vertical Displayed Vertical Total

7 Vertical Sync Position Overflow

8 Interface Mode/Skew Preset Row Scan

Most of the registers of the CRT Controller are used to define CRT timing parame¬
ters, and should not be modified. Relation of the timing registers is summarized in Fig¬
ure 3-2. Registers that may be of interest to the programmer are marked (*).

CRTC 0 - Horizontal Total
1 CRTC 3 Horizontal Blank End]
r CRTC 5 Horizontal Retrace End j 1
' CRTC 4 Horizontal Retrace Start r
' CRTC 2 Horizontal Blank Start

CRTC 1 Horizontal Display End ,i

Figure 3-2. CRTC Timing registers

VGA Registers 45

Index 0 - Horizontal Total

Total number of characters in horizontal scan minus five (including blanked and
border characters).

Index 1 - Horizontal Display Enable

Total number of characters displayed in horizontal scan minus one.

Index 2 - Start Horizontal Blanking

Character at which blanking starts.

Index 3 - End Horizontal Blanking

D7 - Test
D6 - Skew Control
D5 - Skew Control
DO to D4 - End Blanking

End Blanking is five LSB bits of six-bit value, which define the character at which
blanking stops. The MSB bit of this value is in register index 5.

Index 4 - Start Horizontal Retrace

Character at which horizontal retrace starts.

Index 5 - End Horizontal Retrace

D7 - End horizontal Blanking Bit 5
D6 - Horizontal Retrace Delay
D5 - Horizontal Retrace Delay
DO to D4 - End Horizontal Retrace

End Horizontal Retrace defines the character at which horizontal retrace ends.

Index 6 - Vertical Total

Total number of horizontal scan lines minus two (including blanked and border
characters). MSB bits of this value are in register index 7.

46 Advanced Programmer’s Guide to Super VGAs

Index 7 - Overflow Register

Several of the CRT timing registers of the EGA and VGA are nine-bit registers. The
Overflow register is a collection of the ninth bits (most significant bit, or D8) from

these registers. The VGA has an added tenth (D9) bit to some registers.
In most cases, the Overflow register can be ignored after the mode select. Unfortu¬

nately, there is one bit in the Overflow register (the Line Compare bit) that may be

useful for some applications. Great care must be taken to preserve the contents of

other bits if this bit is used.

D7 - Vertical Retrace Start (Bit 9)
D6 - Vertical Display Enable End (Bit 9)

D5 - Vertical Total (Bit 9)
D4 - Line Compare (Bit 8)
D3 - Start Vertical Blank (Bit 8)
D2 - Vertical Retrace Start (Bit 8)
D1 - Vertical Display Enable End (Bit 8)
DO - Vertical Total (Bit 8)

Index 8 - Preset Row Scan

D7 - Unused
D6 - Byte Panning Control

D5 - Byte Panning Control
DO to D4 - Preset Row Scan

Byte Panning Control is used to control byte panning. This register together with
Attribute Controller register 13 (Horizontal Pixel Panning) allows for up to 31 pixels of
panning in double word modes (no such modes were defined as of this writing).

Preset Row Scan is used for smooth scrolling in text mode, so that character rows
can be scrolled up or down one pixel at a time. For the topmost row of text on the
screen, this register defines which character scan line will be the first line displayed (so
that the top character row shows only partial characters). Smooth scrolling is achieved
by slowly incrementing or decrementing the value of this register.

Index 9 - Maximum Scan Line/Character Height

IBM named this register Maximum Scan Line, but Text Character Height is more
appropriate. Maximum Scan Line means the number of scan lines per text character,
which is also equal to the pixel height of a character. It is used for text modes only.
Character height is one greater than the value of this register.

VGA Registers 47

D7 - Double Scan
D6 - Bit D9 of Line Compare Register
D5 - Bit D9 of Start Vertical Blank Register
D4-D0 - Maximum Scan Line

Double Scan enables the double scan mode of the VGA. This mode is used in CGA-
compatible graphics modes that have a vertical resolution of 200 scan lines vertically.
When double scanning is enabled, each scan line will be displayed twice, increasing
the number of scan lines on the display from 200 lines to 400 lines.

Bits D6 and D5 are overflow bits from other registers, located here due to a lack of
space in the Overflow register.

Index OAh - Cursor Start

D7,D6 - Reserved (0)
D5 - Cursor Off
D4-D0 - Cursor Start

Cursor Start determines at which character row scan the cursor will begin.
Together with the Cursor End register, this register defines the size of the cursor with
respect to a character cell.

Cursor Off disables the cursor display.

Support for Vertical Interrupt varies for different manufacturers. The IBM VGA on
system boards provides full support for Vertical Interrupt. CRTC register llh, bit 5,
is used to enable and disable IRQ2. On IBM add-on VGA boards, however, is not
supported (IRQ2 trace is not connected to the bus). Many SuperVGA adapters have
elected not to follow IBM, and provide full support for Vertical Retrace Interrupt.
Care must be taken to keep this interrupt disabled on such VGAs, since it may inter¬
fere with some Network Controllers on AT systems (Network Controllers on PS/2
systems do not have this problem).

Index OBh - Cursor End

D7 - Reserved
D6,D5 - Cursor Skew
D4-D0 - Cursor End

This register is the companion to index OAh (Cursor Start). It determines the charac¬
ter scan line at which the cursor display will stop.

48 Advanced Programmer’s Guide to Super VGAs

Cursor Skew places a skew on the cursor relative to the character clock. This allows
the cursor to be displayed one or two characters to the right of the character specified

in CRTC registers OEh and OFh.

Index OCh - Start Address (High Byte)

Index ODh - Start Address (Low Byte)
This 16-bit register defines the address in display memory of the data that will be

displayed in the upper left corner of the screen (starting position). This register can be
used to pan an image on the screen, or move between display pages in memory. It also
plays a key role in establishing a split screen (see the Line Compare register for

details).

Index OEh - Cursor Location (High Byte)

Index OF - Cursor Location (Low Byte)
This 16-bit register defines the position of the cursor on the screen. When the screen

refresh memory address equals the Cursor Location register, the cursor will be dis¬

played on the screen.

Support for Vertical Interrupt varies for different manufacturers. The IBM VGA on
system boards provide full support for Vertical Interrupt. CRTC register 1 lb, bit 5, is
used to enable and disable IRQ2. On IBM add-on VGA boards, however, is not sup¬
ported (IRQ2 trace is not connected to the bus). Many SuperVGA adapters have
elected not to follow IBM, and provide full support for Vertical Retrace Interrupt.
Care must be taken to keep this interrupt disabled on such VGAs, since it may inter¬
fere with some Network Controllers on AT systems (Network Controllers On PS/2
systems do not have this problem).

Index lOh - Vertical Retrace Start
Eight LSB bits of ten-bit value, which determine scan line at which vertical retrace

starts. The other two bits are in CRTC register index 7.

Index llh - Vertical Retrace End
D7 - Write Protect CRTC Registers 0 to 7
D6 - Refresh Cycle Select
D5 - Enable Vertical Interrupt (when 0)
D4 - Clear Vertical Interrupt (when 0)

DO to D3 - Vertical Retrace End

VGA Registers 49

Vertical Retrace End defines four LSB bits of the scan line at which vertical retrace
ends. Note that this limits retrace to a maximum of 15 scan lines.

Index 12h - Vertical Display Enable End

Eight LSB bits of ten-bit value which define scan line minus one at which the display
ends. The other two bits are in CRTC register index 7.

Index 13h - Offset/Logical Screen Width
IBM named this the Offset register, but a better name for this register would be Logi¬

cal Screen Width. In graphics modes, it defines the logical distance, in either 16-bit
words or 32-bit double words, between successive scan lines. In other words, if the
screen refresh data for scan line n begins at memory address m, refresh data for scan
line n +1 will begin at address m + offset. In text modes, the offset is the logical incre¬
ment between successive character rows.

Index 14h - Underline Location Register

In monochrome text mode only, Underline Location defines which line of a charac¬
ter cell will be illuminated when the underline attribute is set. This register is set dur¬
ing a BIOS mode select operation according to the font size being used.

D7 - Reserved
D6 - Double Word Mode
D5 - Count by 4
DO to D4 - Underline Location

Index 15h - Start Vertical Blanking

Eight LSB bits of ten-bit value minus one which define at which scan line the vertical
blanking starts. The other two bits are in CRTC registers index 7 and 9.

Index 16h - End Vertical Blanking

Eight LSB bits of a value which determine the scan line after which vertical blanking
ends.

Index 17h - Mode Control Register
D7 - Enable Vertical and Horizontal Retrace
D6 - Byte Mode (1), Word Mode (0)
D5 - Address Wrap
D4 - Reserved

50 Advanced Programmer’s Guide to Super VGAs

D3 - Count by 2
D2 - Multiply Vertical by 2 (use half in CRTC 8,10h,12h,15h,18h)
D1 - Select Row Scan Counter (not used)
DO - Compatibility Mode Support (enable interleave)

Index 18h - Line Compare Register

Used in combination with the Start Address register, the Line Compare register pro¬
vides hardware support for a split screen display. When the horizontal scan counter
(total number of horizontal scans) equals the value of the Line Compare register, the
display refresh memory address counter will be cleared. This has the effect of breaking
the display screen into two separate windows. The upper window on the display
screen displays the data that is pointed to by the Start Address register; the lower win¬
dow on the display screen displays the data that starts at location zero in display mem¬
ory. The upper window may be scrolled using the Start Address register while the
lower window remains stationary.

Line Compare is a 10-bit register. The ninth bit (D8) is located in the Overflow regis¬
ter and the tenth bit (D9) is located in the Max Scan Line register.

Sequencer Registers
The Sequencer controls the overall timing of all VGA functions, and also performs

some memory address decoding. It is controlled through five I/O registers which are
multiplexed into two I/O addresses. The Sequencer Index register is mapped at I/O
address 3C4, and the Sequencer Data register is mapped at I/O address 3C5. Table 3-6
lists the registers of the Sequencer.

Table 3-6. Sequencer registers

Index Register
0 Reset Register
1 Clock Mode
2 Color Plane Write Enable
3 Character Generator Select
4 Memory Mode

Index 0 - Reset Register

D7-D2 - Reserved
D1 - Synchronous Reset
DO - Asynchronous Reset

VGA Registers 51

Asynchronous Reset, when set to zero, will immediately halt and reset the
sequencer. This can cause data loss in the display RAM if it is interrupted in midcycle.

Synchronous Reset, when set to zero, will halt and reset the sequencer at the end of
its current cycle.

Index 1 - Clock Mode Register

D7,D6 - Reserved

D5 - Display Off

D4 - Allow 32-Bit Fetch (not used in standard modes)

D3 - Divide Dot Clock by 2 (used in some 320x200 modes)
D2 - Allow 16-Bit Fetch (used in mono graphics modes)
D1 - Reserved

DO - Enable (0) 9 Dot Characters (mono text and 400-line text modes)

Display Off will blank the screen and give the CPU uninterrupted access the display
memory. BIOS service 12h (AH = 12h, BL = 36h) can be used to change this bit.

Index 2 - Color Plane Write Enable Register

D7,D6 - Reserved

D3 - Plane 3 Write Enable
D2 - Plane 2 Write Enable
D1 - Plane 1 Write Enable
DO - Plane 0 Write Enable

Index 3 - Character Generator Select Register

D7,D6 - Reserved

D5 - Character Generator Table Select A (MSB)
D4 - Character Generator Table Select B (MSB)
D3,D2 - Character Generator Table Select A
D1,D0 - Character Generator Table Select B

This register is only of interest if your software will be using multiple character sets.
Either one or two character sets can be active. Character Generator Table Select A

selects which character set will be used for a character whose attribute byte has bit D3
set to zero. Character Generator Table Select B selects which character generator

will be used for a character whose attribute byte has bit D3 set to one. The value of this
register can be changed using BIOS function 1 lh (SH = 1 lh, AL = 03h).

52 Advanced Programmer’s Guide to Super YGAs

Index 4 - Memory Mode Register

D4 to D7 - Reserved
D3 - Chain 4 (address bits 0&1 to select plane, mode 13h)
D2 - Odd/Even (address bit 0 to select plane 0&2 or 1&3, text modes)
D1 - Extended Memory (disable 64K modes)
DO - Reserved

Graphics Controller Registers
The Graphics Controller resides in the data path between display memory and the

system processor. In its default state, the Graphics Controller is transparent and data
passes directly between processor and display memory. In other configurations, the
Graphics Controller can provide a hardware assist to graphics drawing algorithms by
performing logical operations on data being written or read by the processor.

Nine Graphics Controller registers are multiplexed into two I/O addresses; address
3CE is the index register and address 3CF is the data register. Table 3-7 lists the regis¬

ters of the Graphics Controller.
A color plane must be write enabled via the Sequencer Color Plane Write Enable

register before any drawing operations can occur in that plane.

Table 3-7. Graphics Controller registers

Index Register
0 Set/Reset Register
1 Set/Reset Enable Register

2 Color Compare Register
3 Data Rotate & Function Select
4 Read Plane Select Register
5 Mode Register
6 Miscellaneous Register
7 Color Don’t Care Register
8 Bit Mask Register

Index 0 - Set/Reset Register

D7-D4 - Reserved (0)
D3 - Fill Data for Plane 3
D2 - Fill Data for Plane 2
D1 - Fill Data for Plane 1
DO - Fill Data for Plane 0

VGA Registers 53

A better name for this register would be Color Fill Data. It is used to define a fill
color to be written to display memory during any display memory write operation

when Set/Reset mode is enabled (the write data from the processor will be ignored).
Set/Reset mode is enabled for each plane individually through the Set/Reset Enable
register (Index 1 below).

In 16-color graphics modes a single byte written to display memory defines eight
pixels in one or more planes (unless a pixel mask function is enabled). In Set/Reset
mode, all eight pixels of each plane will be filled with the fill data for that plane from
the Set/Reset register. The write mode must be set to zero (see Mode Register - Index

Individual memory bits may be write protected from a Set/Reset fill operation using
the Bit Mask register (Index 8). Other logical functions (such as Rotate, And, Or, or
Xor) have no effect on Set/Reset operations. Planes that are not enabled for Set/Reset
are under normal control of the other logical functions.

The Set/Reset register can be used to quickly fill regions of the display with a
predefined color.

Index 1 - Set/Reset Enable Register

D7-D4 - Reserved (0)

D3 - Enable Set/Reset for Plane 3(1 = enable)
D2 - Enable Set/Reset for Plane 2
D1 - Enable Set/Reset for Plane 1
DO - Enable Set/Reset for Plane 0

Set/Reset Enable defines which memory planes will receive fill data from the Set/
Reset register. Any plane that is disabled for Set/Reset will be written with normal
processor output data.

Index 2 - Color Compare Register

D7-D4 - Reserved

D3 - Color Compare Value for Plane 3
D2 - Color Compare Value for Plane 2
D1 - Color Compare Value for Plane 1
DO - Color Compare Value for Plane 0

The Color Compare register can be used to implement graphics drawing algorithms
that must find and identify objects in display memory by their color. Color Compare
allows a single display memory read cycle to compare the data of all four planes to a
reference color and report whether a color match was found for each pixel position.

54 Advanced Programmer’s Guide to Super VGAs

For each pixel position, one indicates that the color data in all four planes matched the

compare data.
The Color Compare function is enabled through the Mode register.

Index 3 - Data Rotate/Function Select Register

D7-D5 - Reserved (0)
D4,D3 - Function Select
D2-D0 - Rotate Count

This register controls two independent functions: write data rotation, and logical

functions performed on write data.
Data can be rotated during a write cycle for zero- to seven-bit positions. This func¬

tion can be used to provide hardware support for BITBLT where source and destina¬
tion are not byte aligned. Write mode 0 must be selected to enable rotation.

Each time a display memory read cycle is performed by the host processor, the read
data is latched into a set of on-board latches called the processor latches. Function
select allows write data from the processor to be combined logically with the data
stored in these latches. Write mode 0 or 2 must be selected to enable logical functions.

Functions are:

D4D3 Function

00 Write data unmodified

01 Write data ANDed with processor latches

10 Write data ORed with processor latches

11 Write data XORed with processor latches

If both rotation and a logical function are enabled, the rotation occurs before the

logical function is applied.

Index 4 - Read Plane Select Register

D7-D2 - Reserved (0)
D1,D0 - Defines Color Plane for Reading (0-3)

The Read Plane Select register determines which color plane is enabled for reading

by the processor (except in Color Compare mode).

Index 5 - Mode Register

D7 - Reserved (0)
D6 - 256-Color Mode

VGA Registers 55

D5 - Shift Register Mode
D4 - Odd/Even Mode

D3 - Color Compare Mode Enable (1 = enable)
D2 - Reserved (0)
D1,D0 - Write Mode

Most of the bits of the Mode register should not be modified by software. Two fields
that are of interest, however, are the Write Mode field, which can be used to control
how processor data is written into display memory, and the Color Compare Mode
Enable (see Color Compare register).

Dl DO Write Mode
00 Direct write (Data Rotate, Set/Reset may apply)
01 Use processor latches as write data
1 0 Color plane n (0-3) is filled with the value of bit n in the write data
11 Use (rotated) write data ANDed with Bit Mask as Bit Mask

Use Set/Reset as if Set/Reset was enabled for all planes

Write mode 3 is a new mode for VGA (it is not present in EGA). The most common
use for this write mode is during write operations in 16-color graphics modes when
only one pixel is being changed. On EGA, similar functions are normally done with
one 16-bit I/O instruction to set the Bit Mask Register (index 8) in the Graphics
Controller.

IiOOpr

...initialise offset ana »ask
Select #rlt* mode a

.*,BaaM.e Set/Beset Select color)

H0? ABfBisk
BOV
H0V DX«3CET»
m BX,AX

RSUBIML
.. .Update pixel offset w and mask

;Fetch pixel »ask
;Fetch Bit Mask register index
iFetch address of Graphics Controller
•rLoad Bit ftask register
;$et next pixel

A faster operation results when write mode 31$ used as in following code.

...Initial offset nsd *ask

...select write aode 3

... Select read mode color compare

...set coloc don't care to Q
-r,,8naTjie Set/Beset (select color)
MO? .

liOopr
ho? Ale, Mask
OB FS:£B13,Bl
...Update pixel offset Dl and aas-k

;5et latches to iTh (using color compare)

;Fetch pixel fcask
;$et next pixel

Notice that in the second method the I/O instruction in the loop Is eliminated,
which can result in code which is 50% faster than when write mode 0 is used

56 Advanced Programmer’s Guide to Super VGAs

Index 6 - Miscellaneous Register

D7 to D4 - Reserved
D3 to D2 - Memory Map

0 0 = AOOOh for 128K
0 1 = AOOOh for 64K
1 0 = BOOOh for 32K
1 1 = B800h for 32K

D1 - Odd/Even Enable (used in text modes)
DO - Graphics Mode Enable

Memory Map defines the location and size of the host window.

Index 7 - Color Don’t Care Register

D7-D4 - Reserved (0)
D3 - Plane 3 Don’t Care
D2 - Plane 2 Don’t Care
D1 - Plane 1 Don’t Care
DO - Plane 0 Don’t Care

Color Don’t Care is used in conjunction with Color Compare mode. This register
masks particular planes from being tested during color compare cycles.

Index 8 - Bit Mask Register

D7 - Mask Data Bit 7
D6 - Mask Data Bit 6
D5 - Mask Data Bit 5
D4 - Mask Data Bit 4
D3 - Mask Data Bit 3
D2 - Mask Data Bit 2
D1 - Mask Data Bit 1
DO - Mask Data Bit 0

The Bit Mask register is used to mask certain bit positions from being modified dur¬
ing read-modify-write cycles. It must be noted, however, that the Bit Mask register does

VGA Registers 57

not implement a true bit mask and it must be used very carefully to achieve the desired
results.

A zero value in a particular bit of the bit mask register means that during a processor
write to display memory, the data for that bit position will be taken from the processor

latches rather than from the processor output data. For this to function as a mask oper¬

ation, the processor latches must be properly loaded through a read operation before
a write operation is performed.

Attribute Controller and Video DAC Registers

The Attribute Controller consists of twenty registers that are multiplexed into one
I/O address. The index register and data register are both mapped at address 3C0h,
with write cycles alternating between the two. An internal flip-flop toggles with each
write operation, selecting the index and data registers alternately. This flip-flop can be
initialized by performing and I/O read operation at address 3BA (in monochrome
mode) or 3DA (in color mode). After initialization, the first write cycle at address 3C0
will be directed to the index register.

Attribute Controller outputs drive the Video DACs (Digital to Analog Converters),
which convert binary color information into analog voltages to drive the display. The
Video DAC circuit also includes an additional color lookup table.

Attribute Controller Registers

Index Register

D7,D6 - Reserved
D5 - Palette Address Source

0 = palette can be modified, screen is blanked
1 = screen is enabled, palette cannot be modified

D4-D0 - Palette Register Address

Palette Register Address selects which register of the Attribute Controller will be
addressed by the next I/O write cycle, as shown in Table 3-8.

Palette Address Source selects whether the palette is addressed by display refresh
data or by the index register. If set to one, display refresh will occur but palette regis¬
ters cannot be modified. If set to zero, the palette registers can be programmed but the
display will be blanked.

58 Advanced Programmer’s Guide to Super VGAs

Table 3-8. Attribute Controller registers

Index Register

00 Color Palette register 0

01 Color Palette register 1

02 Color Palette register 2

03 Color Palette register 3

04 Color Palette register 4

05 Color Palette register 5

06 Color Palette register 6

07 Color Palette register 7

08 Color Palette register 8

09 Color Palette register 9

0A Color Palette register 10

0B Color Palette register 11

OC Color Palette register 12

0D Color Palette register 13

0E Color Palette register 14

OF Color Palette register 15

10 Mode Control register

11 Screen Border Color

12 Color Plane Enable register

13 Horizontal Panning register

14 Color Select register

Index 00 to OFh - The Palette Registers

D6,D7 - Reserved
DO to D5 - Color Value

Palette registers allow an application program to choose which colors will be dis¬

played at any time. It is not used in 256 color modes.

Index lOh - Mode Control Register

D7 - P4,P5 Source Select
D6-Pixel Width
D5 - Horizontal Panning Compatibility
D4 - Reserved
D3 - Background Intensify/Enable Blink
D2 - Line Graphics Enable (text modes only)
D1 - Display Type
DO - Graphics/Text Mode

VGA Registers 59

P4,P5 Source Select selects the source for video outputs P4 and P5 to the DACs. If
set to zero, P4 and P5 are driven from the Palette registers (normal operation). If set to
one, P4 and P5 video outputs come from bits 0 and 1 of the Color Select register.

Pixel Width is set to one for mode 13 (256-color graphics).

Horizontal Panning Compatibility enhances the operation of the Line Compare
register of the CRT Controller, which allows one section of the screen to be scrolled
while another section remains stationary. When this bit is set to one, the stationary sec¬
tion of the screen will also be immune to horizontal panning.

Background Intensify/Enable Blink selects which of these two attributes will be
enabled by character attribute bit 7 in text modes. If this bit is set to zero, the Back¬
ground Intensify attribute will be enabled. If this bit is set to one, the Blinking attribute
will be enabled.

Line Graphics Enable forces, in nine-bit modes (mono text and 400-line text),
ninth bit of characters COh to DFh to match the eighth bit.

Display Type determines whether monochrome or color attributes are generated.
A zero selects color attributes, one selects monochrome.

Graphics/Text Mode determines whether attributes are decoded as four-bit graph¬
ics pixels or as byte-wide text attributes. A zero enables text attributes, one enables
graphics attributes.

Index llh - Screen Border Color

In text modes, the Screen Border Color register selects the color of the border that
surrounds the text display area on the screen. This is also referred to by IBM as Over¬
scan. Unfortunately, this feature does not work properly on EGA displays in 350-line
modes.

Index 12h - Color Plane Enable Register

D7,D6 - Reserved
D5,D4 - Video Status Mux

D3 - Enable Color Plane 3
D2 - Enable Color Plane 2
D1 - Enable Color Plane 1
DO - Enable Color Plane 0

The Video Status Mux bits can be used in conjunction with the Diagnostic bits of
Input Status register 1 to read palette registers. For the EGA, this is the only means
available for reading the palette registers.

Enable Color Planes can be used to enable or disable color planes at the input to
the color lookup table. A zero in any of these bit positions will mask the data from that

60 Advanced Programmer’s Guide to Super VGAs

color plane. The effect on the display will be the same as if that color plane were

cleared to all zeros.

Index 13 - Horizontal Panning Register

D7-D4 - Reserved
D3-D0 - Horizontal Pan

Horizontal Pan allows the display to be shifted horizontally one pixel at a time.

Values are interpreted according to mode selected as shown in Table 3-9.

Table 3-8. Attribute Controller registers

Value Number of pixels shifted to the left

0+,1 + ,2+ 13h Other modes

3 +, 7, 7 +

0 1 0 0

1 2 1 -

2 3 2 1

3 4 3 -

4 3 4 2

5 6 5 -

6 7 6 3

7 8 7 -

8 9 - -

Index 14 - Color Select Register

D7-D4 - Reserved

D3 - Color 7
D2 - Color 6

D1 - Color 5
DO - Color 4

Color 7 and Color 6 are normally used as the high order bits of the eight-bit video
color data from the attribute controller to the video DACs. The only exceptions are

236-color modes.
Color 5 and Color 4 can be used in place of the P5 and P4 outputs from the palette

registers (see Mode Control Register - Index 10).
In 16-color modes, the color select register can be used to rapidly cycle between sets

of colors in the video DAC.

VGA Registers 61

Video DAC Registers (I/O Addresses 3C6; 3C7, 3C8,
and 3C9)

The VGA video DAC is actually three video DACs (one each for red, green, and blue),
preceded by a color lookup table. Each video DAC converts six bits of binary color
information into an analog voltage for driving the display. The color lookup table con¬
verts the eight bits that are output from the VGA Attribute Controller into eighteen bits
(six for each video DAC). This gives the VGA the capability of displaying 256 simultane¬
ous colors from a palette of 262,144.

Five registers are used to access the video DAC:

3C6 - Pixel Mask register
3C7 - DAC State register (Read-only)
3C7 - Lookup Table Read Index register (Write-only)
3C8 - Lookup Table Write Index register
3C9 - Lookup Table Data register

Two separate index registers are used for selecting among the 256 internal color
registers of the lookup table. The Read Index is used only when data is read from the
lookup table, and the Write Index is used only when data is being written to the lookup
table. A color register, which is eighteen bits wide, is programmed by writing an eight
bit index to the Lookup Table Write Index register (3C8), then writing three six-
bit values to the Lookup Table Data register (3C9). The index register will automat¬
ically increment after the third byte is written, so that a block of color registers can be
programmed without repeatedly setting the index.

A color register can be read by writing an eight-bit index into the Lookup Table
Read Index register (3C7), then reading three six-bit values from the Lookup
Table Data register (3C9). The index register will automatically increment after the
third byte is read.

The DAC State register (3C7) can be used to determine whether the color lookup
table is currently configured for a register read operation or a register write operation.
A value of zero in bits DO and D1 indicates that the lookup table is in a write mode.

Unlike the Attribute Controller, processor accesses to the color lookup table in the
DAC can be performed at any time; on some VGAs, however, these accesses may inter¬
fere with screen refresh and cause snow’ on the display. This can be avoided by wait¬
ing for vertical retrace before programming it.

4

The ROM BIOS

63

64 Advanced Programmer’s Guide to Super VGAs

What is the ROM BIOS?
The VGA ROM BIOS is a set of low level rirmware routines that are accessed by exe¬

cuting a software interrupt instruction (INT 10H) with parameters specified in
registers.

Individual BIOS Functions
Function 0: Mode Select

Input Parameters:

AH = 0

AL = Mode number (0 to 13H)

If AL bit D7 equals 0, the display buffer will be cleared. If bit D7 equals 1, the display
buffer will be left unmodified.

Return Value: None.

Function 1: Set Cursor Size

This function defines cursor height.

Input Parameters:

AH = 1

CH = start scan line (0-31)
CL = end scan line (0-31)

Return Value: None.

Function 2: Set Cursor Position

This function will position the cursor at a specified location on the display screen. A
separate cursor is maintained for each display page.

Input Parameters:

AH = 2
BH = display page number
DH = Row
DL = Column

Return Value: None.

The ROM BIOS 65

Function 3: Read Cursor Size and Position

This function returns data on the cursor position and cursor height.

Input Parameters:

AH = 3
BH = Display page number

Return Value:

CH = cursor start scan line
CL = cursor end scan line
DH = cursor row
DL = cursor column

Function 4: No Standard Support (Get Light Pen)

Function 5: Select Active Page

This function selects which display page is displayed on the screen. ^

Input Parameters:

AH = 5
AL = display page number

Return Value: None.

Function 6: Scroll Text Window Up (or Blank Window)

This function scrolls a specified portion of the display (the scroll window) upward.

Input Parameters:

AH = 6
AL = number of lines to scroll

(AL = 0 blanks window to all spaces)
BH = text attribute to use when filling blank lines at bottom of window
CH = row number of upper left corner of window
CL = column number of upper left corner of window
DH = row of lower right corner of window

66 Advanced Programmer’s Guide to Super VGAs

DL = column of lower right corner of window

Return Value: None.

Function 7: Scroll Text Window Down (or Blank Window)

This function scrolls a specified portion of the display (the scroll window)
downward.

Input Parameters:

AH = 7

AL = number of lines to scroll
(AL = 0 blanks window to all spaces)

BH = text attribute to use when filling blank lines at top of window
CH = row number of upper left corner of window
CL = column number of upper left corner of window
DH = row of lower right corner of window
DL = column of lower right corner of window

Return Value: None.

Function 8: Read Character and Attribute at Cursor Position
Input Parameters:

AH = 8

BH = display page number

Return Value:

AL = character code

AH = character attribute (text modes only)

Function 9: Write Character and Attribute at Cursor Position
Input Parameters:

AH = 9
AL = character code
BH = display page number

BL = attribute (text modes) or color value (graphics modes)
CX = repetition count (up to end of current row)

Return Value: None.

The ROM BIOS 67

Function OAh: Write Character Only at Cursor Position

This function writes an ASCII character to display memory at the current cursor posi¬
tion. The previous attribute is preserved. The cursor position is not incremented.

Input Parameters:

AH = OAh
AL = character code
BH = display page number
BL = color value (graphics modes)
CX = repetition count (up to end of current row)

If the VGA is operating in a graphics mode and bit D7 of register BL equals 1, the
character being written will be exclusive ORed, XORed, with the previous data in dis¬
play memory.

Return Value: None.

Function OBh: Set CGA Color Palette (Modes 4,5,6)

This function configures the VGA to emulate one of the two standard CGA graphics
color palettes.

Input Parameters:

AH = OBh
If BH = 0:

BL = graphics background color or text border color
If BH = 1:

BL = palette number (0 or 1)

Return Value: None.

Function OCh: Write Graphics Pixel

This function is a slow method for manipulating pixels in graphics mode.

Input Parameters:

AH = OCh
AL = pixel value

68 Advanced Programmer’s Guide to Super VGAs

CX = pixel column number
DX = pixel row number

If bit D7 of register AL is set to one, the new pixel value will be exclusive ORed,
XORed, with the existing background color.

Return Value: None.

Function ODh: Read Graphics Pixel

Input Parameters:

AH = ODh

CX = pixel column number
DX = pixel row number

Return Value:

AL = pixel value

Function OEh: Write Character and Advance Cursor

The character is displayed at the current cursor position, and the cursor is automati¬
cally advanced to the next character position. At the end of a line, the cursor will wrap
around to the next line. ASCII BELL, BACKSPACE, CARRIAGE RETURN and LINEFEED
are recognized and their functions are performed accordingly. Vertical scrolling is per-
formed as required.

If the VGA is operating in a text mode, the character attribute is left unmodified. If
the VGA is operating in a graphics mode, the character color may be specified in the
call.

Function OEh is used by the standard MS-DOS console driver for screen handling.

Input Parameters:

AH = OEh

AL = character code

BL = character color (graphics modes only)

Return Value: None.

The ROM BIOS 69

Function OFh: Get Current Display Mode

Input Parameters:

AH = OFh

Return Value:

AH = number of display columns
AL = display mode
BH = active display page

Function lOh: Set EGA Palette Registers

This function is divided into 14 subfunctions that control color translations.

Subfunction 0; Program a Palette Register

Input Parameters:

AH = lOh
AL = OOh
BL = palette register number (0 to Fh)
BH = color data (0 to 3Fh)

Return Value: None.

Subfunction 1: Set Border Color (Overscan)

Input Parameters:

AH = lOh
AL = Olh
BH = color data (0 to FFh)

Return Value: None.

Sub function 2: Set All Palette Registers

Input Parameters:

AH = lOh
AL = 02h
ES:DX = address of 17-byte buffer (16 palette values plus overscan value)

Return Value: None.

70 Advanced Programmer’s Guide to Super VGAs

Subfunction 3: Blink/Intensity Attribute Control

This subfunction provides a convenient method of toggling the control bit that
defines whether the blinking attribute is enabled or the intensified background attri¬
bute is enabled.

Input Parameters:

AH = lOh
AL = 03h
BL = 0 - enable background intensify
BL = 1 - enable foreground blink

Return Value: None.

Subfunction 7: Read a Single Palette Register

Input Parameters:

AH = lOh
AL = 7
BL = register number (0-15)

Return Value:

BH = palette register value

Subfunction 8: Read Border Color (Overscan) Register

Input Parameters:

AH = lOh
AL = 8

Return Value:

BH = Border Color Register value

Sub function 9: Read All Palette Registers

Input Parameters:

AH = lOh

AL = 9

The ROM BIOS 71

ES:DX = address of 17-byte buffer (16 palette values plus overscan value)

Return Value:

17 bytes stored at [ES:DX]

Subfunction lOh: Set a Single DAC Register

This subfunction sets the 18-bit color value in a single DAC register.

Input Parameters:

AH = lOh
AL = lOh

BX = DAC register number (0 to FFh)
DH = Red intensity level (0 to 3Fh)
CH = Green intensity level (0 to 3Fh)
CL = Blue intensity level (0 to 3Fh)

Return Value: None.

Subfunction 12h: Set Block of DAC Registers

This subfunction sets the 18-bit color values in a block of DAC registers.

Input Parameters:

AH = lOh
AL = 12h

BX = starting DAC register (0 to 255)
CX = number of registers to set (1 to 256)
ES:DX = address of color table

The color table consists of 3 bytes per register (red, green, and blue, each in range 0
to 3Fh).

Return Value: None.

Subfunction 13h: Select Color Subset

This subfunction selects one of up to 16 color subsets.

Input Parameters:

AH = lOh
AL = 13h

72 Advanced Programmer’s Guide to Super VGAs

If BL = 0: Select mode
BH = 0: 4 subsets of 64 colors
BH = 1:16 subsets of 16 colors

If BL = 1: Select subset
BH = subset (0-16)

Return Value: None.

Subfunction 15h: Read a Single DAC Register

Input Parameters:

AH = lOh
AL = 15h

BX = DAC register number (0-255)

Return Value:

DH = red intensity level (0 to 3Fh)
CH = green intensity level (0 to 3Fh)
CL = blue intensity level (0 to 3Fh)

Subfunction 17h: Read Block of DAC Registers

Input Parameters:

AH = lOh
AL = 17h

BX = starting DAC register number (0-255)
CX = number of registers (1-256)
ES:DX = destination address for register data

Return Value:

Register data at destination address (3 bytes per register)

Subfunction 18h: Set PEL Mask

Input Parameters:

AH = lOh
AL = 18h
BL = PEL Mask

Return Value: None.

The ROM BIOS 73

Sub function 19h: Read PEL Mask

Input Parameters:

AH = lOh
AL = 19h

Return Value:

BL = PEL Mask

Subfunction lAh: Read Subset Status

This subfunction returns the number of the current color subset.

Input Parameters:

AH = lOh
AL = lAh

Return Value:

BH = number of current color subset
BL = 0 if 4 subsets are available
BL = 1 if 16 subsets are available

Subfunction lBh: Convert DAC Registers to Gray Scale

This subfunction converts a block of DAC registers from color values to mono¬
chrome gray scale values, using the following formula:

gray = 30% Red + 59% Green + 11% Blue

Input Parameters:

AH = lOh
AL = lbh
BX = starting DAC register number (0-255)
CX = number of registers (1-256)

Return Value: None.

Function llh: Load Character Generator

Function llh consists of 17 subfunctions which are used to control appearance of

text.

74 Advanced Programmer’s Guide to Super VGAs

Sub function 0; Load Custom Character Generator

Input Parameters:

AH - llh
AL = 0

ES:BP = address of character data in system RAM
CX = number of characters to load (1 to 256)
DX = character offset into character generator table

(0 to 255 - for loading a partial character set)
BL = which character generator to load
BH = number of bytes per character (1 to 32)

Return Value: None.

Subfunction 1: Load 8x14 Character Set

Input Parameters:

AH = llh
AL = 1

BL = which character generator to load (0 to 7)

Return Value: None.

Subtunction 2: Load 8x8 Character Set

Input Parameters:

AH = llh
AL = 2

BL = which character generator to load (0 to 7)

Return Value: none

Sub function 3: Select Active Character Set(s)

This subfunction selects which of the VGA’s eight character generator tables will be
active.

Input Parameters:

AH = llh
AL = 3

BL(D0,D1,D4) - Selects which character generator will be active

The ROM BIOS 75

for a character with attribute bit 3 = 0
BL(D2,D3,D5) - Selects which character generator will be active

for a character with attribute bit 3 = 1

Return Value: None.

Subfunction 4: Load 8x16 Character Set

Input Parameters:

AH = llh
AL = 4
BL = which character generator to load (0-7)

Return Value: None.

Subfunctions 10h, llh, 12h, 14h

These subfunctions are identical to functions 0, 1, 2 and 4, except that CRTC is
reprogrammed to match the selected character size.

Subfunction 20h: Initialize INT lFh Vector (Modes 4-6)

This subfunction initializes the vector that points to characters 80h through FFh of
8x8 font used in graphics modes 4, 5 and 6.

Input Parameters:

AH = llh
AL = 20h
ES:BP = Pointer to character definitions

Return Value: None.

Sub function 21h: Set Graphics Mode to Display Custom Character Set

In graphics modes, this subfunction sets BIOS variables so that text can be drawn
using a custom character set. The character set must remain resident in system

memory.

Input Parameters:

AH = llh
AL = 21h
ES:BP = address of custom character table

76 Advanced Programmer’s Guide to Super VGAs

CX = bytes per character
BL = number of character rows to be displayed:

1 = 14 character rows
2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows

Return Value: None.

Sub function 22b: Set Graphics to Display 8x14 Text

In graphics modes, this subfunction will set BIOS variables so that the standard 8x14
character set is used to draw characters.

Input Parameters:

AH = llh
AL = 22H

BL = number of character rows on screen:
1 = 14 character rows
2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows

Not all values will result in satisfactory appearance

Return Value: None.

Subfunction 23h: Initialize Graphics Mode to Display 8x8 Text

In graphics modes, this subfunction will set BIOS variables so that the standard 8x8
character set is used to draw characters.

Input Parameters:

AH = llh
AL = 23H

BL = number of character rows on screen:
1 = 14 character rows
2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows

Not all values will result in satisfactory appearance

The ROM BIOS 77

Return Value: None.

Subfunction 24h: Initialize Graphics Mode to Display 8x16 Text

In graphics modes, this subfunction will set the BIOS variables to use standard 8x16
character set to draw characters.

Input Parameters:

AH = llh
AL = 24H

BL = number of character rows on screen:
BL = 1-14 character rows

BL = 2 - 25 character rows
BL = 3 - 43 character rows

Return Value: None.

Subfunction 30h: Return Information About Current Character Set

This subfunction can be used to read information about the current character set
being used.

Input Parameters:

AH = llh
AL = 30h

BH = Information type requested
BH = 0: return current INT 1FH pointer
BH = 1: return current INT 43H pointer
BH = 2: return pointer to Enhanced (8x14) character set
BH = 3: return pointer to CGA (8x8) character set

BH = 4: return pointer to upper half of CGA 8x8 char set
BH = 5: return pointer to alternate 9x14 monochrome characters
BH = 6: return pointer to 8x16 characters
BH = 7: return pointer to alternate 9x16 characters

Return Values:

CL = character height (number of rows in a character)
DLjf ^h^rjactejcrowv,1 A

ES:BP = return pointer

78 Advanced Programmer’s Guide to Super VGAs

Function 12: Get VGA Status (Set Alternate Print Screen)

Function 12h is a group of unrelated functions which share the same function
number.

Subfunction lOh: Return VGA Information

This subfunction returns information on the current VGA configuration.

Input Parameters:

AH = 12h
BL = lOh

Return Values:

BH = 0 Color mode in effect (3Dx)
1 Mono mode in effect (3Bx)

BL = Memory size: 0 = 64k, 1 = 128k, 2 = 192k, 3 = 236k
CH = Feature bits
CL = EGA switch settings

Subfunction 20h: Revector Print Screen (INT 05h) Interrupt

Input Parameters:

AH = 12h
BL = 20h

Return Values: None.

Sub function 30h: Select Scan Line Count for Next Text Mode

Input Parameters:

AH = 12h

AL = Number of scan lines: 0 = 200,1 = 350, 2 = 400
Will take effect on next mode select

for modes 0 to 3 and 7.
BL = 30h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

The ROM BIOS 79

Subfunction 31h: Enable/Disable Palette Load During Mode Set

Input Parameters:

AH = 12h

AL = 0 enable (default), 1 disable

BL = 31h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Sub function 32h: Enable/Disable VGA Access

Input Parameters:

AH = 12h
AL = 0 enable, 1 disable I/O and memory access to VGA

BL = 32h

Return Values:

AL = 12h indicating that function was performed (AL was 0 or 1)

Subfunction 33h: Enable/Disable Gray Scale Summing

Input Parameters:

AH = 12h
AL = 0 enable, 1 disable gray scale summing

BL = 33h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Sub function 34h: Enable/Disable CGA/MDA Cursor Emulation.

Input Parameters:

AH = 12h
AL = 0 enable, 1 disable CGA cursor emulation

BL = 34h

80 Advanced Programmer’s Guide to Super VGAs

Return Values:

AL = 12h indicating that function is supported (AL was 0 or 1)

Subfunction 35h: Switch Displays.

Input Parameters:

AH = 12h

AL = Select video:
0 - Initial adapter video system off (before call with AL = 1)
1 - Initial motherboard video system on (after call with AL = 0)
2 - Switch to inactive BIOS and video system (before call with AL = 3)
3 - Initialize video system with parameters in ES:DX (after call with AL = 0 or 2)

BL = 35h

ES:DX = address of 128-byte save area (for AL = 0, 2, or 3)

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Subfunction 36h: Display On/Off

Input Parameters:

AH = 12h

AL = 0 enable, 1 disable video output (maximum access to display memory)
BL = 36h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Function 13h: Write Text String

The text string may be straight character codes (ASCII data), or it may include
embedded attribute data. The cursor may be advanced to the end of text, or it may be
left unmodified. The ASCII characters for BELL (7), BACKSPACE (8), CARRIAGE
RETURN (0D hex) and LINEFEED (0A hex) are recognized and their appropriate func-
tions performed.

Input Parameters:

AH = 13h
BH = display page number

The ROM BIOS 81

CX = character count (length of string)
DH = row for start of string
DL = column for start of string
ES:BP = address of source text string in system RAM
AL = mode:

0: BL = Attribute for all characters - Cursor is not updated
1: BL = Attribute for all characters - Cursor is updated
2: String contains alternating character codes and Attributes -

Cursor is not updated
3: String contains alternating character codes and Attributes - Cursor is updated

Return Value: None.

Function lAh: Read or Write Configuration

This function is divided into two subfunctions that read or modify information on
the current configuration of display devices in the system.

Subfunction 0: Read Display Configuration Code

Input Parameters:

AH = lAh
AL = 0

Return Values:

AL = lAh
BL = primary display
BH = secondary display

Display information is interpreted as follows:

0 = no display
1 = MDA
2 = CGA
3 = EGA with ECD display
4 = EGA with CD display
5 = EGA with Monochrome Display
6 = PGC (Professional Graphics Controller)
7 = VGA with monochrome display
8 = VGA with color display
OBh = MCGA with monochrome display
OCh = MCGA with color display

82 Advanced Programmer’s Guide to Super VGAs

Subfunction 1: Write Display Configuration Code

Input Parameters:

AH = lAh
AL = 1

BL = primary display info
BH = secondary display info

For an explanation of info codes, see subfunction 0.

Return Value:

AL = lAh

Function lBh: Return VGA Status Information

Input Parameters:

AH = lBh
BX = 0

ES:DI = pointer to 64 byte buffer for return data

Return Values:

AL = lBh

The return buffer will contain information as shown in Table 4-1.

Table 4-1. VGA functionality and video state information

Byte Number Size Contents
0 dword Pointer to Static Functionality Table (see table 4-2)
4 byte Current display mode
5 word Number of character columns
7 word Size of video data area (REGEN BUFFER) in bytes
9h word Current offset within REGEN BUFFER
OBh 8 words Cursor positions, two words per page, for up to 8 pages
lBh byte Cursor end
ICh byte Cursor start
lDh byte Current display page
lEh word CRT Controller address (3B4h or 3D4h)
20h byte CGA/MDA mode register value (value of 3B8h/3D8h)
21h byte CGA/MDA color register value (value of 3B9h/3D9h)
22h byte Number of text rows

The ROM BIOS 83

Table 4-1. VGA functionality and video state information (continued)

Byte Number Size
23h byte
25h byte
26h byte
27h word

29h byte
2Ah byte

2Bh byte
2Ch byte
2Dh byte

2Eh byte

2Fh byte

30h byte

31h byte

32h byte

33h to 33F

Contents
Character height (in scan lines)

Display Configuration Code (active display)
Display Configuration Code (inactive display)
Number of colors in current mode (0 for mono modes)

Number of display pages in current mode
Number of scan lines in current mode: 0 = 200,1 = 330, 2 = 400,

3 = 480
Primary character generator (0-7)
Secondary character generator (0-7)

Miscellaneous state information:

D5 = 1 - Blinking enabled
D5 = 0 - Background intensify enabled
D4 = 1 - CGA cursor emulation enabled

D3 = 1 - Default palette initialization disabled
D2 = 1 - Monochrome display attached

D1 = 1 - Gray scale conversion enabled
DO = 1 - All modes supported on all monitors

Reserved
Reserved
Reserved
Size of display memory: 0 = 64KB 1 = 128KB 2 = 192KB 3 = 236KB

Save Pointer State Information
D5 = 1 - DCC extension is active (DCC override)
D4 = 1 - Palette override active

D3 = 1 - Graphics font override active
D2 = 1 - Alpha font override active
D1 = 1 - Dynamic save area active
DO = 1-512 Character set active

Reserved

Advanced Programmer’s Guide to Super VGAs

Table 4-2. VGA static functionality table

Byte Number Size

0 byte

1 byte

2 byte

3 to 6

7 byte

8 byte

9 byte
OAh byte

Contents

Video modes supported (1 indicates mode supported):
D7 - mode 7

D6 - mode 6

D5 - mode 5
D4 - mode 4

D3 - mode 3
D2 - mode 2

D1 - mode 1

DO - mode 0

Video modes supported (1 indicates mode supported):
D7 - mode OFh
D6 - mode OEh

D5 - mode ODh
D4 - mode OCh

D3 - mode OBh

D2 - mode OAh

D1 - mode 9
DO - mode 8

Video modes supported (1 indicates mode supported):
D7 - Reserved
D6 - Reserved

D5 - Reserved
D4 - Reserved

D3 - mode 13h
D2 - mode 12h

D1 - mode llh
DO - mode lOh

Reserved

Scan line available in text modes (1 indicates supported):
D2 - 400 lines
D1 - 350 lines
DO - 200 lines

Maximum number of simultaneously displayable character
generators

Number of available character generators

Miscellaneous BIOS capabilities (1 indicates function supported):
D7 - Color paging (fn lOh)
D6 - DAC loading (fn lOh)
D5 - EGA palette loading (fn lOh)
D4 - CGA cursor emulation (fn 1 and 12h)
D3 - Palette loading after mode set (fn 0 and 12h)
D2 - Character generator loading (fn llh)

The ROM BIOS 85

Table 4-2. VGA static functionality table (continued)

Byte Number Size Contents

D1 - Gray scale summing (fn lOh and 12h)

DO - All modes on all displays

OBh byte Miscellaneous BIOS capabilities (1 indicates function supported):

D7 - Reserved

D6 - Reserved

D5 - Reserved

D4 - Reserved

D3 - DCC (fn lAh)

D2 - Blink/Intensify select (fn lOh)

D1 - Save/Restore video state (fn ICh)

DO - Light pen (fn 4)
OCh to ODh Reserved

OEh byte Save area function support (1 indicates supported):

D7 - Reserved

D6 - Reserved

D5 - DCC extensions
D4 - Palette override

D3 - Text character generator override

D2 - Graphics character generator override

D1 - Dynamic save area

DO - 312 simultaneous characters
OFh Reserved

Function ICh: Save/Restore Display Adapter State

This function is divided into three subfunctions that return required buffer size, save
display adapter state, and restore display adapter state.

Subfunction 0: Return Required Buffer Size

Input Parameters:

AH = ICh
AL = 0

CX = Type of data to be saved:

DO - Registers
D1 - BIOS data area
D2 - DAC registers

86 Advanced Programmer’s Guide to Super VGAs

Return Value:

AL = ICh
BX = Required buffer size (in 64 byte blocks)

Sub function 1: Save Display Adapter State

Input Parameters:

AH = ICh
AL = 1
CX = Type of data to be saved:

DO - Registers
D1 - BIOS data area
D2 - DAC registers

ES:BX = Pointer to save buffer

Return Value:

AL = ICh

Sub function 2: Restore Display Adapter State

Input Parameters:

AH = ICh
AL = 2
CX = Type of data to be restored:

DO - Registers
D1 - BIOS data area
D2 - DAC registers

ES:BX = Pointer to save buffer

Return Value:

AL = ICh

The BIOS Data Area

The BIOS data area is a section of the low memory where various BIOS services
keep their working variables. Variables used by Video Services are summarized in
Table 4-3. Programs which directly alter the status of the display without using the
BIOS calls (such as cursor position in CRTC registers) should update these variables to
avoid confusing the BIOS.

The ROM BIOS

Table 4-3. BIOS Data Area

Address Size Contents

0000:041Oh byte EQUIPMENTJFLAG

Bits D4 and D5 of this byte identify the current primary display
device:

D3 D4 Adapter

0 0 Reserved

0 1 Color 40x25

1 0 Color 80x25
I 1 Monochrome

0000:0449h byte VIDEO_MODE (current mode)

0000:044Ah word COLUMNS (number of text columns)
0000:044Ch word PAGE_LENGTH (length of each page in bytes)

0000:044Eh word START_ADDR (Start Address register value)
0000:0450h 8 words CURSOR__POSITION (cursor positions for all pages)
0000:0460h word CURSOR__SHAPE (Cursor Start and End registers)
0000:0462h byte ACTIVE_PAGE (current active page number)
0000:0463h word CRTC_ADDRESS (3B4h or 3D4h)

0000:0465h byte MODE_REG_DATA (CGA Mode register setting)
0000:0466h byte PALETTE (CGA Color register setting)

0000:0484h byte ROWS (number of text rows -1)
0000:0485h word CHAR_HEIGHT (bytes per char)
0000:0487h byte EGA_INFO_l

D7 = bit D7 from AL on most recent mode select
(1 indicates memory was not cleared by mode select)

D6,D5 = Display memory size (00 = 64K, 01 = 128K, 10 = 192K,
II = 256K)
D4 = reserved

D3 = 0 indicates VGA is the primary display
D2 = 1 will force the BIOS to wait for Vertical Retrace

before writing to display memory
D1 -1 indicates that VGA is in monochrome mode
DO - 0 means that CGA cursor emulation is enabled

0000:0488h byte EGA_INFO_2

D4-D7 = Feature connector settings

D0-D3 = Switch settings
0000:0489h byte MISC_FLAGS D7&D4 = Scanline count:

0 0 = 350 lines
0 1 = 400 lines
10 = 200 lines
11 = reserved

D6 = Display switching enabled

Advanced Programmer’s Guide to Super VGAs

Table 4-3. BIOS Data Area (continued)

Address Size Contents
D3 = Default palette loading disabled
D2 = Monochrome monitor
D1 = Gray scale summing enabled

DO = All modes on all displays

0000:048Ah
0000:04A8h

byte
dword

DCC_INDEX Index of current video combination
SAVE_AREA_PTR Pointer to save area (see Table 4-4)

Table 4-4. VGA BIOS save area

Byte Number Size Contents
0 dword Mandatory pointer to Video Parameter Table (see Table 4-5)
4 dword Optional pointer to Dynamic Save Area. (This 256-byte table

contains 16 palette register values and Overscan register value.)

8 dword Optional pointer to Text Mode Auxiliary Character Set

(see Table 4-6)
OCh dword Optional pointer to Graphics Mode Auxiliary Character Set

(see Table 4-7)
lOh dword Optional pointer to Secondary Save Area (see Table 4-8)
I4h dword Reserved
18h dword Reserved

Note: At system initialization, the Environment Pointer is set to point to an Environment Table in ROM. This
default Environment Table has only one entry (the Video Parameter Table Pointer). To modify the
Environment Table, first copy it from ROM to RAM and then update the Environment Pointer.

Table 4-5. VGA BIOS Video Parameter Table

Byte Number
0
1
2

3 and 4

5
6
7
8

9

Oah
Obh
Och

Contents
Number of text columns
Number of text rows minus one
Character height (in pixels)
Display page length (in bytes)
Sequencer register values:

Clock Mode register
Color Plane Write Enable register
Character Generator Select register
Memory Mode register

Miscellaneous register
CRT Controller register values:

Horizontal Total register
Horizontal Display End register
Start Horizontal Blanking register

The ROM BIOS 89

Table 4-5. VGA BIOS Video Parameter Table (continued)

Byte Number Contents
Odh End Horizontal Blanking register
Oeh Start Horizontal Retrace register
Ofh End Horizontal Retrace register
lOh Vertical Total register
llh Overflow register
12h Preset Row Scan register
13h Maximum Scan Line register
I4h Cursor Start
15h Cursor End
16h-19h Unused
lah Vertical Retrace Start register
lbh Vertical Retrace End register
lch Vertical Display End register
ldh Offset register
leh Underline Location register
lfh Start Vertical Blanking register
20h End Vertical Blanking register
21h Mode Control register
22h Line Compare register

Attribute Controller register values:
23h Palette register 0
24h Palette register 1
25h Palette register 2
26h Palette register 3
27h Palette register 4
28h Palette register 5
29h Palette register 6
2ah Palette register 7
2bh Palette register 8
2ch Palette register 9
2dh Palette register 10
2eh Palette register 11
2fh Palette register 12
30h Palette register 13
31h Palette register 14

32h Palette register 15
33h Mode Control register
34h Screen Border Color (Overscan) register

35h Color Plane Enable register

36h Horizontal Panning register
Graphics Controller register values:

Set/Reset register 37h

90 Advanced Programmer’s Guide to Super VGAs

Table 4-5. VGA BIOS Video Parameter Table (continued)

Byte Number Contents

38h
39h

3ah

3bh

3ch

3dh

3eh

3fh

Set/Reset Enable register

Color Compare register

Data Rotate & Function Select register

Read Plane Select register

Mode register

Miscellaneous register

Color Don’t Care register

Bit Mask register

Modes are ordered in the parameter table as follows:

Table Mode

0 0
1 1
2 2

3 3
4 4

5 5
6 6
7 7
8 8

9 9
10 A

11 B
12 C

13 D
14 E

15 F (64K display RAM)
16 10 (64K display RAM)
17 F (more than 64K)
18 10 (more than 64K)
19 0*
20 1*
21 2*
22 3*
23 0 + , 1 +
24 2 + , 3 +
25 7 +
26 11
27 12
28 13

The ROM BIOS 91

Table 4-6. VGA BIOS Text Mode Auxiliary Character Set Table

Byte Number Size Contents
0 byte Bytes per character
1 byte Character Map # (0-3 for EGA 0-7 for VGA)
2 word # of characters
4 word First character #
6 dword Pointer to character set in system memory
10 byte Character height (in pixels)
11-n bytes List of modes this character set is compatible with, terminated by

FFh

Table 4-7. VGA BIOS Graphics Mode Auxiliary Character Set Table

Byte Number Size Contents
0 byte Number of character rows on display
1 word Bytes per character

3 dword Pointer to character set in system memory
7-n bytes List of modes this character set is compatible with, terminated by

FFh

Table 4-8. VGA BIOS Secondary Save Area Table

Byte Number Size Contents
0 word Length of this table
2 dword Pointer to DCC table (see Table 4-9)
6 dword Pointer to second Text Mode Auxiliary Character Set (see Table 4-

6)
OAh dword Pointer to User Palette Table (see Table 4-10)
OEh dword Reserved
12h dword Reserved
I6h dword Reserved

92 Advanced Programmer’s Guide to Super VGAs

Table 4-9. VGA BIOS Device Combination Code Table

Byte Number Size Contents
0 byte Number of entries in this table
1 byte Version number
2 byte Maximum display type code

3 byte Reserved
4 - n words List of valid video combinations, one pair per combination

Pairs are built from the following values:
0 = no display
1 = MDA
2 = CGA

3 = Reserved
4 = EGA with CD or ECD display

3 = EGA with Monochrome Display

6 = PGC (Professional Graphics Controller)
7 = VGA with monochrome display
8 = VGA with color display

OBh = MCGA with monochrome display
OCh = MCGA with color display

Table 4-10. VGA BIOS User Palette Table

Byte Number Size Contents
0 byte Underlining flag: -1 = Off, 0 = Ignore, 1 = On
1 byte Reserved
2 word Reserved
4 word Number of palette registers in the table
6 word First palette registers in the table
8 dword Pointer to palette register values
OCh word Number of DAC registers in the table
OEh word First DAC register in the table
lOh dword Pointer to DAC register values (table has 3 bytes per RGB register)
I4h bytes List of video modes terminated by OFFh

SuperVGAs

93

Introduction 95

Introduction
SuperVGAs (enhanced VGA-compatible products) are no different in architecture

than the standard IBM VGA. Each VGA manufacturer has simply expanded the architec¬

ture to accommodate new display modes, and added proprietary features and options.

Understanding SuperVGA really means understanding the proprietary extensions and

features that have been added by each manufacturer.

Today, several dozen manufacturers build SuperVGAs. All of these products, how¬

ever, are based on VLSI VGA chips (integrated circuits) from a small number of chip

suppliers. The character of a particular VGA adapter is mainly determined by the VLSI

device that the product is based on.

Fortunately, a great deal of similarity exists between SuperVGA implementations

from different manufacturers. Programming is basically the same for all types of

SuperVGAs. Some tailoring of software is required for the particular VLSI VGA device

being used, especially for display modes that require the use of display memory pag¬

ing. While most SuperVGAs include some form of memory paging mechanism, the

actual memory paging scheme depends on the particular VGA chip being used. Some

paging schemes are more powerful and flexible than others.

Chapter 5 is dedicated to a discussion of the common features and extensions of

SuperVGA products. In chapters 6 through 9, programming examples are given to

demonstrate basic programming concepts that are common to all SuperVGAs. A chap¬

ter is included for each type of high resolution VGA graphics mode: 2-bit pixels (four-

color modes), 4-bit planar pixels (sixteen-color modes), and 8-bit packed pixels (256-

color modes). These programming examples will reference manufacturer dependent

constants and subroutines that can be used to tailor the routines to a particular board.

Chapters that follow the programming examples contain in-depth descriptions for

each of the most popular VLSI VGA chips, one chapter per device, with a description of

a typical SuperVGA board that uses that device. Sample code is provided to allow each

device to be used with the programming examples of the earlier chapters. These

descriptions were selected and organized to provide useful information that applies to

the majority of VGA products that are currently available.

Architecture of the
SuperVGA

97

98 Advanced Programmer’s Guide to Super VGAs

Introduction
A lengthy discussion of SuperVGA architecture is actually not necessary; the basic

architecture of the SuperVGA is the same as that of the standard IBM VGA and includes
the same five major functional blocks: CRT Controller, Sequencer, Attribute Controller,
Graphics Controller and Display Memory. All standard VGA functions, BIOS services,
and registers, as described in chapters 1 through 4, are preserved. Detailed descrip¬
tions and programming examples for the standard features of VGA can be found in our
earlier text Advanced Programmer’s Guide to EGA/VGA.

The most significant additional feature of all SuperVGAs is the capability to display
higher resolutions and more colors than the standard IBM VGA. Popular extended dis¬
play modes are described in this chapter.

A key requirement for this extended display capability is the ability to address larger

amounts of display memory than the standard VGA can accommodate, which is usually

achieved with some type of memory paging mechanism. While paging schemes vary

between manufacturers, the basic principle remains the same. Much of this chapter is

dedicated to a description of memory paging.

SuperVGAs usually include other software support in the form of BIOS upgrades
and application software drivers to support extended display modes. These and other
added features will be discussed in this chapter, as well as the chapters which discuss
specific products.

Mapping of Display Memory

Host Address Space / Host Window

VGA drawing operations are performed by the system processor, which reads data
from and writes data to the display memory. To accomplish this, the display memory is
mapped to a specific segment (or segments) of the host processor memory address
space. This is sometimes referred to as the host window to display memory.

Table 5-1 shows the standard organization for the first megabyte of addressable sys¬
tem memory in IBM-compatible computer systems.

Architecture of the SuperVGA 99

Table 5-1. PC memory map

Address Contents
F000:FFFF

F000:0000 BIOS ROM

E000:0000 LAN, Tape Backup, EMS,...
CC00:0000 Other add-on card BIOSes
C800:0000 XT Disk BIOS
C000:0000 VGA/EGA BIOS ROM

B800:0000 CGA/VGA/EGA Display Memory (Second page of Hercules RAM)
B000:0000 MDA/VGA/EGA Display Memory (First page of Hercules RAM)
A000:0000 VGA/EGA Display Memory

0000:0400

Transient Program Area (User memory)

Resident part of COMMAND.COM
Disk buffers, Installable Drivers,...

DOS Kernel

BIOS Data Area

0000:0000 Interrupt Vectors

The host window used by the VGA varies depending on the mode of operation.
Table 5-2 contains the standard host windows and sample modes using each window.

Table 5-2. VGA host windows

Host Address Contents

C000:0000h - C0O0:5FFFh IBM VGA BIOS ROM (C000:7FFF for most VGAs)

B800:0000h - B800:7FFFh Color Text (Mode 3)
B000:0000h - B000:7FFFh Monochrome Text (Mode 7)

A000:0000h - A000:FFFFh VGA Graphics (Modes D, E, F, 10,...)
A000:0000h - B000:FFFFh Extended Graphics (A000:FFFF for most modes)

For text modes, which require relatively little data to be moved, a 32K space is used.
In graphics modes, where much more data is required, a 64K space is used. When all
four VGA color planes are used, this gives the processor access to 256K of display
memory (4 x 64K).

As screen resolution and number of colors increase, the amount of display memory
that must be accessed by the processor also increases. In some high resolution modes,
more than 256K of display memory must be accessed.

A simple way to gain access to more display memory is to increase the size of the
host memory space used by the VGA from 64K to 128K, using the memory address
space from A000:0 to B000:FFFF. This standard VGA option, which is selected via the

100 Advanced Programmer’s Guide to Super VGAs

Miscellaneous Register of the Graphics Controller, is both convenient and efficient but
has the limitation that it interferes with other co-resident display adapters such as MDA,
CGA, or Hercules. No IBM standard display modes use this 128K host window. An alter¬
native way to access more than 64K is to use a display memory paging scheme.

Memory Planes vs. Memory Pages

The standard IBM EGA and VGA include 256K of display memory. To allow proces¬
sor access to the full display memory through a 64K host window, the display memory
is divided into four memory planes (4 planes x 64K per plane = 256K). Memory
planes are illustrated in Figure 5-1, and are described in detail in our earlier text,
Advanced Programmer’s Guide to the EGAJVGA.

SuperVGAs may be configured with either 256K, 512K or 1024K of display memory.
To allow processor access to this larger display memory through a 64K host window,
most SuperVGAs include an added memory paging mechanism to allow a section of
display memory to be mapped to the processor.

Display Memory Paging

Display memory paging operates in a manner similar to the paging system used with
expanded memory boards (also called EMS or LIM/EMS memory after Lotus Intel

Architecture of the SuperVGA 101

Microsoft Expanded Memory Specifications). Before transferring data to or from dis¬
play memory, an application program must first select the proper memory page by
loading the page number into a page select register. This process is illustrated in Fig¬
ure 5-2.

1. Page Select

MOV DX,Port
Page 0

MOV AX,Index
2. Data Access MOV AH 02h

MOV ES:[DI],55h OUT DX,AX Page 1

1
1

I Page 2
1 55fi 55Fi

10 0 1 01 p

A000:0000
Page Select

Register

Page n

Host Address SDace

Display Memory

Figure 5-2. Page selection

Display memory paging mechanisms vary between SuperVGA manufacturers. In
later chapters which concentrate on manufacturer specific features, programming
examples titled Select_Page, Select_Read_Page and Select__Write__Page explain how
to use the paging scheme for each of the popular SuperVGA devices.

Documentation from a particular manufacturer may refer either to memory paging
or to memory banking; the concept is the same in either case. This text will use the
term memory paging, following the precedent that was set for expanded memory
boards.

The size of display memory pages varies between different VGA products, or even
between modes of the same product. 32K and 64K are common page sizes. The granu¬
larity of the page starting address (the minimum increment with which the starting
memory address for a page can be specified) also varies, and may be smaller than the
actual page size. A large page size with small granularity is desirable. Figure 5-3 shows
the effects of page size and granularity. A finer granularity requires more bits in the
paging register, as shown in Table 5-3.

102 Advanced Programmer’s Guide to Super VGAs

Figure 5-3. Granularity and page size

Table 5-3. Granularity vs. bits needed for Page Select register

Granule Size

IK

4K

32K

64K

Bits Needed

512KRAM

9 bits

7 bits

4 bits

3 bits

1024K RAM

10 bits

8 bits

5 bits

4 bits

Display memory paging schemes fall into three broad categories according to the
number of simultaneous pages supported, and the types of access supported (Read,
Write or Both) for each page.

One Display Memory Page

In the simplest implementation of display memory paging, only one memory page
may be selected at a given time. Functions that require data to be transferred from one
area of display memory to another, such as BITBLT operations, can be difficult to per¬
form using this scheme if data must be transferred between pages. Such transfers
become a four step process: select source page, read data, select destination page,
write data.

To minimize the amount of page switching required in such cases and to allow the
use of block move (REP MOVSB) instructions, data can be transferred using a tempo-

Architecture of the SuperVGA 103

rary buffer in host memory. A BITBLT operation using this approach is illustrated in
Figure 3-4.

Figure 5-4. BITBLT with one page

Two Simultaneous Memory Pages, One Read-only and One Wrlte-only

A second approach to display memory paging allows two separate pages of display

memory to be selected simultaneously, one page being read-only and the other page

being write-only. Both pages are mapped at the same host memory address. This is

illustrated in Figure 5-5.

Figure 5-5. BITBLT with Separate Read & Write Page

104 Advanced Programmer’s Guide to Super VGAs

This implementation permits fast data transfers from one page of display memory to
another, since block move instructions (REP MOVSB) can be used to move data

directly from one page to another. This approach also has limitations, however; it
offers no advantage for BITBLT operations that perform logical operations (AND, OR,

XOR, etc.) between source data and destination data, since the destination page is write
only. An intermediate buffer in host memory is still required.

Two Fully Independent Memory Pages

A more flexible approach to memory paging permits two fully independent memory
pages to be selected simultaneously at different memory addresses. Using this scheme,

BITBLT operations with logical functions can be performed with a minimum of page
switching, and without an intermediate buffer in host memory. This approach also has

disadvantages, however; since the two pages must reside at different host memory
addresses, the host window must be twice as large, or the page size must be cut in half.
Expanding the host window from 64K to 128K causes conflicts with secondary display
adapters. Reducing the page size below 64K complicates algorithms that must detect
page boundaries.

Graphics Programming with Paged Display Memory

Accessing display memory through a memory paging mechanism causes an inevita¬
ble degradation in drawing speed. This degradation can range from negligible to
severe, depending on how the drawing routines are written. As a drawing routine
advances through display memory, it is important to: 1) minimize the frequency with
which it must check for page boundaries, 2) minimize the number of instructions used
in boundary checks, and 3) perform page selection only when required.

For some drawing algorithms, it is possible to compute where page boundaries will
be crossed, then divide the drawing operation into two or more steps (one step for
each page). Page boundary checks are then not needed during the repetitive inner
loop of the drawing function.

Page Boundary Detection

For efficiency, drawing algorithms that move through a range of x and y coordinates
usually will not repetitively translate x,y coordinates into display memory addresses.
This translation is performed only once to initialize the drawing routine; afterward, the
drawing algorithm advances in the x or y direction simply by incrementing or decre¬
menting the display memory address by a constant value. Such algorithms are referred
to as DDAs (Digital Differential Analyzers).

Architecture of the SuperVGA 105

As memory addresses are incremented or decremented, periodic checks must be
made to detect the crossing of page boundaries. To maximize drawing performance,
these checks must be designed carefully.

If the display memory page size is 64K, the JC (jump on carry) instruction of the
processor can be used to efficiently check for page boundaries; for example, the fol¬
lowing code can be used to detect a page boundary during y coordinate updates
(Video__Pitch must be positive):

ADD SI,Video_Pitch ;advance to next scan line
JNC Skip_Page_Select ;skip page select if not needed
CALL Select_Next_Page ;select next page if needed

Skip_Page_Select:

For better efficiency, the jump instruction on every check can be avoided until a
page boundary is detected (which occurs fairly infrequently):

ADD SI,Video_Pitch ;advance to next scan line
JC Next_Page ;check for page boundary

Return_Label:

or

SUB SI/Video_Pitch jdecrement to previous scan line
JC Prev_Page ;check for page boundary

Mien incrementing (or decrementing) the x coordinate, an increment (INC DI) or
decrement (DEC DI) instruction will not update the carry flag. For page boundary
detection using the carry flag, INC DI must be replaced by ADD DItl and DEC DI
must be replaced by SUB DI(L MOV$ and STOS instructions also do not update the
catty flag

The time consuming jump is taken only when a page boundary is detected. The tar¬
get of the jump (Next_Page or Prev_Page) must update the page select register, then
jump back to continue the algorithm. A more complete example of this technique can
be found in the Line programming example shown in Chapter 7.

High level languages do not easily allow the carry flag to be tested directly, but a test
for overflow can still be performed if Offset (the display memory address offset) and
Video_Pitch are stored as unsigned 16-bit data types. In C, for example, the following
code can be used:

if ((Offset = Offset + Video_Pitch) < Video_Pitch)
Select_Next_Page();

When the page size is less than 64K, page boundaries can be detected by testing spe¬
cific address bits in the memory address:

add si,Video_Pitch
test si/ADDOh ;Check for 3EK page boundary
jnz next_page ;If bit set, page boundary was crossed

106 Advanced Programmer’s Guide to Super VGAs

In many cases, it is not necessary to test for a page boundary following every mem¬
ory address increment. During BITBLT operations, for example, it is usually sufficient
to check for page boundaries at the end of each scan line. Each scan line can then be
moved in the most efficient manner, utilizing instructions such as MOVS and STOS
where appropriate. This approach may require that the memory page and offset be
adjusted to assure that a page boundary can never be crossed in the middle of a scan
line; in some modes this is automatic (in 1024x768 resolution, for example, 64K page
boundaries will never occur in the middle of a scan line).

In the Scanline programming example, only one check is needed to see if the scan
line crosses a page boundary. If the operation (xO + dx) causes overflow, the scan fill is
split into two steps; otherwise a single REP STOS instruction is used to draw the entire
scanline. At most only two page selects are needed; one at the start of the fill, and possi¬
bly one more at the page boundary.

When using the block move instructions of the 80286 processor (REP MOVS or REP
STOS), 16-bit transfers (MOV$W and STOSW) are more efficient than 8-bit transfers
(MOVSB or STOSB), To handle the possible odd last byte created by using 16-bit
transfers, the following code can be used:

MOV CX*Count ;Petch how atauy bytes to do
SBR ex,* ;Convort byts ccuut to word count
SEP MOVStr ;Move all words
ADC CX,Q ;Sot counter to do the possible odd byte
REP MOVSB ;Move the possible odd byte

When both DI and SI are initially even (word aligned), the transfer is even faster,
since only half as many transfer axles are required with MOVSW as with MOVSB.

It should be noted that 16-bit transfers may not be usable in 16-color planar modes
if the VGA processor data latches are being used for Latched Writes, bit masking, or
logical operations, since these latches are only 8 bits wide.

Enhanced Modes
Enhanced display modes with higher resolution and more colors are the most

important feature of the SuperVGAs. High resolution text modes that permit 132-col¬
umn spreadsheets to be displayed are common, as well as high resolution graphics
modes with 256 simultaneous color capability. Not all VGA boards support the same
enhanced display resolutions, but certain resolutions have become de facto standards.
These have mainly been determined by the capabilities of the displays that are avail¬
able. Popular resolutions include 640x480, 800x600, and 1024x768 pixels. Since these

Architecture of the SuperVGA 107

modes were developed as extensions to the basic VGA, there is usually a high degree
of similarity in the way that they are implemented.

Enhanced Text Modes

By varying both the resolution of the display and the size of a character cell, many
different text modes can be supported.

Modes that display a wider screen (more characters per line) are useful for applica¬
tions such as spreadsheets where many columns of data must be displayed. 132-col¬
umn text is popular since it represents a standard width for computer printouts, but
even at the highest resolutions characters are small and difficult to read in this format.
100-column and 120-column formats are also popular.

132-column text modes usually require more than 1000 pixels of horizontal resolu¬
tion on the display. While this exceeds the published specifications for virtually all VGA
class displays, characters are still readable on most of the popular VGA displays,
although with some loss of quality.

Organization of display memory for enhanced text is the same as that for standard
VGA modes (see chapter 2). Enhanced features include higher resolutions and addi¬
tional attribute bits for font selection (see Figure 5-6).

Figure 5-6. Enhanced text modes

Enhanced Graphics Modes

Modes that offer 256 simultaneous colors at resolutions greater than the 320x200
pixels offered by IBM’s mode 13h can be used to present full color photographic
images with impressive fidelity. Modes that offer 16 colors at higher resolutions than
the IBM VGA are popular for applications that involve fine visual details, such as CAD/

108 Advanced Programmer’s Guide to Super VGAs

CAM and desktop publishing. Modes that offer high resolution with only 2 or 4 colors
are popular for WYSIWYG (What You See Is What You Get) displays in desktop pub¬
lishing, where resolution is important but colors usually are not. Figure 5-7 illustrates

the enhanced graphics modes resolutions.

640 x 400 256-Color Graphics

This is a logical resolution for many adapters to support because it requires 256,000
Bytes of display memory, which is the amount of display memory included on every
VGA product (262,144 Bytes). The resolution is also an exact multiple of the standard
VGA mode 13h (320x200 256 colors.). This is the only common extended graphics
mode which does not have square pixels (4:3 aspect ratio is needed to achieve square
pixels on industry standard displays).

The implementation of this mode will usually resemble VGA mode 13h except that
both the number of pixels per scan line and the number of scan lines are doubled.
Since color planes are not used in 256-color modes (these modes use packed pixels),
some form of memory paging is needed to make the full 256K of memory available to
the processor. Display memory organization for this mode is explained in detail in
chapter 8.

640 x 480 256-Color Graphics

A resolution equal to the highest standard VGA resolution, with 256-color capability,
makes this a logical mode for SuperVGAs. This mode can only be supported by VGAs
that include at least 512K of display memory.

The implementation of this mode will usually resemble mode 13h except that the
number of pixels per scan line is doubled and the number of scan lines is increased.
Some form of memory paging is required to make the larger display memory available

Architecture of the SuperVGA 109

to the processor. Display memory organization for this mode is explained in detail in
chapter 8.

800 x 600 256-Color Graphics

This is the highest resolution that is available on most low cost (under $700) multi¬
frequency displays. It is also the highest possible 256 color resolution available on
adapters with 512K of display memory. Full color photographic images can be dis¬
played with remarkable fidelity at this resolution. This mode requires 480K of display
memory, and usually resembles mode 13h except that the number of pixels per scan
line and number of scan lines are both increased. Display memory paging is required.
The organization of display memory for this mode is described in chapter 8.

1024 x 768 256-Color Graphics

This is the highest resolution found on SuperVGA cards today. Although some chip
manufacturers claim the capability of resolutions up to 1280x1024, or 16-bit pixels
(65,536 colors), as of this writing there are no SuperVGA adapters available with capa¬
bilities beyond 1024x768 with 256 colors. This mode requires 768K of display mem¬
ory, and resembles mode 13h except that the number of pixels per scan line and
number of scan lines are both increased. Display memory paging is required. The
organization of display memory for this mode is described in chapter 8.

800 x 60016-Color Graphics

This mode requires 240K of display memory, and is the highest 16-color resolution
that can be supported using only 256K of display memory. It is also the highest 16-
color resolution that can be supported without utilizing some form of memory paging
scheme to allow the processor to access the full display memory. This resolution is also
the upper limit of resolution on the original multifrequency displays.

The implementation of this mode usually resembles mode 12 (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines is increased. Display memory organization for this mode is described in Chapter
7.

1024 x 768 16-Color Graphics

This is the highest resolution that is commonly found in VGA products. Only the best
VGA displays can support this resolution. Its implementation usually resembles mode
12 (640x480 16-color graphics), except that both the number of pixels per scan line
and the number of scan lines is increased.

In order for a VGA adapter to support this resolution, its design must include two
key elements: it must include at least 512K of display memory to accommodate the

110 Advanced Programmer’s Guide to Super VGAs

larger screen, and it must have the capability to operate at a video rate of around 65

MHz (or 45 MHz for interlaced displays).
At this resolution, the screen contains 786,432 pixels which exceeds the number of

pixels (524,288) that can be accessed in one 64K segment of memory. To make this
large display memory accessible to the processor, some form of memory paging must

be employed. The exact implementation varies depending on the manufacturer.
Some displays use interlacing to reduce the bandwidth requirement at this resolu¬

tion. Some VGA boards support both interlaced and non-interlaced displays, some sup¬

port interlaced displays only, and some support non-interlaced displays only.
Display memory organization for this mode is described in detail in Chapter 7.

1024 x 768 4-Color Graphics

4-color graphics are popular for desktop publishing, where color is usually not as

important as the resolution. Limiting the number of colors allows higher resolutions to

be supported without increasing the size of the display memory. This resolution is the
highest resolution possible on boards with 256K of display memory. Fewer colors for
each pixel can also result in improved performance since the processor has fewer bits

to write during drawing operations.
Typical display memory organization for this mode is explained in Chapter 9.

The BIOS

Ideally, all standard BIOS functions should be available in all of the extended modes
of a SuperVGA. This is unfortunately not the case for most VGA boards. Virtually all

SuperVGAs support the BIOS Mode Select function in all extended display modes;
other BIOS support differs depending on the manufacturer.

Some manufacturers have extended the BIOS text functions to work in their
extended text modes, but many VGAs do not support the ability to use BIOS text func¬
tions while in an extended graphics mode. These functions are especially difficult to
support in high resolution graphics modes which require display memory paging.

As VGA complexity has increased, the size of the BIOS ROM has also increased. The

EGA BIOS uses 16K of system memory in the address range from C000:0000 to
C000:3FFF. The IBM VGA uses 24K of system memory in the address range from

C000:0000 to C000:5FFF. Some manufacturers have taken even larger spaces for their
BIOS; others have developed methods of expanding the BIOS without increasing its
allocated ROM space.

Some SuperVGA boards use a paged BIOS ROM. Since ROM is not affected by mem¬
ory write operations, a write operation to the BIOS ROM space is used to select the
desired ROM memory page.

Architecture of the SuperVGA 111

Other VGA boards locate some of their BIOS code in system memory. This method
will also speed up the execution of BIOS functions, since system memory is normally
faster than BIOS ROM memory. This can provide a measurable performance improve¬
ment during text operations.

The Video Electronics Standards Association (VESA) has defined a new set of BIOS
functions which can be used to improve compatibility between different VGA prod¬
ucts. To learn more about VESA, see Chapter 20.

Other Features
Some VGA products offer other useful features such as hardware zoom (the ability to

enlarge a section of the screen), or hardware support for a graphics cursor. This kind
of added support can improve the overall performance of the board by reducing the
overhead imposed on the system processor, providing the software is written to take
advantage of these features.

Application Software Drivers

New display modes are of little use if the software you are using doesn’t support
them. A lack of standardization between VGA vendors has hindered application soft¬
ware vendors who are adding support for new VGA modes to their products. VGA ven¬
dors have been forced to take on the task of supplying drivers for popular application
programs. Drivers that are commonly supplied include Microsoft Windows, GEM, Ven¬
tura Publisher, Autocad, Lotus 1-2-3, Versacad, Word Perfect and Word.

16-bit Data Buses

The IBM EGA and VGA boards use an 8-bit data bus to communicate with the proces¬
sor. It is a common practice when designing enhanced versions of IBM AT-compatible
products to add the capability to operate on a full 16-bit data bus, on the theory that
data transfers will be faster with a wider bus. In most popular applications, the increase
in data transfer rate to display memory usually has little or no measurable effect on the
performance of the system or display, and in some systems it may even conflict with
other add-on boards. The 16-bit data bus has proven to be an effective marketing tool,
however, and seems to help sell boards regardless of its merits, “sixteen bit” seems to
have the same effect on buyers as the words “fuel injection” on a sports car.

For many types of drawing functions, most VGA graphics programmers will choose
to restrict memory transfers to only 8 bits at a time to maintain compatibility with as
many VGA boards as possible.

Some performance gain can be achieved by widening the VGA BIOS ROM from 8
bits to 16 bits. This improvement is only seen during BIOS text functions, however.

112 Advanced Programmer’s Guide to Super VGAs

Text functions are normally not a performance problem, even in the slowest of
systems.

Automatic Display Detection

The IBM VGA, as well as many SuperVGAs, can automatically detect through the dis¬
play interface cable whether the display that is attached is color or monochrome.
Detection is done automatically by the VGA BIOS. If a monochrome display is detected,
the video DAC registers are adjusted to convert color information into monochrome
gray scale information.

Some VGA products do not include automatic display detection but use EGA style
configuration switches instead. Newer VGA products will normally support display
detection.

Automatic display detection makes system configuration easy, but it can have side
effects. If a system is started with no display connected, the VGA may default to mono¬
chrome mode. This means that if you power up your system with the display unat¬
tached (or not powered on) then attach (or power on) the display, the display will be
in a monochrome mode until the VGA is reset. Often this means recycling power on
the system to reset the VGA to its proper mode.

Adapter Identification
When writing software that must cope with different types of video adapters, it is

often useful to be able to automatically detect what type of video adapter is being used.
Unfortunately, there is no single test that can provide this information for all adapter
types. A sequence of tests can often identify the adapter type:

1.) Video BIOS function 12h, subfunction lOh (return info on EGA/VGA configura¬
tion) can be used to identify if an EGA or VGA is present in the system. The BH
register of the processor will be modified by this call if and only if an EGA or VGA
BIOS is present:

MOV AH/lEh
MOV BL,lDh
MOV BH,55h
INT IDh
CMP BH,55h
JE No_EGAVGA

;BIOS function 15h
;Subfunction IDh
;Initialize BH for test
;Make BIOS call
;If BH is unchanged,
;There is no EGA or VGA

2.) Video BIOS function lAh, subfunction 0 (Read Display Configuration Code) can
be used to distingush between EGA and VGA presence. If a VGA is present, regis¬
ter AL will return a value of lAh:

MOV AH/1Ah
MOV AL,0
INT IDh

;BIOS function lah
;Subfunction □
;Do BIOS call

Architecture of the SuperVGA 113

CMP AL,1Ah ;If al = lah,
JE VGA_Found ;A VGA is present

3.) The manufacturer of a particular VGA board can frequently be determined by
examining the BIOS ROM area at memory address C000:0000 for copyright
messages or signature bytes, or by testing for the presence of special “Extended”
I/O registers, or by a combination of both. As an alternative, one can loop through
known paging methods, and for each method attempt to fill several pages with its
page number, until these page numbers can be reliably read back.

4.) After determining the manufacturer, it may be necessary to determine the version
of the board or version number of the VGA chip to determine what features it will
support. This type of test, however, becomes very device-specific and may even
require a written agreement to be executed with the manufacturer to receive the
required information.

Specific adapter identification methods are provided later in the text for those man¬
ufacturers that made such information available.

Selecting a SuperVGA

When selecting a VGA adapter for a particular application, consider the following
factors:

Know Your Application

• Are particular high resolution modes most important?
• Are 256-color modes important?
• Are there particular application programs that the VGA must be compatible with?
• Will you be writing or adapting software yourself?
• Will the vendor provide you with programming info (clones often do not)?
• What other adapter boards will be resident in the system?
• Are there any potential address conflicts in the modes you need?
• Is support needed for TTL displays?

Know Your Operating System

Not all SuperVGAs will run with operating systems other than DOS. If you plan to
use OS/2, Unix, Xenix or other operating systems, make sure you test the board first
with the particular operating system. Little or no support is provided to permit the use
of extended display modes with Unix or any of its derivatives.

114 Advanced Programmer’s Guide to Super VGAs

Evaluate Compatibility

• Are EGA, CGA, or MDA emulations supported and are they needed?
• Do BIOS functions work in the extended modes?
• Are extended display modes closely patterned after IBM standard modes?
• Will there be address conflicts with other boards in your system?
• Do memory and I/O spaces conform to IBM standards?
• Are drivers provided for your application taking full advantage of the board?

Some VGA boards use a full 128K memory address space in high resolution graphics
modes. This can create incompatibilities with other video adapters.

Know Which Displays are Supported

Many VGA boards are limited in the choice of monitors they support. For example,
some “Hercules compatible” VGAs will not run with monochrome TTL displays. Some
VGAs support 1024x768 interlaced or non-interlaced, but not both.

Evaluate Features

• Are any useful application software drivers provided?
• Can you utilize any vendor specific features (such as hardware zoom or hardware

graphics cursors)?

Evaluate Performance

• Do the application software drivers perform well?
• Does the display memory paging scheme perform well?
• Does it have a 16-bit bus?
• Does it run the video BIOS in RAM?
• Will it run in high speed systems (20MHz and above)?

IBM Compatibility

Manufacturers of IBM-compatible equipment have had a difficult job trying to main¬
tain compatibility with IBM in the last few years. As IBM implements more and more
of their display circuitry in proprietary VLSI integrated circuits, the task of designing
a clone has become formidable. IBM even has two versions of their VGA chip, one
for use on system boards and one for use as an add-in board.

The IBM EGA was introduced in 1985, and it was a full year later that companies
such as Chips and Technologies and Tseng Labs were able to produce the chip sets
(integrated circuits) required for compatible products to be produced. Shortly

Architecture of the SuperVGA 115

thereafter, when IBM unveiled the VGA, some companies began making premature
claims of VGA compatibility. They placed labels such as 'VGA BIOS compatible’' on
products that were not much more than EGA boards with upgraded BIOS ROMS,
After several more months of intense engineering, true VGA-compatible products
became available.

Even in its enhanced modes of operation, a SuperVGA board should remain true to
the IBM standard. Ask questions such as these to evaluate IBMcompatibility; Is it
IBM-compatible even in non-IBM modes? Are the BIOS functions supported in the
new modes? Is the full register set useable? Does the memory map resemble that of
any of the standard modes?

Programming Examples
Overview

117

118 Advanced Programmer’s Guide to Super VGAs

How the Programming Examples are Organized
Since the focus of this book is on the enhancements that separate SuperVGAs

(enhanced VGA boards) from the standard IBM VGA, the programming examples will
concentrate on how to utilize the enhanced features and extended display modes of
the SuperVGAs. To learn more about standard VGA features see our previous text,

Advanced Programmer’s Guide to EGANGA.
Despite the lack of standardization among VGA suppliers in the way that enhance¬

ments have been added, most extended SuperVGA display modes are closely pat¬
terned in structure after standard IBM display modes. This fortunate circumstance
eases the burden of programming for SuperVGAs, as well as the task of documenting it
(for which the authors are grateful). In addition, display modes with a particular color

capability but different resolutions tend to be very similar in structure.
Because of these basic similarities between the extended display modes of

SuperVGA products from various vendors, the same basic drawing algorithms apply to
most SuperVGA products with only minimal modification. By separating board-specific
functions from the basic drawing algorithms (via procedures and global variables), we
have centralized the bulk of our programming examples into common sections that

apply to most extended display modes with minimal modifications.
Several versions of each drawing routine are provided according to the type of

memory organization used for each display mode. SuperVGA memory organization is
divided into three basic types: 256-color graphics, 16-color graphics, and 4-color

graphics. In chapter 7, titled “Programming Examples—256-Color Graphics,” pro¬
gramming examples are provided that can be applied to all 256-Color graphics modes.
Chapter 8, titled “Programming Examples—16-Color Graphics,” gives programming

examples for 16-color graphics modes using planar pixels (ATI is the only manufac¬
turer that offers 16-color mode using packed pixels) Chapter 9, “Programming Exam¬
ples—4-Color Graphics,” shows programming examples for 4-color modes (three

different approaches are presented there).
For each basic memory organization, examples are given showing how to draw

basic graphics primitives such as pixels, lines and rectangles, and how to perform
BITBLT transfers. Also included are routines to draw and erase a software graphics cur¬
sor, load the color palette, and move a screen image to or from a file on disk. Because

of the length and complexity of some of these functions, some programming examples
are explained but not completely listed in the text. Complete versions of all examples

can be found on the diskette that accompanies this book.
All drawing algorithms are written in assembly language. The test program, used to

exercise the drawing routines, is written in the C language. Assembly language rou¬
tines are written assuming that input parameters will be placed on the stack before the
routine is called, conforming to the convention for C-callable subroutines. For infor-

Programming Examples Overview 119

mation regarding recent updates to the diskette and support for other languages see
the READ.ME file on the diskette.

All drawing routines assume that the display adapter is already initialized to the
appropriate display mode before the drawing routine is invoked.

What is on the Diskette
The diskette of programming examples is structured to follow the programming

examples in the text. Examples have been divided into two groups, the board-indepen¬
dent examples and the board-dependent examples, as indicated in Figure 6-1.

Files in the directory DEMOS are demonstration and test programs DEMO.C,

SHOW. ASM, and GRAB .ASM, and sample scanned images PICTUREx.IMG. Files in
directories 256COL, 16COL, 4COL, and 2COL contain drawing routines that are inde¬
pendent of any particular board (one directory for each memory organization type).
Other directories contain files with board-dependent and mode-dependent
procedures.

Each directory contains a file named SELECT.ASM containing mode and page selec¬
tion procedures, files named MODExx.INC containing mode-dependent constants, and
make files named DEMO, DEMO.LNK, SHOW and GRAB.

120 Advanced Programmer’s Guide to Super VGAs

For more up-to-date information on the content of the diskette, please read the file
READ.ME found in the root directory of the diskette.

How to Use the Programming Examples
Programming examples consist of 1.) a set of common drawing routines, and 2.) a

set of board-specific special examples. All drawing routines are designed to be con¬
figurable to run at various resolutions and on various different VGA products. The
drawing routines reference a number of board- and mode-dependent variables, and

call board- and mode-dependent subroutines.
Board-specific examples, variables, and routines are provided in later chapters that

are dedicated to SuperVGA products from specific manufacturers. The general drawing

routines are described in this chapter.
Included on the program diskette is the demonstration module DEMO.C which is

provided to illustrate the use of each of the drawing routines. To demonstrate the
drawing routines on a wide range of boards and with all major graphics modes, the
demonstration modules have been set up to be linked as indicated in Figure 6-2.

..\DEMOS

r MODE63.INC T

l ..\256COL*.ASM

DEMO.C. f SELECT.ASM 1 (" WPIXELASM

1 CL l
]+C

%
MASM MASM

DEMO.OBJ SELECT.OBJ D + C WPIXEL.OBJ.Tft ITDEM063.EXe1

^ UNK

> CD TSENG
> MAKE MODE=63 DRAWDIR=..\256COL DEMO

> DEM063

Figure 6-2. Building the DEMO.EXE program

Each version of the DEMO.EXE program can be built using the MAKE.EXE utility pro¬
vided with Microsoft and Turbo language products. For each board manufacturer rep¬
resented in the text, a Make file DEMO (no extension) is provided which is used with

Programming Examples Overview 121

the MAKE.EXE utility to build the program. Use the CD (change directory) command to
change to the directory for the desired board manufacturer and then invoke the
MAKE.EXE utility.

Two command line parameters are need to properly use the Make file. The MODE
macro determines the mode to be used. The DRAWDIR macro determines which set of
drawing routines to use (4, 16 or 256 color). For example, to build a program
DEM062.EXE for the 640x480 256-color mode on ATI boards use the following
commands:

CD ATI
MAKE M0DE=t5 DRAWDIR=..E5bC0L DEMO

These commands will cause the file MODE62.INC to be included in the file
SELECT.ASM (described in the next section), and link it with DEMO.C and with draw¬
ing routines for 256-color memory organization. Batch files are provided on the disk¬
ette to invoke the MAKE.EXE process for each mode.

Board- and Mode-Dependent Variables

Board- and mode-dependent variables are initialized during the build process from
an appropriate include file MODEXX.INC. The name of the proper include file is pro¬
vided as a parameter to the MAKE.EXE utility. For example, to build the demo program
for the ATI board the following commands can be used:

CD ATI
MAKE M0DE=b2 DRAWDIR=..25bC0L DEMO

The constants in the Include file are used to initialize variables referenced by the
drawing routines. Table 6-1 contains a list of constants in the Include file, and the cor¬
responding variables initialized with the constants in the SELECT.ASM file.

Table 6-1. Mode-dependent constants and corresponding variables

Constant Variable used by Drawing Routines

SCREEN_PITCH Video_Pitch

SCREEN_WIDTH Video_Width

SCREEN_HEIGHT Video_Height

SCREEN_PAGES Video_Pages

CAN_DO_RW Two__Pages

GRAPHICSJMODE (Used in INT 10 video service)

Meanings of these constants are as follows:
SCREEN__PITCH equals the logical length (in bytes) of a scan line. Adding the value

VIDEO_PITCH to a memory address is equivalent to advancing vertically by one scan

122 Advanced Programmer’s Guide to Super VGAs

line on the screen. For 800x600 planar mode, this value will normally be 100 decimal
(800/8); for 1024x768 planar mode, a value of 128 decimal (1024/8) is normally used.

SCREEN_WIDTH equals the number of pixels in one scan line. In 256-color modes

this is same as SCREEN_PITCH.
SCREEN_HEIGHT equals the number of scan lines visible on the screen. For

example in 640x480 graphics modes, this will be set to 480.
SCREEN_PAGES equals the number of memory pages needed to clear the entire

screen. The clear screen routine will clear 64K per page for pages 0 through

Video_Pages -1.
CAN JDO_RW is a flag that indicates, when true (nonzero), that the display mem¬

ory paging mechanism for the board can support two simultaneous memory pages
(one for reading and one for writing). Bit 0 is used to indicate that separate read and
write pages are available at the same 64K host window. Bit 1 is used to indicate that two
independent pages are available, each at its own 32K host window.

GRAPHICS_MODE is the mode number used to invoke a graphics mode. This
number is normally the number used in the Mode Select service of the INT lOh BIOS

call.
For each board there are several MODExx.INC files, one for each memory type. Files

for other modes can be constructed from these, using the existing files as templates.

Board- and Mode-Dependent Routines

Board-dependent routines referenced by the drawing routines are contained in the
module SELECT.ASM which is in the appropriate board-dependent section. The

SELECT.ASM module contains the following routines:
Select_Graphics selects a graphics mode specified in the include file

MODEXX.INC (mode XX is specified as a command line parameter in the MAKE direc¬
tive). Typically this will be a call to Mode Select service of INT lOh BIOS calls.

Select__Page selects a specified page of display memory. Page selection is usually
performed by the simple procedure of outputting the desired page number to an I/O
port, but the way in which the page selection port is addressed varies from vendor to

vendor.
Select_Read_Page selects a specified 64K page of display memory for reading, on

boards that support separate read and write memory pages, and selects 32K page A for
boards that support two independent pages.

Select__Write_Page selects a specified 64K page of display memory for writing on
boards that support separate read and write memory pages, and selects 32K page B for
boards that support two independent pages.

The module SELECT.ASM also contains the global variables Video_Pitch,
Video_Width, Video_Height and Two_Pages initialized by constants from
include file MODExx.INC, described in the previous section and shown in Table 6-1.

Programming Examples Overview 123

For programming convenience, two other global variables are defined in the mod¬
ule SELECT.ASM:

Graph__Seg is the memory segment address where display memory is mapped to
the host. This is normally set to segment AOOOh.

Line__Buffer is the address of a buffer in host memory which is large enough to
buffer one scan line of pixel data. This buffer is used by BITBLT procedures as an inter¬
mediate buffer for boards which do not have dual page capability.

Listings for these procedures can be found in later chapters of the book that provide
board-dependent information for individual manufacturers.

Computing which Page to Select

Drawing examples in this text take input parameters in terms of x,y screen coordi¬
nates, and translate these coordinates to addresses in display memory. Coordinates
X,Y are translated to Page:Segment:Offset, and for some modes a Mask value,
where:

X and Y are the coordinates of a pixel on the display, with pixel 0,0 at the upper-left
corner of the screen, x increasing to the right, and y increasing down.

Page is a page number in display memory. This value depends on the page size and
granularity of a given mode used for the board.

Segment is the host memory address segment (usually fixed at A000).
Offset is the host memory address offset within the segment.
Mask determines bit position(s) within a byte for a particular pixel.

The computation required to perform this translation will usually be of the form:

Page:Offset = (Y * Video_Pitch + X / Pixels__Per__Byte) / Page___Granularity

where:

Page is the quotient of the expression.
Offset is the remainder of the expression.
Video__Pitch is the logical length of a scan line (in bytes).
Pixels_JPer_Byte is 8 for planar pixel modes , 1 for 8-bit packed pixel modes.
Page_Granularity is the increment, in bytes, between successive memory pages.

For example, in 256-color drawing routines, with 64K pages, page and offset can
computed using code similar to the following:

;Convert x,y to PagerOffset
MOV AX,Y_Coord ;Fetch y coordinate
MUL CS:Video_Pitch ;Compute offset of first byte in y-th line
ADD AX,X_Coord ;Compute offset of x-th byte within y-th line
ADC DX,D ;Add overflow from previous addition
;Save computed values

124 Advanced Programmer’s Guide to Super VGAs

MOV SI,AX
MOV PageNumber,DL
;Select page
MOV AL,PageNumber
CALL Select_Page
;Fetch data
MOV DS,CS:Graf_Seg
LODSB

;Save offset of the pixel
;Save page number

;Select page

;Fetch segment of display memory (AODD)
;Fetch pixel value at x,y

It is important to be aware that the page granularity may not be the same as the page
size. Ideally, page granularity should be as small as possible, allowing pages to be
selected with the greatest flexibility, while the page size should be as large as possible
so that page switching can be minimized. Page size and granularity are similar concepts
to the segment size and granularity of Intel 80x86 processors, where segment size is

64K, and segment granularity is 16 bytes.
In order to design a common set of drawing routines that can be usable for all

SuperVGAs, we have elected to use a page size and granularity of 64K for all program¬
ming examples. This may not be the optimum case for any particular board or display
mode, and more efficient versions of the routines can be written for some SuperVGAs,
but this generalization greatly simplifies the drawing routines, and allows for a smaller

set of examples.

Drawing Routines
In this section is a brief description of each of the drawing routines available on the

diskette. Each routine has several versions, one for each memory organization. Listings
for most of these routines are included for each memory organization type in chapters
7 through 9. All routines are include on the diskette.

Accessing display memory through a memory paging mechanism causes an inevita¬
ble degradation in drawing speed. This degradation can range from negligible to
severe, depending on how the drawing routines are written. As a drawing routine
advances through display memory, it is important to: 1.) minimize the frequency with
which it must check for page boundaries, and 2.) perform page switching efficiently
(see the section “Graphics Programming with Paged Display Memory,” in Chapter 5).
Each of the drawing routines here has been selected to demonstrate a particular tech¬
nique. The following examples provide representative techniques needed for many

common drawing functions.

Write Pixel

Writing a single pixel is the most basic drawing function, and makes a useful exam¬
ple. For practical drawing algorithms, however, pixels are usually not written one at a
time. The Write Pixel function is too slow to use in a practical drawing algorithm.

Procedures Write_Pixel and Read_Pixel illustrate the conversion of (x,y) pixel
coordinates to (Segment:Offset:Page) display memory addresses, and show how to

Programming Examples Overview 125

access individual pixels. In 256-color modes this process is reduced to a computation
of Page and Offset; in other modes bit masks must be computed and plane enable reg¬
isters must be manipulated.

Read Pixel

Read Pixel, like Write Pixel, is a useful programming example that shows how to
access individual pixels but is too slow for use in practical drawing algorithms.

Draw Solid Line

While the task of drawing a straight line between two points may seem simple, fast
and efficient, line drawing algorithms are actually quite complex. The line drawing
routine shown here is based on Bresenham’s Algorithm, which is described in detail in
the text Fundamentals of Interactive Computer Graphics by Foley and Van Dam.

This procedure provides a good example of how page boundaries are detected in
incremental algorithms. For 64K pages, page boundary crossings occur when the
address offset overflows’ or ’underflows’; it is sufficient to check the ctoy flag after the
address offset is updated. Care must be taken to use the proper instruction to update
the offset; the instructions INC and DEC will not set the carry flag but ADD and SUB
will. When a negative offset is added or subtracted, the role of the carry flag is reversed.

Draw Scan Line

This routine draws a horizontal line between two specified points. It is much faster
and more efficient than the generalized line drawing routine shown above, and is use¬
ful for performing operations such as polygon fills. It also shows how to avoid check¬
ing for page boundaries after every pixel is drawn. This routine takes advantage of the
fact that within any scan line there will be at most one page boundary to be crossed.

Fill Solid Rectangle

Rectangle filling is the simplest form of fill operation. A rectangle of a specified size
is filled with a given color. In planar modes this routine illustrates how to efficiently
handle partial bytes at the leading and trailing edges if the rectangle.

Copy Block

Bit block transfer operations (BITBLTs) move a rectangle of pixels from one part of
display memory to another. Graphical user interfaces, such as Microsoft Windows and
GEM, rely heavily on the use of BITBLT operations. BITBLT routines can be very com-

126 Advanced Programmer’s Guide to Super VGAs

plex because of the number of cases that must be considered. The block move may
move data from off-screen memory to on-screen, from on-screen memory to off¬
screen, or from one on-screen location to another on-screen location. If source or des¬
tination are off-screen, then source and destination memory may have a different pitch
(logical line length). If both are on-screen, then source and destination may overlap. In
this case, care must be taken so that source data is not destroyed while the move is in
progress. In addition, the BITBLT may involve a logical operation between source data
and the background data in the destination rectangle.

This example works for only the simplest case of BITBLT, where both source and

destination are in display memory. In 256-color modes, no logical operations are per¬
formed. In planar modes, only the built-in operations COPY, XOR, OR, and AND are
supported. It is still necessary to check for overlap between source and destination,
and to check for page boundary crossings. The BITBLT procedure provides an exam¬
ple of how to copy a block of data, where the source may lie in a different page than the
destination, and how to perform the copy with a minimal number of page select
operations.

Set Cursor, Move Cursor, Remove Cursor

Graphics cursors, such as arrows, crosshairs, or other shapes, are commonly used in
graphical environments. Because cursors are frequently moved, it is important that
they are drawn and erased efficiently. Three basic routines are needed to maintain a
graphics cursor:

Set_Cursor: Stores a user-defined cursor shape, and sets a flag indicating that the cur¬
sor is active.

Move__Cursor: Restores the background data at the previous cursor location, saves
the background data at the new cursor location to off-screen memory, and draws the
cursor at the new location.

Remove_Cursor: Restores the background data at the previous cursor location;
resets flag to indicate that cursor is no longer active.

When available, this module is replaced, in the make file DEMO, by the board-
dependent module HWCURSOR.ASM, to demonstrate use of a hardware cursor on
boards that support it.

Load DACs

For 256-color modes, selection of screen colors can be modified by altering the
color lookup table in the video DACs. This can be accomplished through a BIOS func¬
tion call, or by directly loading the registers as shown in this example.

Programming Examples Overview 127

Load Palette

For 16-color and 4-color modes, selection of screen colors is normally done by alter¬
ing the palette registers in the Attribute Controller. This can be accomplished through
a BIOS function call, or by directly loading the registers as shown in this example.

Write Raster, Read Raster

For 256-color modes we have included the routines Read_Raster and Write__Raster.
These two routines are used by the GRAB.COM program to save an image in display
memory into a file, and by the program SHOW.EXE to display an image from a file.
Several scanned images are provided on the programming diskette. Each image file
contains a 768-byte color table which is used to load the DAC registers, followed by 480
lines of video data, each line containing 640 bytes (640 pixels). Image files must be
unpacked using the PKUNZIP.EXE utility provided on the diskette before they can be
displayed by SHOW.EXE.

GRAB.COM is a TSR program which can be used to save the contents of display
memory to a file. To save an image, press the <SHIFT><PrtSc> keys. The first image will
be saved with the filename PICTUREO.IMG, the second into PICTURE1.IMG, and so on.
No compression is done on the image data.

Programming Examples
256-Color Graphics

129

130 Advanced Programmer’s Guide to Super VGAs

Introduction
256-color modes are becoming increasingly popular because of the image quality

that can be achieved. High resolution 256-color graphics modes are useful for applica¬
tions such as presentation graphics where photographic image quality is warranted. As
display memories continue to increase in size, these could become the most common
modes for VGA programming. Drawing algorithms tend to be simple and efficient
because bit masking and plane switching are not required. One byte of display mem¬
ory is equivalent to one pixel on the screen.

Common 256-color resolutions are 640x400, which requires just 256K of display
memory, 640x480 and 800x600 which require 512K of display memory, and 1024x768,
which requires 1024K of display memory. Some drawing algorithms can be simplified
for 1024x768 resolution, since a page boundary will never occur in mid-scanline.

The programming examples in this chapter illustrate programming techniques for
these modes, using packed pixels with eight bits per pixel. They will show how to draw
graphics primitives such as pixels, lines and rectangles, and how to perform BITBLT
transfers. These examples are intended to be usable on any VGA board that supports
any resolution in 256 colors and packed pixels. It is assumed that the board has already
been initialized to the appropriate graphics mode before the programming examples
are invoked.

Display Memory Organization
Figure 7-1 shows the organization of display memory for these modes. Each pixel

occupies one byte in the display memory. To convert from a pixel position, in X and Y
coordinates, to page and offset in the display memory, using 64K pages, the following
relations can be used:

Page = (Video__Pitch x Y + X)/10000h
Segment = AOOOh
Byte Offset = (Video_Pitch x Y + X) mod lOOOOh

Programming Examples—256-Color Graphics 131

Drawing Routines
Write Pixel

_Write_Pixel is a simple example that shows how to access a pixel with screen coor¬
dinates x,y. The x,y coordinate is used to compute a page and offset using the 16-bit
multiply instruction MUL followed by a 32-bit add. At the completion of these two oper¬
ations, register DX contains the page number and register AX contains the offset. Page
selection is performed using the board-dependent procedure __Select__Page. The
pixel can be accessed directly using the offset in AX and the mode-dependent segment
variable Graf_Seg. No VGA registers need to be manipulated, and no masking opera¬
tions are needed.

Listing 7-1. File: 256COL\WPIXEL.ASM

* *

* File: WPIXEL.ASM - A Bit Packed Pixel Write *
* Routine: _Write_Pixel *
* Arguments: X, Y, Color *
* *

j**

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_X EQU WORD PTR [BP+4]

132 Advanced Programmer’s Guide to Super VGAs

Arg_Y EQU WORD PTR
Arg_Color EQU BYTE PTR

Write Pixel PROC NEAR
PUSH BP
MOV BP / SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

; Convert x,y pixel address to Page and Offset

MOV AX,Arg Y
MUL CS:Video Pitch
ADD AX,Arg X
ADC DX, □
MOV DS, CS:Graf Seg
MOV DI / AX
MOV AL, DL
CALL Select_Page

;Fetch y coordinate
; multiply by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits
;Put new address in DS:SI

;Copy page number into AL
;Select proper page

; Set pixel to supplied value

;Fetch color to use
;Set the pixel

MOV AL,Arg_Color
MOV [DI],AL

; Clean up and return

POP SI
POP DI
POP DS
POP ES

;Restore segment and index registers

MOV SP,BP
POP BP
RET

Write_Pixel ENDP

;Restore stack pointer
;Restore BP

TEXT ENDS
END

Read Pixel

_Read_Pixel is a companion procedure to _Write_Pixel. In 256-color modes there
are no substantial differences between the two procedures.

Listing 7-2. File: 256COL\RPIXEL.ASM

* *

* File: RPIXEL.ASM - A Bit Packed Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *
* *

J(c^e>)cj^3)c^e3)e^:3)cjtc>(c^:%3)c3(c5)c3)c^cj(c5(c)tc^c^^:3)c>)c>(c>(c3)c^;3f:5^3)c5)c^>|c>)c5(c5(c>)0(c^(5(c3(c>^>(c^cj)c)tc5)c^c>(c3(0t:>)c3tc5)c5)0t:>)c>)c^:5|c>jc^c^c3(c3)c^c^c3(c5)c

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

Programming Examples—256-Color Graphics 133

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_X EQU WORD PTR [BP + 4]
Arg_Y EQU WORD PTR [BP+b]

Read Pixel PROC NEAR
PUSH BP
MOV BP, SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

; Convert x,y pixel address to Page and Offset

MOV AX,Arg Y ;Fetch y coordinate
MUL CS:Video_Pitch ; multiply by width in bytes
ADD AX,Arg X ; add x coordinate to compute offs<
ADC DX, □ ; add overflow to upper lb bits
MOV DS,CS:Graf Seg ;Put new address in DS:SI
MOV SI, AX
MOV AL, DL ;C°py page number into AL
CALL Select_Page ;Select proper page

; Fetch the pixel value

MOV AL,[SI] ;Get byte of video memory
XOR AH, AH ;Clear upper byte (for return)

; Cleanup and return

POP
POP

SI
DI

;Restore segment and index registers

POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ; Restore BP
RET

.Read_Pixel ENDP

TEXT ENDS
END

Draw Solid Line

__Line is used to demonstrate techniques used in incremental algorithms. An initial
page and offset are computed from the starting x,y coordinate of the line. The line is
then classified according to its slope (the relative size of DX and DY), and whether x
and y are increasing or decreasing. Each line will fall into one of eight different classes,
with different sections of code applying to each class.

Although some code sections could be combined to reduce total code size, the code
is left in eight distinct sections to make it easier to add patterns and last pixel don’t
draw’ checks. Each of the eight sections is divided into two parts: incremental drawing
and page updating. For example, lines with positive DX and DY and DX greater than
DY use the incremental drawing code between the labels NL_xp_yp and NL__fixO.

This code is a standard adaptation of Bresenham’s line drawing algorithm, but with
two added JC instructions for page boundary detection: one after x is updated (ADD
DI,1) and one after y is updated (ADD DI,Pitch).

Advanced Programmer’s Guide to Super VGAs

Listing 7-3. File: 256COL\LINE.ASM

; * *

;* File: LINE.ASM - fl Bit Packed Solid Line *
;* Routine: _Line(xQ, yD, xl, yl, Color) *
;* Description: Draw line from (xD,yD) to (xl,yl) using color 'Color' *
- * *

INCLUDE VGA.INC

EXTRN Graf Seg:WORD
EXTRN Video Pitch:WORD
EXTRN Select_Page:NEAR

PUBLIC _Line

_TEXT SEGMENT BYTE PUBLIC 'CODE i

Arg_xD EQU WORD PTR [BP+4] ;Formal parameters
Arq yD EQU WORD PTR [BP + L]
Arg_xl EQU WORD PTR [BP+fl]
Arq yl EQU WORD PTR [BP + 1D]
Arg_Color EQU BYTE PTR [BP + 1E]

PageNo EQU BYTE PTR CBP-2] ;Local variables
D1 EQU WORD PTR [BP-4] ;Local variables
D2 EQU WORD PTR [BP-fc]
Pitch EQU WORD PTR [BP-fl]
Delta x EQU WORD PTR [BP-ID]
First_Mask EQU BYTE PTR [BP-12]

Line PROC NEAR
PUSH BP ;Standard C entry point
MOV BP,SP
SUB SP,12 ;Declare local variables

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Convert (x,y) starting point to Seg:Off and select page

MOV AX,Arg yD ;Fetch y coordinate
MUL CS: Video_Pitch ; multiply by width in bytes
ADD AX,Arg xD ; add x coordinate to compute offset
ADC DX , D ; add overflow to upper It bits

PUSH AX ;Save offset within page
MOV PageNo,DL ;Save new page selection
MOV AL, DL ;Load page number into AL
CALL Select_Page ;Select page
MOV DS,CS:Graf_Seg ;Setup segment of address

; Compute dx and dy and determine which coordinate is major

MOV AX,CS:Video Pitch ; set raster increment
MOV Pitch,AX
MOV SI,Arg_xl ; compute dx reg-si
SUB SI,Arg xD
MOV Delta x/SI
JGE dxispos
NEG SI

dxispos:

Programming Examples—256-Color Graphics

MOV DI,Arg_yl
SUB DI,Arg_yD
JGE dyispos
NEG WORD PTR Pitch
NEG DI

dyispos:

compute dy reg-di

; Determine which coordinate is the major one

CMP SI,DI ; check that dx > dy
JGE NL_xmajor
JMP NL_ymajor

Diagonal line for x-major

NL_JumpToDone:

POP PI ;Restore stack
JMP NL_linedone

Initialize error terms and updates for x-major

NL_yp:

MOV CX,SI
INC CX
SAL DI, 1
MOV DX, DI
SUB DX, SI
NEG SI
ADD SI, DX
MOV dl, DI
MOV dE, SI
POP DI

; Jump according to sig

TEST WORD PTR Pitch,
JZ NL_yp
NEG WORD PTR Pitch
TEST WORD PTR Delta_:
JNZ NL_long_ jump
JMP NL_xpyn
jump:
JMP NL_xnyn

TEST WORD PTR Delta_:
JZ NL_xpyp
JMP NL_xnyp

; Draw line where DX > [

; set counter to dx+1

; dl = dy*E reg-di
; d = dy*E-dx reg-bx

; dE = dy*E-dx-dx reg-si

; save dl
; save dE
; restore offset of first pixel

and dy

; Check if dy is positive

; Restore pitch

; go do dy negative dx positive

; go do both dy and dx negative

...no, check if dx also positive

...both dx and dy are positive

...dx is negative and dy positive

□ and DY > □ and x major

; Incremental drawing part

NL_xpyp:
MOV

NL_nextD:
MOV
ADD
JC

NL_pageO:
TEST
JNZ
ADD
ADD
JC

AL,Arg_Color

[DI],AL
DI, 1
NL_fixD

DX,flDODh
NL_dnegD
DX, dE
DI,Pitch
NL_fixDD

Fetch color of the pixel
Loop over pixels to be set
Set next pixel
Advance to next x
Go to select next page if needed

if d >= □ then ...

... d = d + dE

... advance to next y

... go to select next page if needed

136 Advanced Programmer’s Guide to Super VGAs

LOOP NL_nextD
JMP NL_linedone

NL dnegD:
ADD DX,dl if d < □ then d = d + dl
LOOP NL nextD
JMP NL_linedone

; Page update part

NL fixO: Advance to next page after x cross:
XCHG AL,PageNo Preserve AL, and fetch page number
INC AL Update page number
CALL Select Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
JMP SHORT NL_pageD

NL fixDD: Advance to next page after y cross.
XCHG AL,PageNo Preserve AL, and fetch page number
INC AL Update page number
CALL Select Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
LOOP NL nextD
JMP NL_linedone

; Draw line where DX < □ and DY □ and X major

NL xnyp:
MOV AL,Arg Color Fetch color of the pixel

NL nextJ: Loop over pixels to be set
MOV EDI],AL Set next pixel
SUB DI, 1 update offset
JC NL_fix3

NL page3:
TEST DX, flDDDh ; if d >= □ then ...
JNZ NL dneg3
ADD DX,d3 ; ... d = d + d2
ADD DI,Pitch ; update offset
JC NL_fix33
LOOP NL_next3
JMP NL_linedone

NL dneg3:
ADD DX, dl ; if d < □ then d = d + dl
LOOP NL_next3
JMP NL_linedone

NL fix3 :
XCHG AL,PageNo Preserve AL, and fetch page number
DEC AL Update page number
CALL Select_Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
JMP SHORT NL_page3

NL fix33:
XCHG AL/PageNo ; Preserve AL, and fetch page number
INC AL ; Update page number
CALL Select_Page ; Select new page number
XCHG AL/PageNo ; Save updated page, restore AL
LOOP NL_next3
JMP NL_linedone

; Draw line where DX > □ and DY < □ and x major

NL_xpyn:
MOV AL,Arg_Color ; Fetch color of the pixel

NL next?: ; Loop over pixels to be set
MOV EDI],AL ; Set next pixel
ADD DI, 1 ; update offset
JC NL fix?

Programming Examples—256-Color Graphics 137

NL_page?:
TEST DX,fi0[]0h ; if d >= □ then . . .
JNZ NL dneg?
ADD DX,dE ; ... d = d + dE
SUB DI,Pitch ; update offset
JC NL fix??
LOOP NL next?
JMP NL linedone

NL dneg?:
ADD DX,dl if d < □ then d = d + dl
LOOP NL next?
JMP NL_linedone

NL fix?:
XCHG AL/PageNo Preserve AL, and fetch page number
INC AL Update page number
CALL Select_Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
JMP SHORT NL page?

NL_fix7?:
XCHG AL,PageNo Preserve AL, and fetch page number
DEC AL Update page number
CALL Select_Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
LOOP NL next?
JMP NL_linedone

; Draw line where DX < □ and DY 0 and x major

NL xnyn:
MOV AL,Arg_Color Fetch color of the pixel

NL_next4: Loop over pixels to be set
MOV [DI], AL Set next pixel
SUB DI,1 update offset
JC NL fix A

NL page<:
TEST DX/flOODh ; if d >= 0 then ...
JNZ NL dneg4
ADD DX,dE ; ... d = d + dE
SUB DI,Pitch ; update offset
JC NL_fix44
LOOP NL_next4
JMP NL_linedone

NL_dneg4:
ADD DX, dl ; if d < 0 then d = d + dl
LOOP NL_next<
JMP NL_linedone

NL flxA :
XCHG AL,PageNo Preserve AL, and fetch page number
DEC AL Update page number
CALL Select_Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
JMP SHORT NL_page4

NL flxAA:
XCHG AL,PageNo Preserve AL, and fetch page number
DEC AL Update page number
CALL Select_Page Select new page number
XCHG AL,PageNo Save updated page, restore AL
LOOP NL_next<
JMP NL_linedone

; Diagonal line for y-major

NL JumpToDonel:
POP DI Restore stack
JMP NL_linedone

; Compute constants for dx < dy

138 Advanced Programmer’s Guide to Super VGAs

NL_py:

MOV CX, Dl ; set counter to dy+1
INC CX
SAL SI,1 ; dl = dx * E
MOV DX, SI ; d = dx * E - dy
SUB DX, Dl
NEG Dl ; dE = -dy + dx * E - dy
ADD Dl, DX
MOV dE, Dl ; save dE
MOV dl, SI ; save dl
POP Dl ; Restore address of first pixel

; Jump according to sign of dx and dy

TEST WORD PTR Pitch,fiOODh ; Check if dy is positive
JZ NL py
NEG WORD PTR Pitch
TEST WORD PTR Delta_x,flDDDh
JNZ NL_jump_ long
JMP NL_pxny ; go do dy negative dx positive

) long:
JMP NL_nxny ; go do both dy and dx negative

TEST WORD PTR Delta_x,flDDDh ; ...no, check if dx also positive
JZ NL_pxpy ; ...both dx and dy are positive
JMP NL_nxpy ; ...dx is negative and dy positive

; Draw line where DX > □ and

NL_pxpy:
MOV AL,Arg_Color

NL_nextl:
MOV [DI],AL
ADD Dl,Pitch
JC NL_fixl

NL_pagel:
TEST DX,fiODDh
JNZ NL_dnegl

ADD DX,dE
ADD DI,1
JC NL_fixll
LOOP NL_nextl
JMP NL_linedone

NL_dnegl:
ADD DX,dl
LOOP NL_nextl
JMP NL_linedone

NL_fixl:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
JMP SHORT NL_pagel

NL_fixll:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
LOOP NL_nextl
JMP NL_linedone

> 0 and y major

; Fetch color of the pixel

; Set next pixel
; update offset

; if d >= □ then ...

; ... d = d + dE
; ... update offset

; if d < □ then d = d + dl

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

; Draw line where DX < □ and DY > □ and y major

NL_nxpy:

Programming Examples—256-Color Graphics 139

MOV
NL_next2:

MOV
ADD
JC

NL_page2:
TEST
JNZ

ADD
SUB
JC
LOOP
JMP

NL_dneg2:
ADD
LOOP
JMP

NL_fix2:
XCHG
INC
CALL
XCHG
JMP

NL_fix22:
XCHG
DEC
CALL
XCHG
LOOP
JMP

AL,Arg_Color

[DI],AL
DI,Pitch
NL_fix5

DX,QDODh
NL_dneg2

DX, d2
DI,1
NL_fix22
NL_next2
NL_linedone

DX , dl
NL_next2
NL_linedone

AL,PageNo
AL
Select_Page
AL,PageNo
SHORT NL_page2

AL,PageNo
AL
Select_Page
AL,PageNo
NL_next2
NL_linedone

Fetch color of the pixel

Set next pixel
update offset

if d >= □ then ...

... d = d + d2

... update offset

if d < □ then d = d + dl

Preserve AL, and fetch page number
Update page number
Select new page number
Save updated page, restore AL

Preserve AL, and fetch page number
Update page number
Select new page number
Save updated page, restore AL

Draw line where DX > □ and

NL_pxny:
MOV AL/Arg_Color

NL_nextL:
MOV [DI]/AL
SUB DI,Pitch
JC NL_fixt

NL_pageb:
TEST DX/QDDDh
JNZ NL_dnegb

ADD DX,d2
ADD DI/1
JC NL_fixLL
LOOP NL_nextfc>
JMP NL_linedone

NL_dnegL:
ADD DX,dl
LOOP NL_nextL
JMP NL_linedone

NL_fixL:
XCHG AL/PageNo
DEC AL
CALL Select_Page
XCHG AL/PageNo
JMP SHORT NL_pageL

NL_fixLL:
XCHG AL/PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
LOOP NL_nextfc>
JMP NL_linedone

< □ and y major

; Fetch color of the pixel

; Set next pixel
; update offset

; if d >= □ then . . .

; ... d = d + d2
; ... update offset

; if d < □ then d = d + dl

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

140 Advanced Programmer’s Guide to Super VGAs

; Draw line where DX < □ and

NL_nxny:
MOV AL/Arg_Color

NL_next5:
MOV [DI],AL
SUB DI,Pitch
JC NL_fix5

NL_page5:
TEST DX,flDODh
JNZ NL_dnegS

ADD DX, dE
SUB DI,1
JC NL_fix55
LOOP NL_next5
JMP NL_linedone

NL_dneg5:
ADD DX,dl
LOOP NL_next5
JMP NL_.linedone

NL_fix5:
XCHG AL,PageNo
DEC AL
CALL Select_Page
XCHG AL,PageNo
JMP SHORT NL_pageS

NL_fix55:
XCHG AL,PageNo
DEC AL
CALL Select_Page
XCHG AL,PageNo
LOOP NL_next5
JMP NL_linedone

NL_linedone:

< □ and y major

; Fetch color of the pixel

; Set next pixel
; update offset

; if d >= 0 then . . .

; ... d = d + dE
; ... update offset

; if d < □ then d = d + dl

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

; Preserve AL, and fetch page number
; Update page number
; Select new page number
; Save updated page, restore AL

; Clean up and return to caller

End Line:
POP ES ;Restore segment registers
POP DS
POP SI
POP DI

MOV SP, BP ;Standard C exit point
POP BP
RET

_Line ENDP

_TEXT ENDS
END

Draw Scan Line

Scan line fill is a key building block in most fill algorithms. In the programming
example __Scan__Line, the input coordinates are first ordered so that XO < XI, and the
starting coordinate X0,Y is translated to Page:Offset. Scan line drawing is then per¬
formed in two parts. First a check is made to see if a page boundary will be crossed by
adding the starting offset (register DI) to the number of bytes to be filled (register CX).

Programming Examples—256-Color Graphics 141

The carry flag will be set if a page boundary is crossed, in which case the section of scan
line contained in the first page will be drawn using STOS instructions, and the byte
count adjusted, before the second display page is selected. In the second step, the rest
of the scan line (or all of the scan line, if no page boundary was detected) is drawn.

listing 7-4. File: 2 56COL\SCANLINE.ASM

;*
;* File: SCANLINE.ASM - fi Bit Packed Scan Line *
;* Routine: _Scan_Line(xO, xl, y, Color) *
»* Description: Fill scanline •y * with color 'Color' starting at 'xO' *
>* and ending at 'xl' . *
I* *

INCLUDE VGA.INC

EXTRN Video_Pitch: WORD
EXTRN Graf_Seg:WORD
EXTRN Select_Page: NEAR

PUBLIC _Scan_Line

_TEXT SEGMENT BYTE PUBLIC 'CODE'
Arg XD EQU WORD PTR [BP+<]
Arg_Xl EQU WORD PTR C BP+L]
Arg_Y EQU WORD PTR [BP+fl]
Arg_Color EQU BYTE PTR [BP+1D]

Scan Line PROC NEAR
PUSH BP
MOV BP, SP

PUSH DI
PUSH SI
PUSH DS
PUSH ES

MOV AX,Arg XD
MOV CX,Arg Xl
CMP CX, AX
JGE In_Order
MOV Arg XD,CX
MOV Arg Xl,AX

;Formal parameters

;Make sure that xl > = x0

Compute address of first pixel, and width of scan

; Compute page number and select the page

In_Order:
MOV AX,Arg_Y
MUL CS:Video_Pitch
ADD AX,Arg_X0
ADC DX,□

;Fetch y coordinate
; multiply by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

MOV DI,AX
MOV ES,CS:Graf_Seg
MOV AL,DL
CALL Select_Page

;Set offset
;Set segment
; Copy page to AL
;Select the page

MOV CX,Arg_xl
SUB CX,Arg_xQ
INC CX

;Fetch xD
;Compute width

142 Advanced Programmer’s Guide to Super VGAs

MOV AL,Arg_Color ; Fetch color
MOV AH,AL duplicate color in AH

; Draw the scanline

; Fill first page if page boundary may be crossed
MOV BX, CX ; Check if within page
ADD BX , DI
JNC Scan One Paqe
SUB CX , BX ; Number of bytes to do in this page

SHR CX,1 ; Adjust for move of words
REP STOSW ; Write new data
ADC CX,CX
REP STOSB
MOV CX , BX ; Number of bytes to do in next page
XCHG AL, DL ; Fetch page number, and preserve AL
INC AL ; Adjust page number
CALL Select Page ; Select next page
XCHG AL , DL ; Save updated page no., restore AL
JCXZ Scan Done
;Fill second (or only page)

Scan One Page
SHR CX,1 ; Adjust for move of words
REP STOSW ; Write all words of data
ADC CX,CX ; Write the last odd byte of data
REP STOSB

Scan_Done:

; Cleanup and exit

End Scan Line:
POP ES ;Restore saved registers
POP DS
POP SI
POP DI
MOV SP , BP ; Restore stack
POP BP
RET

_Scan_Line ENDP

TEXT ENDS
END

Fill Solid Rectangle

Rectangles are the easiest figures to fill. __Solid__Rect uses the same algorithm
described for _Scan_Line, except that the procedure is repeated for a specified
number of scan lines with an appropriate page and offset update between successive
scan lines.

Listing 7-5. File: 256COL\RECT.ASM

-it***
• * *

;* File: RECT.ASM - fi Bit Packed Solid Rectangle *
;* Routine: _Solid_Rect(xO, yO, xl, yl, Color) *
;* Description: Draw a solid rectangle with corners at (xD,yO) and *
;* (xl,yl), filling the interior with color 'Color' *
• * *

**

Programming Examples—256-Color Graphics 143

INCLUDE VGA.INC

EXTRN Video Pitch:WORD
EXTRN Graf Seg:WORD
EXTRN Select_Page:NEAR

PUBLIC _Solid_Rect

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg XO EQU WORD PTR [BP+<] ;Formal parameters
Arg YD EQU WORD PTR CBP+L]
Arg XI EQU WORD PTR [BP+fl]
Arg Yl EQU WORD PTR [BP+1D]
Arg_Color EQU BYTE PTR CBP+1E]

PageNo EQU BYTE PTR [BP-5] ;Local variables
Pitch EQU WORD PTR [BP-<]

Solid Rect PROC NEAR
PUSH BP
MOV BP / SP
SUB SV,A

PUSH DI ; Preserve registers
PUSH SI
PUSH DS
PUSH ES

; Rearrange corners so that xD < xl and yD < yl

MOV AX,Arg_XD ; Force xD < xl
MOV BX,Arg XI
CMP BX / AX
JGE X_In Order
MOV Arg_X0,BX
MOV Arg Xl, AX

X_In_Order:
MOV AX,Arg YD ; Force yD < yl
MOV BX,Arg Yl
CMP BX, AX
JGE Y In Order
MOV Arg_Y0,BX
MOV Arg Yl, AX

Y_In_Order:

; Compute address of first pixel (upper left corner), and dimensions

MOV AX/Arg_yO ;Fetch y coordinate
MUL CS:Video Pitch ; multiply by width in bytes
ADD AX,Arg xD ; add x coordinate to compute offset
ADC DX, D ; add overflow to upper It bits

MOV DI, AX ; Save offset within page
MOV PageNo,DL ; Save new plane selection
MOV AL, DL ; Copy page number to AL
CALL Select_Page ; Select page
MOV ES,CS:Graf_Seg ; Set segment registers

MOV CX,Arg_xl ; Set counter of bytes to do
SUB CX,Arg xD ; as (xE - xl + 1)
INC CX
MOV BX, CS .'Video Pitch ; Compute pitch increment
SUB BX, CX
MOV Pitch,BX

MOV DX,Arg_yl ; Set counter of rasters to do

144 Advanced Programmer’s Guide to Super VGAs

SUB DX,Arg_yD as (yE - yl + 1)

INC DX

MOV AL,Arg Color Fetch color
MOV AH, AL Duplicate color in both bytes

; Fill the rectangle

Scan_Loop:
PUSH CX Preserve byte counter

; Fill first page if page boundary may be crossed
MOV BX, CX Chech if within page

ADD BX / DI
JNC Scan_In_Page
SUB CX, BX Number of bytes to do in this page

SHR CX,1 Adjust for move ofwords
REP STOSW Write new data
ADC CX,CX
REP STOSB
MOV CX, BX Number of bytes to do in next page
XCHG AL,PageNo Fetch page number, and preserve AL
INC AL Adjust page number
CALL Select_Page Select next page
XCHG AL,PageNo Save updated page no., restore AL
JCXZ Scan_Done
; Fill second (or only page)

Scan_In_Page:
SHR CX,1 Adjust for move of words
REP STOSW Write all words of data
ADC CX,CX Write the last odd byte of data
REP STOSB

Scan_Done:

POP CX Restore counter of bytes in a raster
ADD DI,Pitch Compute ptr to byte in next raster
JC Rect_Fix_Page
DEC DX check if more rasters to do
JG Scan_Loop
JMP SHORT End_Rect

Rect_Fix_Page:
XCHG AL,PageNo Fetch page number, and preserve AL
INC AL Update page number
CALL Select_Page Compute and select new page number
XCHG AL,PageNo Save updated page no., restore AL
DEC DX check if more rasters to do
JG Scan_Loop

; Clean up and l return to caller

End Rect:
POP ES ; Restore saved registers
POP DS
POP SI
POP DI
MOV SP, BP ; Restore stack
POP BP
RET

_Solid_Rect ENDP

TEXT ENDS
END

Programming Examples—256-Color Graphics 145

Clear Screen

A full screen can be filled most efficiently by avoiding all address translations and
page boundary detection. _Clear_Screen shows how to efficiently erase the screen. At
the start of the procedure, display refresh is disabled to allow data to be moved into
display memory at the fastest possible rate. Display refresh normally imposes wait
states on the processor when display memory is read or written. Display refresh is re¬
enabled at the end of the procedure.

Listing 7-6. File: 256COL\CLEAR.ASM

* _ * »*****»»*»****»»*****»»*********»*»*«»»
* File: CLEAR.ASM - A Bit Packed Pixel Clear Screen *
* Routine: _Clear_Screen *
* Arguments: Color *

******************* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pages:WORD

PUBLIC _Clear_Screen

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_Color

_Clear_Screen
PUSH
MOV

PUSH
PUSH

EQU BYTE PTR [BP+<]

PROC NEAR
BP ;Standard high-level entry
BP, SP

ES ;Preserve registers
DI

; Enable maximum access to display memory (disable video refresh)

MOV DX,SEQUENCER_PORT
MOV AL,1
OUT DX,AL
INC DX
IN AL/DX
MOV AH,AL
OR AL,5Dh
OUT DX,AL
MOV AL/1
PUSH AX

;Fetch address of sequencer
;Index of clock select register
;Select register

;Read current value (to be restored)
;Save current value
;Set disable video bit
;Disable video refresh

;Save old value for later

; Clear display memory

XOR
MOV
MOV
MOV

Cls_Page_Loop:
XCHG
CALL
XCHG
XOR

BX, BX
AH,Arg_Color
AL, AH
ES,CS:Graf_Seg

AL, BL
Select_Page
AL, BL
DI, DI

jlnitialize page counter
;Color to fill with
;Duplicate in AH
;Select first segment

;Set page number in AL
;Select next page
;Restore fill color
;Set offset

146 Advanced Programmer’s Guide to Super YGAs

MOV CX,flODOh -.Number of words to clear
REP STOSW ;Clear the next segment
INC BX ;Update page counter
CMP BX,CS:Video_Pages ;A11 pages cleared?
JL Cls_Page_Loop ;If not go clear next one

; Restore video refresh

MOV DX,SEQUENCER PORT ;Fetch address of sequencer
POP AX ;Fetch previous value
OUT DX, AX ; Restore

POP DI
POP ES
MOV SP,BP
POP BP
RET

Clear_Screen ENDP

TEXT ENDS
END

Copy Block
_BitBlt shows how to perform simple block copying where both the source and des¬

tination are in display memory. It is the only example in this text that utilizes the dual
page capability of some VGA boards to improve performance. The module
BITBLT.ASM is divided into three parts according to the capabilities of the board being
used (as defined by the global variable Two_Pages). The organization of the module is
as follows:

If two separate 32K read-write pages are not supported:

{
If no reversal needed:

{

Compute starting point for source & destination
If source & destination in same page:

Copy using MOVS, no page check needed.
Else if separate read & write page not supported:

Copy using intermediate buffer.
Else if separate R & W, src & dst in different pages:

Copy using MOVSB, check for page crossings.
}

Else if x reversal needed (because of overlap of source and destination):
{
Adjust starting point and counters,
then proceed same as above (one of three methods).
}

Else if y reversal needed (because of overlap of source and destination):
{
Adjust starting point and counters,
then proceed same as above (one of three methods).
}

}
Else if two separate 35K read-write pages supported:

{

Enable dual paging.
If no reversal needed,

{

Compute starting point for source & destination.
Copy one raster at a time using MOVS, checking for page crossings.

;Restore registers

;Restore stack

Programming Examples—256-Color Graphics 147

)

Else if x reversal needed (because of overlap):

Adjust starting point and counters.
Copy one raster at a time using MOVS, checking for page crossing.

Else if y reversal needed (because of overlap):

Adjust starting point and counters.
Copy one raster at a time using MOVS, checking for page crossing.

}

Note that the transfer is performed by one of three code sections depending on the
capability of the board. Section 1 uses an intermediate buffer to move data between
display memory pages. Section 2 selects simultaneous separate read and write memory
pages. Section 3 uses two fully independent 32K memory pages.

Within each section, transfers are classified in one of three classes depending on
whether the source and destination rectangles overlap: (1) traverse x left-to-right and y
top-to-bottom, (2) reverse x traversal, and (3) reverse y traversal.

For VGAs that allow only one page of display memory to be selected, a check is made
to see if both source and destination lie within the same page. If not, an intermediate
buffer in system memory must be used to transfer data between pages.

For each case, BITBLT data is transferred one scan line at a time using REP MOVS
instructions if no page boundaries exist on the scan line. If a page boundary is detected
on a scan line (for either the source or the destination), data is transferred one byte at a
time.

148 Advanced Programmer’s Guide to Super VGAs

Listing 7-7. File: 256COL\BITBLT.ASM

* *

* File: BITBLT.ASM - A Bit Packed Bit Block Transfer *
* Routine: _BitBlt *
* Arguments: Source X, Source Y, Destination X, Destination Y, *
* Width, Height *
* *

**

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Ras_Buffer:BYTE
EXTRN Select_Page:NEAR
EXTRN Select_Read_Page:NEAR
EXTRN Select_Write_Page:NEAR
EXTRN Two_Pages:BYTE
EXTRN Enable_: Dual_Page: NEAR
EXTRN Disable. -Dual. .Page ::NEAR

PUBLIC _BitBlt

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_Src_X EQU WORD PTR [BP+4] ;Formal parameters
Arg Src Y EQU WORD PTR [BP+L]
Arg_Dst_X EQU WORD PTR CBP+A]
Arg Dst Y EQU WORD PTR [BP + 1Q]
Arg DX EQU WORD PTR [BP+12]
Arg_DY EQU WORD PTR [BP+14]

Pitch EQU WORD PTR [BP-D2];Local variables
Src_Page EQU BYTE PTR [BP-04]
Dst_Page EQU BYTE PTR CBP-OL]

BitBlt PROC NEAR
PUSH BP
MOV BP, SP
SUB SP,L ;Allocate space for local variables

PUSH DS ;Preserve segment registers
PUSH ES
PUSH DI
PUSH SI

Check for support of two 32K pages (normally L4K pages are used)

TEST CS:Two_Pages,02h
JZ Not_Two_Pages
JMP Two_32k_Pages

;Check for two pages flag
;Do normal processing if L4k pages
;Go to 'faster' routines

Determine direction of traversal

Not_Two_Pages:
MOV AX,Arg_Dst_Y
CMP AX/Arg Src Y
JL BB_XPYP ;if Y_DST above Y_SRC traverse

J top to bottom
JE Check X
JMP BB_XPYN ;if Y_DST below Y_SRC traverse

bottom to top
Check_X: ;IF Y_DST same as Y_SRC traverse

top to bottom and

Programming Examples—256-Color Graphics 149

AX,Arg_Dst_X
AX,Arg_Src_X
BB_XPYP
BB_XNYP

revers x traversal if
X_SRC to the left of X_DST

; Traverse x left-to-right and y top-to-bottom

BB_XPYP:

; Compute Page:Offset for first pixel in source and destination

MOV AX,Arg_Src_Y ;Fetch y coordinate
MUL CS:Video_Pitch ; multiply by width in bytes
Jr? |JX,Arg_Src_X ; add x coordinate to compute offset
auc DX,□ ; add overflow to upper It bits

MOV SI,AX ;Save the address
MOV Src_Page,DL
MOV AL,DL ;Select source paqe
CALL Select_Page
MOV DS,CS:Graf_Seg ;Setup segment registers

MOV AX,CS:Video_Pitch ; Compute row to row increment

;Fetch y coordinate
; multiply by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Save address

MOV AX,Arg_Src_Y
MUL CS:Video_Pitch
ADD AX,Arg Src X
ADC DX, □

MOV SI, AX
MOV Src Page,DL
MOV AL, DL
CALL Select_Page
MOV DS,CS:Graf_Seg

MOV AX, CS : Video PH
SUB AX,Arg_DX
MOV Pitch,AX

MOV AX,Arg_Dst_Y
MUL CS:Video_Pitch
ADD AX,Arg Dst X
ADC DX, □

MOV DI, AX
MOV Dst_Page,DL
MOV ES,CS:Graf_Seg

; Check if both source

CMP DL,Src_Page
JNE BB_Dif_Pages

MOV AX,Arg_Src Y
ADD AX,Arg DY
DEC AX
MOV CX,Arg Src X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch
ADD AX, CX
ADC DX, □

CMP DL,Src_Page
JNE BB_Dif_Pages
MOV AX,Arg Dst Y
ADD AX,Arg DY
DEC AX
MOV CX,Arg_Dst X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch
ADD AX, CX
ADC DX, □

CMP DL,Src_Page
JNE BB_Dif_Pages

destination are within same page

;Are both src & dst in same page
;...no, go do it the hard way

;Compute address of last src pixel

multiply y by width in bytes
add x coordinate to compute offset
add overflow to upper It bits

Is last pixel in same page as first?
...no, go do it hard way
Compute address of last dst pixel

; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Is last pixels in same page as first?
;...no, go do it the hard way

; Perform blit for src and dst in same page

BB_Same_Page:

150 Advanced Programmer’s Guide to Super VGAs

BB Line Loop:
MOV CX,Arg DX ; Number of bytes to move

SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB ; Move the bytes

ADD SI/Pitch ; Update source pointer

ADD DI,Pitch ; Update destination pointer

DEC Arg DY
JG BB_Line_Loop ; If not done go do move next row

JMP BB_Done

: Perform blit from one page to another by
; copying one row at a time using an intermediate buffer

BB Dif Pages:
OR CS:Two Pages,0 ;Check if card capable of two pages

JZ BB One Page ;...no, must use intermediate buffer

JMP BB_Two_Pages ;...yes, go use two page pointers

; Move next row into temporary buffer

BB One Paqe:
MOV BX, DS ;Source segment

MOV DX, CS ;Destination segment

BB Row: ;Loop over rows to move

MOV CX,Arg DX ;Fetch block width

PUSH DI ;Preserve destination

MOV ES,DX ;Set ES to temporary buffer

MOV DS, BX ;Set DS to srouce segment

LEA DI,CS:Ras Buffer ;Use BX as index into tmp buffer

MOV AX,SI ;Check if source row in same page

ADD AX, CX
JC BB Col ;...no, go do it one pixel at a time

SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB ;...yes, do it the fast way

BB. Row In:
POP DI
ADD SI,Pitch ;Point to the next row

JC BB_FixOO
BB. 00:

MOV AL,Dst_Page ;Select destination page

CALL Select_Page

; Move next row into destination from temporary buffer

BB. Out:
MOV DS, DX ;Set DS to temporary buffer

MOV ES, BX ;Set ES to srouce segment
MOV CX,Arg DX ;Fetch block width

PUSH SI
LEA SI,CS:Ras Buffer ;Reset pointer within tmp buffer

MOV AX, DI ;Check if dest row in same page

ADD AX, CX
JC BB Coll ;...no, go do it one pixel at a time

SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB ;...yes, do it the fast way

BB Row Out:
POP SI
ADD DI,Pitch ; Point to the next row

JC BB_FixlO
BB 10:

MOV AL,Src Page ; Select source page
CALL Select_Page

BB 11:
DEC Arg DY ;Update counter of rows
JG BB_Row ;If not all rows done, go do another

Programming Examples—256-Color Graphics 151

JMP BB_Done

; Help code to move row across page boundary

BB_Col:
MOV AL,[SI]
STOSB
ADD SI,1
JC BB_Fix2D
LOOP BB_Col
JMP BB_Row_In

BB_Coll:
LODSB
MOV ES:[DI],AL
ADD DI/1
JC BB_Fix3D
LOOP BB_Coll
JMP BB_Row_Out

;Loop over columns to move
;Fetch source color
;Save in tmp buffer
;Update offset

;If not all bytes done, go do another

;Fetch source byte
;save in destination
;update offset

;If not all bytes done, go do another

; Help code to update and select next page

BB_FixDD:
INC
JMP

Src Page
BB_D0

;Update page number

BB_FixlD:
INC
JMP

Dst Page
BB_1D

;Update page number

BB_Fix3D:
INC
MOV
CALL
LOOP
JMP

Src_Page
AL,Src_Page
Select Page
BB_Col
BB_Row_In

;Update page

;Compute and

number

select new page number

BB_Fix30:
INC
MOV
CALL
LOOP
JMP

Dst_Page
AL,Dst_Page
Select Page
BB_Coll
BB_Row_Out

;Update page

;Compute and

number

select new page number

Perform bitblt from one page to another, taking advantage
of separate read and write pages

BB_Two_Pages:
MOV DX,Arg_DY
MOV AL,Src_Page
CALL Select_Read_Page
MOV AL,Dst_Page
CALL Select_Write_Page

BB_Row2:
MOV CX,Arg_DX
MOV AX,DI
ADD AX,CX
JC BB_ColE
MOV AX,SI
ADD AX,CX
JC BB_Col3
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

BB_Row_Done:
ADD SI,Pitch

;Fetch block height
;Select read page

;Select Write page

;Fetch block width
;Check if dest row in same page

;...no, go do it one pixel at a time
;Check if src row in same page

;...no, go do it one pixel at a time

;...yes, do it the fast way

;Update source pointer to next row

152 Advanced Programmer’s Guide to Super VGAs

JC BB_Fix4D
BB AO:

;Update destination pointer to next row ADD DI/Pitch
JC BB_Fix5D

BB 50:
;Update counter of rows DEC DX

JG BB Row2 ;If not done go do next row

JMP BB_Done

; Help routines to fix page crossing

BB TixAO:
INC Src_Page ;Update page number

MOV AL,Src Page
;Compute and select new page number CALL Select Read Page

JMP BB_A0

BB Fix5D:
INC Dst_Page ;Update page number

MOV AL,Dst Page
;Compute and select new page number CALL Select Write_Page

JMP BB_5Q
BB FixLO:

INC Src_Page ;Update read page

MOV AL,Src_Page
CALL Select Read_Page
JMP BB_LD

BB Fix?0:
INC Dst_Page ;Update write page

MOV AL/Dst_Page
CALL Select Write_Page
LOOP BB ColE
JMP SHORT BB_Row_Done

; Help routines to copy a row accross a page boundary

BB ColE:
MOV AL/DS:[SI] ;Fetch source byte

MOV ES:[DI],AL ;save in destination

ADD SI,1 ;update offset

JC BB_FixL0
BB. LO:

ADD DI /1
JC BB Fix7D

;If not all bytes done, go do another LOOP BB ColE
JMP SHORT BB_Row_Done

; Go to exit
BB. Done:

JMP End_BitBlt

Traverse x right-to-left and y from top-to-bottom

BB XNYP:
; Compute Page:Offset for first pixel in source and destination

STD
MOV AX,Arg_Src_Y ;Compute page and offset for source

MOV CX,Arg Src_X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX, CX ; add x coordinate to compute offset

ADC DX / D ; add overflow to upper 1L bits

MOV SI, AX ;Save the address
MOV Src Page,DL
MOV AL / DL ; Select source page
CALL Select Page
MOV DS,CS:Graf_Seg ;Setup segment registers

Programming Examples—256-Color Graphics 153

MOV AX,CS:Video Pitch
ADD AX,Arg DX
MOV Pitch,AX

MOV AX,Arg_Dst Y
MOV CX,Arg_Dst X
ADD CX,Arg DX
DEC CX
MUL CS: Video Pitch
ADD AX, CX
ADC DX, 0

MOV DI, AX
MOV Dst_Page,DL
MOV ES,CS:Graf_Seg

; Check if both source anc

CMP DL,Src Page
JNE BBXR_Dif_Pages

MOV AX,Arg Src Y
ADD AX,Arg DY
DEC AX
MUL CS:Video Pitch
ADD AX,Arg Src X
ADC DX, □

CMP DL,Src Page
JNE BBXR_Dif Pages
MOV AX,Arg Dst Y
ADD AX,Arg DY
DEC AX
MUL CS:Video_Pitch
ADD AX,Arg Dst X
ADC DX, D

CMP DL,Src_Page
JNE BBXR_Dif_Pages

;Compute row to row increment

;Compute page and offset for dest

; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Save address

;Are both src & dst in same page
; . . .no, go do it the hard way

;Compute address of last pixel

; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Is last pixel in same page as first?
;...no, go do it hard way
;Compute address of last pixel

; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Is last pixels in same page as first?
; ...no, go do it the hard way

Perform blit for src and dst in same page

BBXR_Line_Loop:
MOV CX,Arg DX
REP MOVSB
ADD SI,Pitch
ADD DI,Pitch
DEC Arg_DY
JG BBXR_Line_Loop
JMP BBXR_Done

; Number of bytes to move
; Move the bytes
; Update source pointer
; Update destination pointer

; If not done go do move next row

Perform blit from one page to another by
copying one row at a time using an intermediate buffer

BBXR_Dif_Pages:
OR CS:Two_Pages,□ ;Check if card capable of two pages
JZ BBXR_One_Page
JMP BBXR_Two_Pages ;...yes, go use two page pointers

; Move next row into temporary buffer

BBXR_One_Page:
MOV BX,DS
MOV DX,CS

BBXR_Row:
MOV CX,Arg_DX
PUSH DI

;Source segment
;Destination segment
;Loop over rows to move
;Fetch block width
;Preserve destination

154 Advanced Programmer’s Guide to Super VGAs

BBXR_

BBXR_

BBXR_

BBXR_

BBXR_

BBXR.

BBXR.

BBXR.

BBXR.

BBXR.

BBXR.

MOV ES,DX
MOV DS/BX
LEA DI,CS:Ras_Buffer[1023]
MOV AX,SI
SUB AX/CX
JC BBXR_Col
REP MOVSB

Row_In:
POP DI
ADD SI,Pitch
JC BBXR_FixOO

00:
MOV AL,Dst_Page
CALL Select_Page

; Move next row into destination
Out:

MOV CX/Arg_DX
MOV DS,DX
MOV ES/BX
PUSH SI
LEA SI,CS:Ras_Buffer[1D23]
MOV AX/DI
SUB AX,CX
JC BBXR_Coll
REP MOVSB

Row_Out:
POP SI
ADD DI,Pitch
JC BBXRJFixlO

10:
MOV AL,Src_Page
CALL Select_Page

.11:
DEC Arg_DY
JG BBXR_Row
JMP BBXR_Done

;Set ES to temporary buffer
;Set DS to srouce segment
;Use BX as index into tmp buffer
;Check if source row in same page

;...no, go do it one pixel at a time
;...yes, do it the fast way

; Point to the next row

; Select destination page

from temporary buffer

;Fetch block width
;Set DS to temporary buffer
;Set ES to srouce segment

;Reset pointer within tmp buffer
;Check if dest row in same page

;...no, go do it one pixel at a time
;...yes, do it the fast way

;Point to the next row

;Select source page

;Update counter of rows
;If not all rows done, go do another

; Help code to update and select next page

FixOO:
INC
JMP

Src Page
BBXR_00

;Update page number

FixlO:
INC
JMP

Dst Page
BBXR_10

; Update page number

FixEO:
DEC
MOV
CALL
LOOP
JMP

Fix30:
DEC Dst_Page ;Update page number
MOV AL,Dst_Page
CALL Select Page ;Compute and select new page number
LOOP BBXR_Coll
JMP BBXR_Row_Out

; Help code to move row across page boundary

Col: ;Loop over columns to move
MOV AL,[SI] ;Fetch source color
STOSB ;Save in tmp buffer
SUB SI,1 ; Update offset
JC BBXR FixEO
LOOP BBXR Col ;If not all bytes done, go do another
JMP BBXR Row In

Src_Page ;Update page number
AL,Src_Page
Select_Page ;Compute and select new page number
BBXR_Col
BBXR Row_In

Programming Examples—256-Color Graphics 155

BBXR_Coll:
LODSB ;Fetch source byte
MOV ES:EDI],AL ;save in destination
SUB DI,1 ; update offset
JC BBXR Fix3D
LOOP BBXR_Coll ;If not all bytes done, go do another
JMP BBXR_Row_Out

Perform bitblt from one page to another, taking advantage
of separate read and write pages

BBXR Two Pages
MOV DX,Arg_DY ;Fetch height of the block
MOV AL,Src_Page ;Select read page
CALL Select_Read_Page
MOV AL,Dst_Page ; Select Write page
CALL Select_Write_Page

BBXR_RowE:
MOV CX,Arg DX ;Fetch block width
MOV AX, DI ;Check if dest row in same page
SUB AX, CX
JC BBXR ColE ; ...no, go do it one pixel at a time
MOV AX,SI ;Check if src row in same page
SUB AX, CX
JC BBXR ColE ; ...no, go do it one pixel at a time
REP MOVSB :...yes, do it the fast wav

BBXR_Row_Done:
ADD SI,Pitch ;Update source pointer to next row
JC BBXR Fix<D

BBXR_40:
ADD DI,Pitch ;Update destination pointer to next row
JC BBXR FixSD

BBXR_50:
DEC DX ; Update counter of rows
JG BBXR_RowE ;If not done go do next row

JMP BBXR_Done

; Help routines to fix page crossing

BBXR_Fix40:
INC Src_Page ;Update page number
MOV AL,Src_Page
CALL Select Read Page ;Compute and select new page number
JMP BBXR AU

BBXR_Fix5D:
INC Dst_Page ;Update page number
MOV AL,Dst_Page
CALL Select Write Page ;Compute and select new page number
JMP BBXR 50

BBXR_FixLO:
DEC Src_Page ;Update read page
MOV AL,Src_Page
CALL Select Read Page
JMP BBXR GO

BBXR_Fix7D:
DEC Dst_Page ;Update write page
MOV AL,Dst_Page
CALL Select Write Page
LOOP BBXR_ColE
JMP SHORT BBXR_Row_Done

; Help routines to copy a row accross a page boundary
BBXR_ColE:

MOV AL,DS:t SI] ;Fetch source byte
MOV ES:[DI],AL ;save in destination
SUB SI,1 ;update offset

Advanced Programmer’s Guide to Super VGAs

JC BBXR_FixbO
BBXR. bD:

SUB DI, 1
JC BBXR Fix70
LOOP BBXR Col2
JMP SHORT BBXR_Row_Done

; Go to exit

BBXR. Done:
CLD
JMP End_BitBlt

;If not all bytes done, go do another

;Reset string direction

Traverse x left-to-right and y bottom-to-top

BB XPYN:
MOV AX,Arg Src Y ; Compute page and offset for source
ADD AX,Arg DY
DEC AX
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX,Arg Src X ; add x coordinate to compute offset
ADC DX, D ; add overflow to upper lb bits

MOV si,ax ; Save the address
MOV Src_Page,DL
MOV AL,DL ;Select source page
CALL Select_Page
MOV DS,CS:Graf_Seg ; ; Setup segment registers
MOV AX,CS:Video Pitch ; ; Compute row to row increment
ADD AX,Arg DX
MOV Pitch,AX

MOV AX,Arg_Dst_Y ;Compute page and offset for dest
ADD AX,Arg_DY
DEC AX
MUL CS:Video Pitch multiply y by width in bytes
ADD AX,Arg Dst X add x coordinate to compute offset
ADC DX, □ add overflow to upper lb bits

MOV DI,AX ; ;Save address
MOV Dst_Page,DL
MOV ES,CS:Graf_Seg

; Check if both source and destination are in same page

CMP DL,Src_Page ; ;Are both src & dst in same page
JNE BBRY_Dif_Pages ;...no, go do it the hard way

MOV AX,Arg_Src_Y ;Compute address of last pixel
MOV CX,Arg Src X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX, CX ; add x coordinate to compute offset
ADC DX, 0 ; add overflow to upper lb bits

CMP DL,Src Page ;Is last pixel in same page as first?
JNE BBRY Dif Pages ;...no, go do it hard way
MOV AX,Arg Dst Y ;Compute address of last pixel
MOV CX,Arg Dst X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX, CX ; add x coordinate to compute offset
ADC DX, 0 ; add overflow to upper lb bits

CMP DL,Src Page ;Is last pixels in same page as first?
JNE BBRY_Dif_Pages ;...no, go do it the hard way

Programming Examples—256-Color Graphics 157

Perform blit for src and dst in same page

BBRY_Line_Loop:
MOV CX,Arg DX ; Number of bytes to move
SHR CX,1
REP MOVSW ; Move the bytes
ADC CX,CX
REP MOVSB
SUB SI,Pitch ; Update source pointer
SUB DI,Pitch ; Update destination pointer
DEC Arg_DY
JG BBRY_Line_Loop ; If not done go do move next
JMP BBRY_Done

Perform blit from one page to another by
copying one row at a time using an intermediate buffer

BBRY_Dif_Pages:
OR CS:Two_Pages,0
JZ BBRY_One_Page
JMP BBRY_Two_Pages

; Move next row into temporary
BBRY_One_Page:

MOV BX,DS
MOV DX,CS

BBRY_Row:
MOV CX,Arg_DX
PUSH DI
MOV ES,DX
MOV DS,BX
LEA DI,CS:Ras_Buffer
MOV AX/SI
ADD AX/CX
JC BBRY_Col
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

BBRY_Row_In:
POP DI
SUB SI,Pitch
JC BBRY_FixOD

BBRY_DD:
MOV AL,Dst_Page
CALL Select_Page

;Check if card capable of two pages

;...yes, go use two page pointers

buffer

;Source segment
;Destination segment
;Loop over rows to move
;Fetch width of the block
;Preserve destination
;Set ES to temporary buffer
;Set DS to srouce segment
;Use BX as index into tmp buffer
;Check if source row in same page

;...no, go do it one pixel at a time

;...yes, do it the fast way

;Point to the next row

;Select destination page

; Move next row into destination from temporary buffer
BBRY_Out:

MOV CX,Arg_DX
MOV DS,DX
MOV ES,BX
PUSH SI
LEA SI,CS:Ras_Buffer
MOV AX,DI
ADD AX,CX
JC BBRY_Coll
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

BBRY_Row_Out:
POP SI
SUB DI,Pitch
JC BBRY_FixlD

BBRY_10:
MOV AL,Src_Page

;Fetch width of the block
;Set DS to temporary buffer
;Set ES to srouce segment

;Reset pointer within tmp buffer
;Check if dest row in same page

;...no, go do it one pixel at a time

;...yes, do it the fast way

;Point to the next row

;Select source page

158 Advanced Programmer’s Guide to Super VGAs

CALL Select_Page
BBRY_11:

DEC Arg_DY ;Update counter of rows
JG BBRY Row

JMP BBRY_Done
;If not all rows done, go do another

; Help code to move row across page boundary

BBRY Col: ;Loop over columns to move
MOV
STOSB

AL,[SI] ;Fetch source color
;Save in tmp buffer

ADD
JC

SI,1
BBRY Fix2D

;Update offset

LOOP
JMP

BBRY_Col
BBRY_Row_In

;If not all bytes done, go do another

BBRY_Coll:
LODSB ;Fetch source byte
MOV ES:[DI],AL ;save in destination
ADD
JC

DI, 1
BBRY FixED

; update offset

LOOP
JMP

BBRY_Coll
BBRY_Row_Out

;If not all bytes done, go do another

; Help code to update and select next page

BBRY_FixOO:
DEC
JMP

Src Page
BBRY_00

;Update page number

BBRY_FixlD:
DEC
JMP

Dst Page
BBRY_10

;Update page number

BBRY_Fix20:
INC
MOV

Src_Page
AL,Src_Page

;Update page number

CALL
LOOP
JMP

Select Page
BBRY Col
BBRY_Row_In

;Compute and select new page number

BBRY_Fix30:
INC
MOV

Dst_Page
AL,Dst_Page

; Update page number

CALL
LOOP
JMP

Select Page
BBRY Coll
BBRY Row Out

;Compute and select new page number

Perform bitblt from one page to another, taking advantage
of separate read and write pages

BBRY_Two_Pages:
MOV DX,Arg_DY
MOV AL,Src_Page
CALL Select_Read_Page
MOV AL,Dst_Page
CALL Select_Write_Page

BBRY_Row2:
MOV CX,Arg_DX
MOV AX,DI
ADD AX,CX
JC BBRY_Col2
MOV AX,SI
ADD AX,CX
JC BBRY_Col2
SHR CX,1
REP MOVSW
ADC CX,CX

;Fetch height of the block
;Select read page

;Select Write page

;Fetch width of the block
;Check if dest row in same page

;...no, go do it one pixel at a time
;Check if src row in same page

;...no, go do it one pixel at a time

Programming Examples—256-Color Graphics

REP MOVSB ; . . .yes, - do it the fast way
BBRY_ _Row_Done:

SUB SI/Pitch ; Update source pointer to next row
JC BBRY_Fix40

BBRY_ _4 0:
SUB DI,Pitch ;Update destination pointer to next
JC BBRY_Fix5D

BBRY_ _5D:
DEC DX ;Update counter of rows
JG BBRY_Row2 ; If not done go do next row
JMP BBRY_Done

; Help routines to fix page crossing

BBRY_Fix4D:
DEC Src_Page
MOV AL,Src_Page
CALL Select_Read_Page
JMP BBRY_4D

BBRY_Fix50:
DEC Dst_Page
MOV AL,Dst_Page
CALL Select_Write_Page
JMP BBRY_50

BBRY_FixLD:
INC Src_Page
MOV AL,Src_Page
CALL Select_Read_Page
JMP BBRY_LD

BBRY_Fix?0:
INC Dst_Page
MOV AL,Dst_Page
CALL Select_Write_Page
LOOP BBRY_Col2
JMP SHORT BBRY_Row_Done

;Update page number

;Compute and select new page number

;Update page number

;Compute and select new page number

;Update read page

;Update write page

; Help routines to copy a row accross a page boundary
BBRY_Col2:

MOV AL,DS:[SI] ;Fetch source byte
MOV ES: [DI],AL ;save in destination
ADD SI, 1 ;update offset
JC BBRY FixLD

BBRY_LD:
ADD DI, 1
JC BBRY FixTD
LOOP BBRY Col2 ;If not all bytes done, go do another
JMP SHORT BBRY_Row_Done

; Go to exit
BBRY_Done:

Cleanup and return

End_BitBlt:
POP SI ; Restore segment registers
POP DI
POP ES
POP DS
MOV SP,BP ;Restore stack
POP BP
RET

_BitBlt ENDP

160 Advanced Programmer’s Guide to Super VGAs

Routines to perform bitblt in two 3Ek pages

Set segment registers and enable dual paging

Two_3Ek_Pages:
MOV DS,CS:Graf_Seg[E] ;Set segments for transfer
MOV ES/CS:Graf_Seg[□]
CALL Enable_Dual_Page ;Eanble dual page paging

Determine direction of traversal

MOV
CMP

AX,Arg_Dst_Y
AX,Arg Src Y

JL BBS XPYP If Y DST above Y SRC traverse

JE X Check
top to bottom

JMP BBE_XPYN If Y_DST below Y_SRC traverse
bottom to top

K_Check: IF Y_DST same as Y_SRC traverse
top to bottom and

MOV AX,Arg_Dst_X : revers x traversal if
CMP
JLE
JMP

AX,Arg Src X
BBE XPYP
BBE XNYP

X SRC to the left of X DST

; Traverse x left-to-right and y top-to-bottom

BBE_XPYP:
; Compute PagerOffset for first pixel in source and destination

MOV AX,Arg Src Y Fetch y coordinate
MUL CS:Video Pitch multiply by width in bytes
ADD AX,Arg Src X add x coordinate to compute offset
ADC DX, □ add overflow to upper It bits
SHL AX, 1 Convert L4k page number to 3Ek
RCL DX, 1
SHR AX, 1
MOV SI, AX Save the address
MOV Src_Page,DL

MOV AX,Arg Dst Y Fetch y coordinate
MUL CS:Video Pitch multiply by width in bytes
ADD AX,Arg Dst X add x coordinate to compute offset
ADC DX, 0 add overflow to upper It bits
SHL AX, 1 Convert k page number to 3Ek
RCL DX, 1
SHR AX, 1
MOV DI,AX ; ;Save address
MOV Dst_Page,DL

MOV AX,CS:Video Pitch ; ; Compute row to row increment
SUB AX,Arg DX
MOV Pitch,AX

Perform bitblt from one page to another, taking advantage
of separate read and write pages

Programming Examples—256-Color Graphics 161

MOV DX,Arg_DY
MOV AL,Src_Page
CALL Select_Read_Page
MOV AL,Dst_Page
CALL Select_Write_Page

BB2_ _Row2:
MOV CX,Arg DX
MOV AX, DI
ADD AX, CX
JS BB2 Col2
MOV AX,SI
ADD AX, CX
JS BBS ColS
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

BB2_ .Row. Done:
ADD SI,Pitch
JS BB2_Fix^D

BB2_ .^D:
ADD DI,Pitch
JS BBS_Fix5D

BB2_ 50:
DEC DX
JG BBS_RowS
JMP BB2_Done

; Help routines to fix page

;Fetch block height
;Select read page

;Select Write page

;Fetch block width
;Check if dest row in same page

;...no, go do it one pixel at a time
;Check if src row in same page

;...no, go do it one pixel at a time

;...yes, do it the fast way

;Update source pointer to next row

;Update destination pointer to next row

;Update counter of rows
;If not done go do next row

sing

BB2_Fix4D:
AND SI,NOT AOODh
INC Src_Page
MOV AL,Src_Page
CALL Select_Read_Page
JMP BB2_4D

BB2_Fix50:
AND DI,NOT ADDDh
INC Dst_Page
MOV AL,Dst_Page
CALL Select_Write_Page
JMP BB2_50

BB2_FixL0:
AND SI/NOT ADDDh
INC Src_Page
MOV AL,Src_Page
CALL Select_Read_Page
JMP BB2_LD

BB2_Fix?D:
AND DI,NOT ADDDh
INC Dst_Page
MOV AL,Dst_Page
CALL Select_Write_Page
LOOP BB2_Col2
JMP SHORT BB2_Row_Done

;Clear sign bit
;Update page number

;Compute and select new page number

;Clear sign bit
;Update page number

;Compute and select new page number

;Clear sign bit
;Update read page

;Clear sign bit
;Update write page

; Help routines to copy a row accross a page boundary

BB2_Col2:
MOV AL,DS:[SI]
MOV ES:[DI]/AL
ADD SI,1
JS BB2_FixLD

BB2_L0:
ADD DI,1
JS BB2_Fix70
LOOP BB2_Col2
JMP SHORT BB2_Row_Done

; Go to exit

;Fetch source byte
;save in destination
; update offset

;If not all bytes done, go do another

162 Advanced Programmer’s Guide to Super VGAs

BB2_Done:
JMP End_2page_Blit

Traverse x right-to-left and y from top-to-bottom

BB2_XNYP:
; Compute Page:Offset for first pixel in source and destination

STD
MOV AX,Arg Src Y ;Compute page and offset for source
MOV CX,Arg Src X
ADD CX,Arg DX
DEC CX
MUL CS:Video_Pitch ; multiply y by width in bytes
ADD AX, CX ; add x coordinate to compute offset
ADC DX, 0 ; add overflow to upper It bits
SHL AX,1 ;Convert L4k page number to 32k
RCL DX, 1
SHR AX, 1
MOV SI, AX ;Save the address
MOV Src_Page,DL

MOV AX,Arg Dst Y ;Compute page and offset for dest
MOV CX,Arg_Dst_X
ADD CX,Arg DX
DEC CX
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX, CX ; add x coordinate to compute offset
ADC DX, □ ; add overflow to upper It bits
SHL AX, 1 ;Convert L4k page number to 32k
RCL DX, 1
SHR AX, 1
MOV DI, AX ;Save address
MOV Dst_Page,DL

MOV AX,CS:Video Pitch ;Compute row to row increment
ADD AX,Arg DX
MOV Pitch,AX

Perform bitblt from one page to another, taking advantage
; of separate read and write pages

MOV DX,Arg_DY ;Fetch height of the block
MOV AL,Src_Page ; Select read page
CALL Select_Read_Page
MOV AL,Dst_Page ; Select Write page
CALL Select_Write_Page

BB2XR Row2:
MOV CX,Arg DX ;Fetch block width
MOV AX, DI ;Check if dest row in same page
SUB AX, CX
JS BB2XR Col2 ; ...no, go do it one pixel at a time
MOV AX,SI ;Check if src row in same page
SUB AX, CX
JS BB2XR Col2 ; ...no, go do it one pixel at a time
REP MOVSB ;...yes, do it the fast way

BB2XR_ _Row Done:
ADD SI,Pitch ; Update source pointer to next row
JS BB2XR Yix40

BB2XR_ 40:
ADD DI,Pitch ; Update destination pointer to next row
JS BB2XR FixSO

BB2XR_ 50:
DEC DX ;Update counter of rows
JG BB2XR_Row2 ;If not done go do next row

Programming Examples—256-Color Graphics

JMP BBSXR_Done

; Help routines to fix page crossing

BB2XR_Fix40:
AND SI,NOT fiOOOh ;Clear sign bit
INC Src_Page ;Update page number
MOV AL/Src_Page
CALL Select Read Page ;Compute and select new page number
JMP BB2XR_4D

BB2XR FixSD:
AND DI,NOT flDDDh ;Clear sign bit
INC Dst_Page ;Update page number
MOV AL,Dst_Page
CALL Select Write Page ;Compute and select new page number
JMP BB2XR_5D

BB2XR_Fixt.D:
AND SI,NOT flDDDh ;Clear sign bit
DEC Src_Page ; Update read page
MOV AL,Src_Page
CALL Select Read Page
JMP BB2XR_t>D

BB2XR_Fix?D:
AND DI,NOT flDDDh ;Clear sign bit
DEC Dst_Page ;Update write page
MOV AL,Dst_Page
CALL Select Write Page
LOOP BB2XR_Col2
JMP SHORT BB2XR_Row_Done

; Help
BB2XR_Col2:

routines to copy a row accross a page boundary

MOV AL,DS:[SI] ;Fetch source byte
MOV ES:[DI],AL ;save in destination
SUB SI,1 ;update offset
JS BB2XR_Fixt.D

BB2XR_LD:
SUB DI, 1
JS BB2XR Fix?D
LOOP BB2XR Col2 ;If not all bytes done, go do another
JMP SHORT BBEXR_Row_Done

; Go to exit

BB2XR Done:
CLD ;Reset string direction
JMP End_2page_Blit

Traverse x left-to-right and y bottom-to-top

BB2_XPYN:
MOV AX,Arg_Src Y Compute page and offset for source
ADD AX,Arg DY
DEC AX
MUL CS:Video_Pitch multiply y by width in bytes
ADD AX,Arg Src X add x coordinate to compute offset
ADC DX, D add overflow to upper It. bits
SHL AX, 1 Convert L4k page number to 32k
RCL DX, 1
SHR AX, 1
MOV SI,AX ; ;Save the address
MOV Src_Page,DL

MOV AX,Arg_Dst_Y ; ;Compute page and offset for dest
ADD AX,Arg DY
DEC AX
MUL CS:Video Pitch multiply y by width in bytes
ADD AX,Arg Dst X add x coordinate to compute offset
ADC DX, D add overflow to upper It. bits

164 Advanced Programmer’s Guide to Super VGAs

SHL AX, 1 ;Convert L4k page number to 35k
RCL DX, 1
SHR AX, 1
MOV DI, AX ;Save address
MOV Dst_Page,DL

MOV AX,CS:Video_Pitch ; Compute row to row increment
ADD AX,Arg DX
MOV Pitch,AX

Perform bitblt from one page to another, taking advantage
of separate read and write pages

MOV DX,Arg_DY ;Fetch height of the block
MOV AL,Src_Page ;Select read page
CALL Select_Read_Page
MOV AL,Dst_Page ;Select Write page
CALL Select_Write_Page

BB2RY Row2:
MOV CX,Arg DX ;Fetch width of the block
MOV AX, DI ;Check if dest row in same page
ADD AX, CX
JS BB2RY_Col5 ;...no, go do it one pixel at a time
MOV AX, SI ;Check if src row in same page
ADD AX, CX
JS BB2RY Col2 ;...no, go do it one pixel at a time
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB ;...yes, do it the fast way

BB2RY_Row_Done:
SUB SI,Pitch ;Update source pointer to next row
JS BB2RY_Fix4 0

BBERY 40:
SUB DI,Pitch ;Update destination pointer to next row
JS BB2RY_Fix50

BB2RY 50:
DEC DX ;Update counter of rows
JG BB5RY RowE ;If not done go do next row
JMP BBERY_Done

; Help routines to fix page crossing

BB2RY Fix40:
AND SI,NOT flOOOh ;Clear sign bit
DEC Src_Page ;Update page number
MOV AL,Src_Page
CALL Select Read Page ;Compute and select new page number
JMP BBERY 40

BB2RY Fix50:
AND DI,NOT flOOOh ;Clear sign bit
DEC Dst_Page ;Update page number
MOV AL,Dst_Page
CALL Select Write Page ;Compute and select new page number
JMP BBERY_50

BB5RY_FixL0:
AND SI,NOT flOOOh ;Clear sign bit
INC Src_Page ; Update read page
MOV AL,Src_Page
CALL Select Read Page
JMP BBERY LO

BB2RY_Fix70:
AND DI,NOT flOOOh ;Clear sign bit
INC Dst_Page ;Update write page
MOV AL,Dst_Page
CALL Select Write Page
LOOP BBERY ColE
JMP SHORT BBERY_Row_Done

Programming Examples—256-Color Graphics 165

; Help routines to copy a row accross a page boundary
BB2RY_Col2:

MOV AL,DS:[SI] ;Fetch source byte
MOV ES: CDI],AL ;save in destination
ADD SI,1 ; update offset
JS BB2RY_FixLD

BB2RY_fc>0:
ADD DI,1
JS BB2RY_Fix7Q
LOOP BB2RY_Col2 ;If not all bytes done, go do another
JMP SHORT BBERY_Row_Done

; Go to exit
BB2RY_Done:

Cleanup and return

End_2page_Blit:
CALL Disable_Dual_Page ;Disable dual page paging
JMP End_BitBlt

_TEXT ENDS
END

Set Cursor, Move Cursor, Remove Cursor

This module contains three procedures to define, move, and remove a cursor in the
display memory.

In the procedure _Set__Cursor, monochrome XOR and AND masks are expanded

according to the parameters FG_Color (foreground color) and BG_Color (back¬
ground color). In this implementation these masks are stored on screen in an area
immediately below the first scan line in order to clearly show how the cursor is con¬

structed. By changing one line of marked code, the cursor mask storage area can be
moved off screen. The entire cursor mask storage area must reside within one page of
display memory.

At the end of the _Set_Cursor procedure, the variables Last_Cursor_X and
Last__Cursor_Y are initialized to ensure proper operation during first call to
_Move_Cursor.

In the procedure __Move_Cursor, the cursor masks are logically combined with the
background data from the new cursor position specified. A block twice the size of the

cursor is used to minimize flicker for small changes in cursor position. Background
data for a block around the cursor position is kept immediately next to the cursor
masks. A check is made to see if the cursor moved outside of the current block, and if
so, the cursor is removed from the screen (by calling _Remove__Cursor) and a new

block is copied to the save area. Next, the background save area is copied into the build
area (next to the save area), where the cursor masks are combined with the back¬
ground data. The data in the build area is then copied to the display.

166 Advanced Programmer’s Guide to Super VGAs

For a small motion of the cursor (within the same block), the cursor in the display
area is removed and placed in its new position in a single transfer; the cursor never
disappears from the screen and flicker is eliminated (until an edge of the block is
reached).

_Remove_Cursor restores the area under the cursor by transferring data from the
save area to the display.

With many VGAs the off-screen memory is not easily accessible when 256K modes
are used. Mode select will not enable the second bank of 256K. For these boards, all of
display memory can enabled in the routine _Select_Graphics in the board-dependent
module SELECT.ASM.

Listing 7-8. File: 2 56COL\ CURSOR.ASM

* File: CURSOR.ASM - A Bit Packed Cursor Routines *
* Description: Cursor manipulation routines *
* _Set_Cursor *
* _Move_Cursor *
* _Remove_Cursor *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Video_Height:WORD
EXTRN _BitBlt:NEAR
EXTRN Select_Page:NEAR

PUBLIC _Set_Cursor
PUBLIC _Move_Cursor
PUBLIC _Remove_Cursor

TEXT SEGMENT BYTE PUBLIC 'CODE'

Common cursor definitions

CUR_WIDTH EQU 35
CUR_HEIGHT EQU 35

AND_OFFSET
XOR_OFFSET
CUR_OFFSET
MIX_OFFSET

EQU □ ;Save area offsets in off-screen area
EQU CUR_WIDTH
EQU 5*CUR_WIDTH
EQU <*CUR_WIDTH

Last_Cursor_x DW □
Last_Cursor_y DW 0
Save_Area_y DW □
Save_Offset DW □

;Code segment variables

Programming Examples—256-Color Graphics

* _Set_Cursor(AND_Mask, XOR_Mask, FG_Color, BG_Color) *
* This procedure will expand the two cursor masks into *
* color. Normally the masks should be stored after the *
* last visible scan line (global parameter 'Video_Height', *
* however in this demo, the cursor masks and the 'save buffer' *
* will be stored immediately above the last line. This is done *
* so that the reader can clearly see the AND mask, the XOR mask, *
* and the area under the cursor in 'save buffer'. *
* *

* Entry: *
* AND_Mask - 4x32 bytes with AND mask *
* XOR_Mask - 4x32 bytes with XOR mask *
* BG_Color - Foreground color *
* FG_Color - Background color *

Arg_AND_Mask EQU WORD PTR [BP+4] ;Formal parameters
Arg_XOR_Mask EQU WORD PTR CBP+t]
Arg_BG_Color EQU BYTE PTR CBP+fl]
Arg_FG_Color EQU BYTE PTR [BP+1D]

_Set_Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP, SP
SUB SP, 2

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Fill with background

MOV CX,D ;Set x to start of save area
MOV AX,CS:Video_Height ;Set y to below last line on the screen
;!!!!!!!!!!!! The next line should be removed !!!!!!!!!!!!!!!
;!!!!!!!!!!!! if you do not want to see the save !!!!!!!!!!!!!!!
;!!!!!!!!!!!! regions on the screen !!!!!!!!!!!!!!!
MOV AX, 0
MOV CSrSave Area y,AX
MUL CS:Video Pitch
ADD AX, CX
ADC DX, Q ;

MOV DI, AX
MOV CS:Save_Offset,AX
MOV ES,CS:Graf Seg
MOV AL, DL
CALL Select_Page

MOV DX,CUR HEIGHT
MOV BX,CS:Video Pitch
SUB BX,CUR_WIDTH*2

MOV AL,Arg BG Color
MOV AH, AL

Fill_Background:
MOV CX,CUR WIDTH
REP STOSW
ADD DI, BX

DEC DX
JG Fill_Background

;Make visible for demo !!!!!!!!
;Save y for other cursor procs

; multiply y by width in bytes
; add x coordinate to compute offset

add overflow to upper It bits

;Set DI to save area offset
;Save offset for later
;Set segment to graphics segment
;C°py page number into AL
;Select page for save area

;Number of scanlines to do
;Calculate scan-to-scan increment

;Fetch background color
;Copy color into AH

;Number of words of AND & XOR mask
;Fill next row of AND and XOR masks
;Point to next scanline (assumes in
;one page!!!).
;Check if all scanlines done
;Go do next scanline if not done

167

Change foreground bits for the AND mask save area

168 Advanced Programmer’s Guide to Super VGAs

MOV DL,CUR_HEIGHT
MOV DH,Arg_FG_Color
MOV DI,CS:Save_Offset
MOV SI,Arg_AND_Mask
ADD BX,CUR_WIDTH

;Initialize raster counter
;Fetch foreground color
;Get pointer to save area
;Fetch pointer to AND-mask section
;Adjust scan-to-scan increment

Set_AND_FG:
LODSW
XCHG AL,AH
MOV CX,1E>

AND_Bit_Loop:
SHL AX,1
JNC AND_Done
MOV ES:[DI],DH

AND_Done:
INC DI
LOOP AND_Bit_Loop
XOR BX/fiDOOh
JS Set_AND_FG

;Fetch next lb bits from the mask
;Swap byte to compensate for flOxx mem
;Number of bits to do

;Move next bit into carry
;Do not change if bit not set
;Set pixel to fg color if bit set

;Update pointer
;If not all It bits done do next bit
;Toggle high bit of BX to check if
; both words have been done

ADD DI,BX
DEC DL
JG Set_AND_FG

Point to next scanline
Check if all scanlines done
Go do next scanline if not done

; Change foreground bits for the XOR mask save area

MOV DL,CUR_HEIGHT
MOV DH,Arg_FG_Color
MOV DI,CS:Save_Offset
ADD DI/XOR_OFFSET
MOV SI/Arg_XOR_Mask

;Initialize raster counter
;Fetch foreground color
;Get pointer to save area
;Advance pointer to XOR-mask section
;Fetch pointer to XOR-mask

Set_XOR_FG:
LODSW
XCHG AL,AH
MOV CX,lb

XOR_Bit_Loop:
SHL AX ,1
JNC XOR_Done
MOV ES:[DI],DH

XOR_Done:
INC DI
LOOP XOR_Bit_Loop
XOR BX,flOOOh
JS Set_XOR_FG

;Fetch next lb bits from the mask
;Swap byte to compensate for flOxx mem
;Number of bits to do

;Move next bit into carry
;Do not change if bit not set
;Set pixel to fg color if bit set

;Update pointer
;If not all lb bits done do next bit
;Toggle high bit of BX to check if
; both words have been done

ADD DI,BX
DEC DL
JG Set_XOR_FG

Point to next scanline
Check if all scanlines done
Go do next scanline if not done

; Set 'last cursor' to save area (this is needed for first
; call to Move_Cursor procedure, since first thing done in there
; is restore area under 'last cursor' position)

MOV AX,CS:Save_Area_y ;Fetch save area y
MOV CS:Last_Cursor_y,AX ;Set last cursor y
MOV CS:Last_Cursor_x,CUR_OFFSET ;Set last cursor x

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP, BP ;Restore stack
POP BP
RET

.Set_Cursor ENDP

Programming Examples—256-Color Graphics 169

*
*
*
*
*
*

*
*
*

*
*

*

*

*

*

*

_Move_Cursor(Curs_X, Curs_Y)
This procedure is used to move the cursor from one
location to another. The cursor move is performed using the
following steps:

1 - Check if new cursor is outside 'cursor block'
2 - If outside 'cursor block' restore area under

previous block.
Save area under new block.

3 - Copy saved are into cursor build area (both save and
build areas are normally off-screen).

4 - Combine AND and XOR masks with build area.
5 - Copy build area to where new cursor should be (this

in most cases overwrites the old cursor).
The 'build area' is a rectangle twice the size of the cursor.
It is used to eliminate flicker for small movement of the
cursor, since cursor may not need to be erased if it moves
only by a few pixels.

* Entry:
* Curs_X - Position of the new cursor
* Curs_Y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Arg_Curs_X EQU WORD PTR [BP+4] ;Formal parameters
Arg_Curs_Y EQU WORD PTR [BP+tJ

Curs_X EQU WORD PTR [BP-5]
Curs_Y EQU WORD PTR [BP-4]

_Move_Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP,SP
SUB SP,4

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Check if new area needs to be saved

MOV AX,Arg_Curs_x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ;Round to nearest buffer block
MOV BX,Arg_Curs_y ;Fetch new y
AND BX,NOT(CUR_HEIGHT-1);Round to nearest buffer block

CMP AX,CS:Last_Cursor_x ;Check if x moved into next block
JNE Cursor_New_Block
CMP BX,CS:Last_Cursor_y ;Check if y moved into next block
JNE Cursor_New_Block
JMP Build_Cursor

; For new block call to remove old cursor, then use _BitBlt
; to save block under next cursor location into the save area

Cursor_New_Block:
CALL _Remove_Cursor ;Restore last location
MOV AX,Arg_Curs_x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ;Round to nearest buffer block
MOV CS:Last_Cursor_x,AX ;Save as 'last x'
MOV AX,Arg_Curs_y ;Fetch new y
AND AX,N0T(CUR_HEIGHT-1);Round to nearest buffer block
MOV CS:Last_Cursor_y,AX ;Save as 'last y'

MOV AX,2*CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX

170 Advanced Programmer’s Guide to Super VGAs

PUSH CS:Save Area_y ; Push x and y of destination
MOV AX,CUR OFFSET
PUSH AX
PUSH CS:Last_Cursor_y ; Push x and y of source
PUSH CS:Last_Cursor_x
CALL _BitBlt
ADD SP,12

; Use _BitBlt to copy save area into build area

Build_Cursor:
MOV AX/2*CUR HEIGHT ; Push width and height
PUSH AX
MOV AX,2*CUR WIDTH
PUSH AX
PUSH CSrSave Area y ; Push x and y of destination
MOV AX,MIX OFFSET
PUSH AX
PUSH CS:Save_Area_y ; Push x and y of source
MOV AX/CUR_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,12

; Mix AND & XOR masks into build area (this will work only if all of
; the save area is in the same segment!!!)

MOV CX,Arg Curs x ;Fetch x
AND CX,CUR WIDTH-1 ;Keep 'odd' bits

;Add 'base x' of save area ADD CX,MIX_OFFSET
MOV AX,Arg Curs y ;Fetch y
AND AX,CUR_HEIGHT-1 ;Keep 'odd' bits
ADD AX,CS:Save Area y ;Add 'base y' of save area
MUL CS:Video Pitch ; multiply y by width in bytes
ADD AX , CX ; add x coordinate to compute offset
ADC DX , □ ; add overflow to upper lb bits

MOV DI, AX ;Save offset
MOV AL, DL ; Select page
CALL Select_Page
MOV ES,CS:Graf_Seg ;Set both segments to video buffer
MOV DS,CS:Graf_Seg

MOV DL/CUR HEIGHT ;Initialize raster counter
MOV SI, CS:Save Offset ;Get pointer to AND & XOR masks
MOV BX,CS:Video Pitch ;Compute scan-to-scan increment
SUB BX,CUR_WIDTH

Lines
MOV

Bytes
CX,CUR_WIDTH ;Fetch cursor width

LODSB ;Fetch next byte of AND mask
MOV AH,[DI] ;Fetch next byte of destination
AND AL, AH ;Combine mask with destination
MOV AH,[SI+CUR WIDTH-1] ;Fetch next byte of XOR mask
XOR AL, AH ;Combine with previous result
STOSB ;Place result into destination
LOOP Mix_Bytes

ADD DI, BX ;Point to next scanline
ADD SI, BX ;Point to next scanline
DEC DL ;Check if all scanlines done
JG Mix_Lines ;Go do next scanline if not done

; Use _BitBlt procedure to copy build area to screen (and erase old
; cursor with the new cursor block).

MOV AX,2*CUR_HEIGHT
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX

;Push width and height

Programming Examples—256-Color Graphics 171

PUSH CS:Last_Cursor_y ;Push x and y of destination
PUSH CS:Last_Cursor_x
PUSH CS:Save_Area_y ;Push x and y of source
MOV AX,MIX_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,1S

; Clean up and return

POP US ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

_Move_Cursor ENDP

* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* and to restore the screen to its original appearance *
* *

_Remove_Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP,SP

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Use _BitBlt to restore area under the last cursor location

MOV AX,2*CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX
PUSH CS:Last_Cursor_y ;Push last position of cursor
PUSH CS:Last_Cursor_x
PUSH CS:Save_Area_y ;Push x and y of destination
MOV AX,CUR_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,12

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

_Remove_Cursor ENDP

TEXT ENDS
END

172 Advanced Programmer’s Guide to Super VGAs

Load DACs

This module is used to control the color mapping between data in display memory
and colors seen on the screen. For 256-color modes this is best done by changing the
DAC registers. In most cases changing DAC registers is fast enough so that ’snow’ on
the screen is not noticeable. However, for applications which require the frequent
changing of DAC registers, register updates should be synchronized with vertical
retrace. IBM recommends that interrupts be disabled between register selection and
register read/writes in order to minimize the time required for a register update.

BIOS function lOh, subfunction lOh or 12h can also be used to modify DAC

registers.

Listing 7-9. File: 256COL\DAC.ASM

. * *
;* File: DAC.ASM - Load DAC registers, Read DAC registers *
;* Routines: _Write_DAC,_Read_DAC *
;* Arguments: Start, Count, ArrayPtr *
• * *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR

PUBLIC _Read_DAC
PUBLIC _Write_DAC

TEXT SEGMENT BYTE PUBLIC 'CODE*

**
* *

* _Read_DAC(Start, Count, ArrayPtr) *
* Read 'Count' DAC registers as RGB triplets into array *
* pointed to by 'ArrayPtr', starting with 'Start' register. *
* *

**

Arg_Start EQU WORD PTR CBP+4]
Arg_Count EQU WORD PTR CBP+L]
Arg_ArrayPtr EQU DWORD PTR [BP+fl]

Read_DAC PROC NEAR
PUSH BP
MOV BP,SP

;Preserve BP
; Preserve stack pointer

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Read the DAC registers

LES DI,Arg ArrayPtr ;First triplet
MOV AX,Arg_Start ;First register to read
MOV CX,Arg Count ;Number of registers to re;
MOV DX,3C7h ;Select first DAC register
OUT DX, AL
INC DX ;Set DAC data register
INC DX

Programming Examples—256-Color Graphics 173

DAC_In_Loop:
IN AL, DX ; Read red
STOSB ; Save into buffer
IN AL, DX ; Read green
STOSB ; Save green
IN AL, DX ; Read blue
STOSB ; Save blue
LOOP DAC_In_Loop

; Clean up and return

POP SI
POP DI
POP DS
POP ES

;Restore segment and index registers

MOV SP/BP
POP BP
RET

Read_DAC ENDP

;Restore stack pointer
;Restore BP

* *

* _Write_DAC(Start, Count, ArrayPtr) *
* Load DAC registers with 'Count' RGB tripplets from array *
* pointed to by 'ArrayPtr', starting with 'Start' register. *
* *

Arg_Start
Arg_Count
Arg_ArrayPtr

EQU WORD PTR [BP+4]
EQU WORD PTR [BP+L]
EQU DWORD PTR [BP+fl]

_Write_DAC PROC NEAR
PUSH BP
MOV BP,SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

; Write the registers

LDS SI,Arg ArrayPtr
MOV AX,Arg_Start
MOV CX,Arg Count
MOV DX,3Cflh
OUT DX, AL
INC DX

DAC_Out Loop:
LODSB
OUT
LODSB

DX, AL

OUT
LODSB

DX, AL

OUT DX, AL
LOOP DAC_Out_Loop

; Cleanup and return

POP SI
POP DI
POP DS
POP ES

MOV SP, BP
POP
RET

BP

Write DAC ENDP

_TEXT ENDS
END

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

;First triplet
;First register to read
;Number of registers to read
;Select first DAC register

;Set DAC data register

;Fetch red
;Write red
;Fetch green
;Write green
;Fetch blue
;Write blue

;Restore segment and index registers

;Restore stack pointer
;Restore BP

174 Advanced Programmer’s Guide to Super VGAs

Read Raster Line

_Read__Video and _Write_Video, shown in the next example, can used to save the
contents of the display memory and to display stored images. For 256-color modes
these procedures are straightforward. The process is analogous to BITBLT except that
no checks for page boundaries are needed for system memory, no intermediate buffer
or dual paging is needed, and checks for source and destination overlap are not
needed. In each procedure, the address of the starting point is computed first, and then

the data is copied one scan line at a time.

Listing 7-10. File: 256COL\READ.ASM

• * *

;* File: READ.ASM - flbit packed read block into system memory *
;* Description: Read specified block from video memory and copy each *
;* pixel into one byte starting at 'Dest_Ptr’. Next row *
;* of the block is copied to 'Dest_Ptr+Dest+Pitch1, and *
;* so on until the full block is read. *
;* Routine: _Read_Video *
;* Arguments: x, y, dx, dy, Dest_Pitch, Dest_Ptr *
; * * ***

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Select_Page:NEAR

PUBLIC _Read_Video

_TEXT SEGMENT BYTE PUBLIC ' CODE i

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]
Arg_dx EQU WORD PTR CBP + fl]
Arg_dy EQU WORD PTR [BP + 1D]
Arg_Dest_Pitch EQU WORD PTR [BP + 1E]
Arg_Dest_Ptr EQU DWORD PTR [BP + 14]

PageNo EQU BYTE PTR [BP-S]

Read Video PROC NEAR
PUSH BP ;Preserve BP
MOV BP, SP ;Preserve stack pointer
SUB SP,E ;Allocate space for local variables

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Compute address of first pixel

MOV AX,Arg_y ;Fetch y coordinate
MUL CS:Video_Pitch ; multiply by width in bytes
ADD AX/Arg x ; add x coordinate to compute offset
ADC DX, 0 ; add overflow to upper lb bits
MOV SI, AX ;Save offset
MOV AL, DL ;Select page were first pixel is
MOV PageNo,AL ;Save page number
CALL Select_Page

Programming Examples—256-Color Graphics 175

MOV DS,CS: Graf_Seg
MOV BX,CS:Video_Pitch ;Compute line-to-line increment
SUB BX,Arg_dx

LES DI,Arg_Dest_Ptr ;Fetch pointer to destination
MOV DX, Arg_Dest_Pitch ;Compute line increment for dest.
SUB DX,Arg_dx

; Loop over raster lines to copy data

Scan_Loop:
MOV CX,Arg_dx ;Fetch byte count

; Copy from initial page if page boundary may be crossed
MOV AX, CX
ADD AX,SI
JNC Scan_In_Page
SUB CX, AX
SHR CX, 1
REP MOVSW
ADC CX,CX
REP MOVSB
MOV CX, AX
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
JCXZ Scan_Done
; Copy from next (or on:

Scan_In_Page:
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

Scan_Done:

ADD DI, DX
ADD SI, BX
JC Fix_Page
DEC Arg_dy
JG Scan Loop
JMP SHORT End_Read

Fix_Page:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
DEC Arg_dy
JG Scan_Loop

; Cleanup and return

End_Read:
POP SI
POP DI
POP DS
POP ES

MOV SP, BP
POP BP
RET

_Read_Video ENDP

;Check if within page

;Number of bytes to do in this page
;Adjust for move of words
;Copy data from initial page

;Number of bytes to do in next page
;Fetch page number, and preserve AL
;Adjust page number
; Select next page
;Save updated page no., restore AL

; Adjust for move of words
; Write all words of data
; Write the last odd byte of data

; Compute ptr to byte in next raster

; check if more rasters to do

Fetch page number, and preserve AL
Update page number
Compute and select new page number
Save updated page no., restore AL
check if more rasters to do

;Restore segment and index registers

;Restore stack pointer
;Restore BP

TEXT ENDS
END

176 Advanced Programmer’s Guide to Super VGAs

Write Raster Line

This is a companion module to Read Raster Line.

Listing 7-11. File: 256COL\WRITE.ASM

* *

* File: WRITE.ASM - fibit packed write block from system memory *
* Description: Write specified block into video memory and copy each *
* pixel starting at 'Src_Ptr'. Next row *
* of the block is copied from 'Src_Ptr+Src_Pitch', and *
* so on until the full block is written. *
* Assues one byte per pixel in source data. *
* Routine: _Write_Video *
* Arguments: x, y, dx, dy, Src_Pitch, Src_Ptr *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Select_Page:NEAR

PUBLIC _Write_Video

_TEXT SEGMENT BYTE PUBLIC ' CODE i

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]
Arg_dx EQU WORD PTR [BP + fl]
Arg_dy EQU WORD PTR [BP+1D]
Arg_Src Pitch EQU WORD PTR [BP + 15]
Arg_Src _Ptr EQU DWORD i PTR [BP + 14]

PageNo EQU BYTE PTR [BP-E]

Write Video PROC NEAR
PUSH BP ;Preserve
MOV BP, SP ;Preserve
SUB sp,e ;Allocate

PUSH ES ;Preserve
PUSH DS
PUSH DI
PUSH SI

BP
stack pointer
space for local variables

segment and index registers

; Compute address of first pixel

MOV AX/Arg_y Fetch y coordinate
MUL CS:Video Pitch multiply by width in bytes
ADD AX/Arg x add x coordinate to compute offset
ADC DX,D add overflow to upper It bits
MOV DI, AX Save offset
MOV AL/DL Select page were first pixel is
MOV PageNo,AL Save page number
CALL Select_Page
MOV ES,CS:Graf Seg
MOV DX,CS:Video_Pitch [Compute line-to-line increment
SUB DX,Arg_dx

LDS SI,Arg_Src_Ptr [Fetch pointer to source
MOV BX,Arg_Src_Pitch [Compute line increment for dest.
SUB BX,Arg_dx

; Loop over raster lines to copy data

Programming Examples—256-Color Graphics 177

Scan_Loop:
MOV CX,Arg_dx ;Fetch byte count

; Copy from initial page if page boundary may be crossed
MOV AX,CX
ADD AX,DI
JNC Scan_In_Page
SUB CX, AX
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB
MOV CX/AX
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
JCXZ Scan_Done
; Copy from next (or only) page

Scan_In_Page:
SHR CX,1
REP MOVSW
ADC CX,CX
REP MOVSB

Scan_Done:

ADD SI,BX
ADD DI,DX
JC Fix_Page
DEC Arg_dy
JG Scan_Loop
JMP SHORT End_Write

Fix_Page:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
DEC Arg_dy
JG Scan_Loop

; Cleanup and return

;Check if within page

;Number of bytes to do in this page
;Adjust for move of words
;Copy data from initial page

;Number of bytes to do in next page
;Fetch page number, and preserve AL
;Adjust page number
;Select next page
;Save updated page no., restore AL

; Adjust for move of words
; Write all words of data
; Write the last odd byte of data

; Compute ptr to byte in next raster

; check if morerasters to do

Fetch page number, and preserve AL
Update page number
Compute and select new page number
Save updated page no., restore AL
check if more rasters to do

End_Write:
POP SI
POP DI
POP DS
POP ES

MOV SP, BP
POP
RET

BP

.Write. _Video ENDP

TEXT ENDS
END

Restore segment and index registers

Restore stack pointer
Restore BP

Programming Examples
16-Color Graphics

179

180 Advanced Programmer’s Guide to Super VGAs

Introduction
High resolution 16-color graphics modes are useful for applications such as CAD

(Computer-Aided Design) where high resolution is more important than number of
simultaneous colors. Drawing algorithms for this memory organization tend to be
more complex than those for 256-color modes, since each byte of memory contains

several pixels. Fill operations and byte-aligned transfers are faster, but incremental

algorithms tend to be slower. Procedures that can process several pixels within a byte

simultaneously perform better than those that must process individual pixels, which
can be excruciatingly slow.

Extended 16-color planar graphics modes are identical in structure to the standard
VGA 16-color modes (modes D,E,10 and 12). Two resolutions are common for this
memory organization: 800x600 and 1024x768. Resolutions as high as 800x600 can be

supported with just 256K of display memory and no memory paging.
For 1024x768 resolution, which requires 512K of display memory, some SuperVGAs

(such as those based on the Tseng Labs ET3000) increase the size of the host window
into display memory from 64K to 128K, eliminating the need for display memory pag¬

ing. It is still necessary, however, to detect the 64K segment boundary that lies in the

middle of that larger host window. Segment boundary detection is essentially the same
as page boundary detection, so most drawing algorithms are not simplified by this
method. Boards that do not use a larger host memory window must include a memory
paging scheme.

Designed to illustrate basic techniques for graphics programming in 16-color pla¬
nar pixel modes, the programming examples in this chapter can be used on any VGA
board that supports a resolution of 800x600 (no paging) or 1024x768 (page bound¬

ary at end of raster) in 16 colors. It should be noted that the programming examples
in this chapter will not work properly in cases where page boundaries fall in the

middle of a scan line; none of the 16-color modes used on SuperVGAs today have
such cases.

These examples show how to draw basic graphics primitives such as pixels, lines
and rectangles, and how to perform BITBLT transfers. Also included are routines to
draw and erase a software graphics cursor, and routines to load the color palette.

Examples are written in assembly language, and assume that input parameters will
be placed on the stack before the routine is called, conforming to the convention for C-
callable subroutines.

It is assumed that the VGA will already be initialized to the desired graphics mode
before the drawing routine examples are executed.

Some SuperVGA boards include extended 4-color or 16-color display modes that
use packed pixels. Examples in this chapter do not apply to these modes; they are
described in the appropriate board-dependent chapter.

Programming Examples— 16-Color Graphics 181

Display Memory Organization
Figure 8-1 shows the organization of display memory for these modes. Each pixel

occupies one bit position in each plane. To convert from a pixel position, in X and Y
coordinates, to a bit location in display memory, use the following equations:

Page = (Video_Pitch x Y + X/8) / lOOOOh
Segment = AOOOh

Offset = (Video_Pitch x Y + X/8) mod lOOOOh
Bit position = X mod 8

Figure 8-1. Display memory organization— 16-color graphics

Pixel data is serialized for display most significant bit first, which means that the most

significant bit of each byte in display memory represents the leftmost pixel. Each byte
contains eight pixels.

Drawing Routines

Write Pixel

Write mode 2 of the Graphics Controller is used as a convenient method of writing
to all four color planes simultaneously. This mode permits a four-bit color value,
formatted as a packed pixel, to be written directly into the four color planes.

182 Advanced Programmer’s Guide to Super VGAs

_Write_Pixel is a simple example that shows how to access a pixel with screen coor¬
dinates x,y. The x,y coordinate is used to compute page and offset using the 16-bit mul¬
tiply instruction MUL followed by a 32-bit add of the x coordinate divided by 8 (done
with three SHR instructions). At the completion of these two operations, register DX
contains the page number and register AX contains the offset. Page selection is per¬
formed using the board-dependent procedure _Select_Page. The pixel can then be
accessed using the offset in AX and the mode-dependent segment variable Graf_Seg.
Graphics Controller register index 8 is used to define a mask to enable a single pixel
for writing. A pixel mask is computed using the following formula:

Mask = 80h SHR (X AND 7)

To perform masking, the VGA processor read latches are loaded by a display mem¬
ory read operation. The new pixel value is then written to display memory. Pixel color
is defined by the Set/Reset register, which is set and enabled by the procedure
_Select_Color. Instead of using Set/Reset, write mode 2 could be used (enabled via
Graphics Controller register 5); Set/Reset is more efficient, however, for most drawing

algorithms.

Listing 8-1. File: l6COL\WPIXEL.ASM

. * *

;* File: WPIXEL.ASM - 4 Bit Planar Pixel Write *
;* Routine: _Write_Pixel *
;* Arguments: X, Y, Color *
. * *

;* Routine: Select_Color *
;* Arguments: AL = Color *
. * *
-***

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel
PUBLIC Select_Color

_TEXT SEGMENT BYTE PUBLIC 1 'CODE '

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]
Arg_Color EQU BYTE PTR [BP + fl]

_Write. Pixel PROC NEAR
PUSH BP
MOV BP,SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

; Convert x,y pixel addres to Page and Offset
MOV AX,Arg_y ;Fetch y coordinate

Programming Examples— 16-Color Graphics 183

MUL CS:Video_Pitch
MOV CX,Arg x
SHR CX, 1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, □
MOV ES,CS:Graf Seg
MOV DI, AX
MOV AL, DL
CALL Select_Page

; Set Graphics Controller for

MOV AL,Arg_Color
CALL Select_Color

; Set write mask

MOV CX,Arg_x
AND CX/?
MOV AL,flDh
SHR AL/CL
MOV DX,GRAPHICS_CTRL_PORT
MOV AH,AL
MOV AL/BIT_MASK_REG
OUT DX,AX

; Set pixel

MOV A H/E S:C DI]
MOV ES:[DI], AL

; Cleanup and exit

POP SI
POP DI
POP DS
POP ES

MOV SP,BP
POP BP
RET

_Write_Pixel ENDP

multiply by raster width
add x coordinate/A

;Put address in ES:DI

;Select proper page

proper color

;Fetch color to use
;Select color

;Compute X AND 7 to find mask rotation
;Mask rotation is now in CL
;Shift bit to find mask
;Mask is now in AL
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

;Latch previous value
;Write color (using set/reset)

;Restore segment and index registers

;Restore stack pointer
;Restore BP

* Routine: Select_Color *

* Utility routine used by all drawing routines to select *
specified color. It is assumed that all planes are *
enabled for write, and that 'processor write' mode is *
selected. Routine enables set/reset mechanism of VGA. *

* Arguments: AL = Color *
* Returns: DX = Points to mask select data register

Color PROC NEAR
PUSH AX
MOV DX,GRAPHICS CTRL PORT
MOV AH, AL
MOV AL,SET RESET REG
OUT DX, AX
MOV DX,GRAPHICS CTRL PORT
MOV AL,SR ENABLE REG
MOV AH,OFh
OUT DX, AX
MOV AL,BIT MASK REG
OUT DX, AL
INC DX
POP AX

;Use color for set/reset value

;Enable set/reset

;Select bit mask register

184 Advanced Programmer’s Guide to Super VGAs

RET
Select_Color ENDP

_TEXT ENDS
END

Read Pixel

_Read_Pixel is a companion to the _Write_Pixel procedure. Computation of the
pixel address and mask is the same as for pixel write. To read the pixel using a planar
memory organization, each of the four bits in a pixel must be read from a separate
plane using a separate read instruction. Before each read, the proper color plane must
be enabled. Each bit must also be properly masked and rotated. The result is a very

complex routine to perform a very simple function.

Listing 8-2. File: l6COL\RPIXEL.ASM

»*»**»**»*»»**»**»*«»*****»***»* *

* File: RPIXEL.ASM - A Bit Planar Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y
* Returns: Color in AX
*

INCLUDE VGA.INC

EXTRN
EXTRN
EXTRN

PUBLIC

_TEXT SEGMENT

Arg_x
Arg_y

_Read_Pixel
PUSH
MOV

PUSH
PUSH
PUSH
PUSH

Graf_Seg:WORD
Select_Page:NEAR
Video_Pitch:WORD

_Read_Pixel

BYTE PUBLIC 'CODE

EQU WORD PTR
EQU WORD PTR

PROC NEAR
BP
BP, SP

ES
DS
DI
SI

[BP + 4]
[BP + b]

;Preserve
;Preserve

;Preserve

BP
stack pointer

segment and index registers

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg_y ;Fetch y coordinate

MUL CS:Video Pitch ; multiply by raster width

MOV CX,Arg_x ; add x coordinate/fl

SHR CX, 1
SHR CX,1
SHR CX, 1
ADD AX, CX
ADC DX, 0
MOV ES,CS:Graf_Seg ;Put address in ES:DI

MOV DI, AX
MOV AL, DL ;Select proper page

CALL Select_Page

; Setup to read the value at the computed address

Programming Examples—16-Color Graphics 185

MOV DX,GRAPHICS_CTRL PORT ;Select Read Plane register
MOV AL,READ PLANE REG
OUT DX, AL
INC DX ;Point DX to data register

MOV AL, 3 ;Plane number
MOV CX,Arg x ;Compute X AND 7 to find mask rotation
AND CX, 7 ;Mask rotation is now in CL
MOV BL,flDh ;Shift bit to find mask
SHE BL, CL ;Mask is now in BL
XOR BH, BH ;Initialize return value to zero

Plane_Loop:

OUT DX, AL ;Select plane n for reading (from AL)

; Read byte, mask correct bit and add it into the return value

SHL BH, 1 ;Shift return value up
MOV AH,ES:[DI] ;Get byte of video memory
AND AH, BL ;Mask out unwanted bits
JZ RP Not Set ;Jump if bit not set
OR BH, 1 ;Set bit in return value

RP_Not_Set:
DEC AL ;Decrement plane number
JGE Plane Loop ;Do another plane if there are more
MOV AL, BH ;Put return value in AL
XOR AH, AH ;Clear AH

POP SI ;Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ;Restore BP
RET

_Read_Pixel ENDP

TEXT ENDS
END

Draw Solid Line

_Line is used to demonstrate techniques used in incremental algorithms. An initial
page and offset is computed from the starting x,y coordinate of the line. The line is then

classified according to its slope (the relative size of DX and DY), and whether x and y
are increasing or decreasing. Each line will fall into one of eight different classes, with
different sections of code applying to each class.

Although some code sections could be combined to reduce total code size, the code
is left in eight distinct sections to make it easier to add patterns and ’last pixel don’t
draw’ checks. Each of the eight sections is divided into two parts: incremental drawing
and page updating. For example, lines with positive DX and DY and DX greater than
DY use the incremental drawing code between the labels XP_YP_Next and
XP__YP_Update__Seg.

This code is a standard adaptation of Bresenham’s line drawing algorithm, but with
an added JC instruction for page boundary detection after y is updated (ADD DI,Pitch).

186 Advanced Programmer’s Guide to Super VGAs

Two additional code sections are added: one for vertical lines (DX = 0) and one of
horizontal lines (DY = 0). For horizontal lines this provides significant performance
improvement, since eight pixels are drawn for each write to display memory.

Listing 8-3. File: l6COL\LINE.ASM

j * *

;* File: LINE.ASM - A Bit Planar Solid Line *
;* Routine: _Line *
;* Arguments: XD, YQ, XI, Yl, Color *
■ * *

INCLUDE VGA.INC

EXTRN Select_Color:NEAR

EXTRN Video_Pitch:WORD
EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR

PUBLIC _Line

_TEXT SEGMENT BYTE PUBLIC 1 'CODE »

Arg XD EQU WORD PTR [BP + 4] ;Formal parameters
Arg YD EQU WORD PTR [BP+L]
Arg XI EQU WORD PTR [BP+fl]
Arg Yl EQU WORD PTR [BP+1D]
Arg_Color EQU BYTE PTR CBP+15]

D1 EQU WORD PTR [BP-2] ;Local variables
D2 EQU WORD PTR C BP-4 3
Pitch EQU WORD PTR [BP-L]
Delta X EQU WORD PTR [BP-fl]
First_Mask EQU BYTE PTR [BP-R]
PageNo EQU BYTE PTR [BP-ID]

_Line PROC NEAR
PUSH BP ;Standard C entry point
MOV BP, SP
SUB SP, ID ;Declare local variables

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

Compute address of first pixel, select color

MOV AX,Arg YD ;Fetch y coordinate
MUL CS:Video Pitch multiply by raster width
MOV CX,Arg XD add x coordinate/fi
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, D
PUSH AX ; Save offset within page
MOV DS,CS:Graf_Seg ;Fetch segment
MOV ES,CS:Graf Seg ; Fetch segment
MOV AL,DL ; Select proper page
MOV PageNo,AL ; Save page number for later
CALL Select_Page

Programming Examples—16-Color Graphics 187

MOV CX,Arg XD ;Fetch xD
AND CL,7 ;Get bit position within first byte
MOV BL,flOh ;Assume first bit
SHR BL, CL ;Rotate mask bit into place
MOV First_Mask,BL ;Save mask

; Load set/reset registers with current color, select bit mask reg

MOV AL,Arg_Color
CALL Select_Color ;Also sets DX to gr. Ctrl, data register

Compute dx and dy and determine which coordinate is major

MOV AX,CS:Video_Pitch
MOV Pitch,AX
MOV SI,Arg_Xl
SUB SI,Arg_XD
MOV Delta_X,SI
JGE DX_Pos
NEG SI

DX_Pos:
MOV DI,Arg_Yl
SUB DI,Arg_YD
JGE DY_Pos
NEG Pitch
NEG DI

DY_Pos:

;Set raster increment

;Compute dx (X1-X0) in SI

;Save in local variable
;If dx is negative, make it positive

;Compute dy (Yl-YD) in DI

;If dy is negative, make it positive
;Also, invert the pitch

Figure out which coordinate is the major one

OR SI,SI
JE Vertical
OR DI,DI
JE Horizontal
CMP SI,DI
JL Y_Major_Jump
JMP X_Major

Y_Major_Jump:
JMP Y_Major

;Check for vertical line

;Check for horizontal line

;Check that dx > dy

Vertical Line

Vertical:
MOV CX, DI ;Set up counter
INC CX ;Number of pixels is one greater
MOV AL,First Mask ;Fetch mask
OUT DX, AL ;Set mask

POP DI ;Fetch offset
MOV BX,Pitch ;Fetch pitch
OR BX, BX ;Check for y decreasing
JNS Vert_Loop

; Y1 < YD, but we want to draw down only, so compute address of
; (xi ,Y1) and start from there

NEG BX
XCHG SI,CX ;Preserve counter

MOV AX,Arg_Yl ;Fetch y coordinate
MUL CS:Video Pitch ; multiply by raster width
MOV CX,Arg XI ; add x coordinate/fl
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, □

188 Advanced Programmer’s Guide to Super VGAs

MOV DI, AX ;Save offset within page
MOV ES,CS:Graf_Seg ; Fetch segment
MOV AL , DL ; Select proper page
MOV
CALL

PageNo,AL
Select_Page

;Save page number for later

XCHG SI,CX ; Restore counter

Vert_Loop:
NOT BYTE PTR [DI] ;Latch data, then set to new valu<
ADD DI/BX -.Update offset
JC Vert_Update_Seg ;Update segment if carry
LOOP Vert_Loop
JMP End_Line

Vert Update : Seg:
PUSH AX
INC PageNo ;Advance page number
MOV AL,PageNo ;Select next page
CALL Select Page
POP AX
LOOP Vert_Loop
JMP End_Line

; Horizontal line

Horizontal:
POP DI ;Fetch offset

; Draw pixels from the leading partial byte

MOV AX,Arg_XD ;Fetch x coordinate (assume xl >
CMP Delta_X,0 ;Is xl > xD?
JNS Horz_In_Order

; XI < XO, but we want to draw right only, so compute address of
; (XI, Yl) and start from there

MOV AX/Arg Yl ;Fetch y coordinate
MUL CS:Video Pitch ; multiply by raster width
MOV CX/Arg XI ; add x coordinate/A
SHR CX,1
SHR CX/1
SHR CX/1
ADD AX/CX
ADC DX, □
MOV DI, AX ;Save offset within page
MOV ES,CS:Graf Seg ;Fetch segment
MOV AL/DL ;Select proper page
MOV PageNo,AL ;Save page number for later
CALL Select_Page

MOV DX,GRAPHICS_CTRL_ PORT+1 ;Put gr Ctrl data register in DX
MOV AX,Arg_Xl

Horz In Order:
MOV CX,SI ;Set counter of pixels
INC CX
AND AX, 7 ;Check for partial byte
JZ Horz Full
MOV BL,DFFh ;Compute the mask
XCHG BH,CL ;Preserve counter (CL into BH)
MOV CL, AL
SHR BL,CL
XCHG BH,CL ;Restore counter
ADD CX, AX ;Update counter
SUB CX, A
JGE Mask Set ;Modify mask if only one byte
NEG CX

Programming Examples—16-Color Graphics 189

SHR BL, CL
SHL BL, CL
XOR CX,CX ;Set bit count to zero

Mask_Set:
MOV AL, BL ;Fetch mask
OUT DX, AL ;Set mask register
MOV AH,ES:C DI] ;Latch data
STOSB ;Write new data

; Draw the middle complete bytes

Horz_Full:
MOV BX, CX ;Check if any bytes to set
CMP BX, fl
JL Horz_Trailing
SHR CX,1 ;Compute count
SHR CX,1
SHR CX,1
MOV AL,DFFh
OUT DX , AL
REP STOSB

; Draw the trailing partial byte

Horz Trailing:
AND BL,?
JZ Horz Done
MOV AL,OFFh ;Compute mask
MOV CX, BX
SHR AL, CL
NOT AL
OUT DX, AL ;Set the mask
MOV AL,ES:[DI] ;Latch data
STOSB ;Set new data

Horz Done:
JMP End_Line

; Diagonal line for x-major

; Compute constants for x-major

X_Major:
MOV CX,SI ;Set counter to dx+1
INC CX
SAL DI, 1 ;DI = dy*5
MOV BX, DI ;D = dy*5-dx
SUB BX, SI
NEG SI ;DE = dy*5-dx-dx
ADD SI, BX
MOV DI, DI ;Save dl
MOV D5, SI ;Save da
POP DI ;Restore offset of first pixel
MOV AL,First Mask ;Fetch the initial mask
XOR SI,SI ;Keep 0 in SI

; Jump according to sign of dx and dy

OR Pitch,SI ;Check if dy is positive
JNS XM Y Pos
NEG Pitch ;Restore pitch
OR Delta X,SI
JS XNYN Jump
JMP XPYN ;Go do dy negative dx positive

XNYN Jump:
JMP XNYN ;Go do both dy and dx negative

XM Y Pos:
OR Delta X,SI ;Check if dx also positive
JNS XPYP ;Jump if both dx and dy are positive

190 Advanced Programmer’s Guide to Super VGAs

JMP XNYP ;Jump if dx is negative and dy positive

; Draw line where DX > □ and DY > 0 and x major

XPYP:
XPYP Next: ;Loop over pixels to be set

OUT DX, AL ;Set next mask
NOT BYTE PTR [DI] ;Latch data, then set to new vali
ROR AL/1 ;Update mask
ADC DI / SI ;and address (if needed)
OR BX/BX ;If d >= 0 then ...
JS XPYP D Neg
ADD BX,DE ;... d = d + dE
ADD DI/Pitch ;Update offset
JC XPYP_Update_Seg
LOOP XPYP Next
JMP End_Line

XPYP D Neg:
ADD BX/D1 ;If d < 0 then d = d + dl
LOOP XPYP Next
JMP End_Line

XPYP Update Seg
PUSH AX
INC PageNo ;Select next page
MOV AL/PageNo
CALL Select Page
POP AX
LOOP XPYP Next
JMP End_Line

; Draw line where DX < 0 and DY > 0 and X major

XNYP:
XNYP Next: ;Loop over pixels to be set

OUT DX/AL ;Set next mask
NOT BYTE PTR [DI] ;Latch data, then set to new vali
ROL AL/1 ;Update mask
SBB DI/SI ;and address (if needed)
OR BX/BX ;If d >= □ then ...
JS XNYP D Neg
ADD BX/DE ;... d = d + dE
ADD DI/Pitch ;Update offset
JC XNYP Update Seg ;Update page number if needed
LOOP XNYP_Next
JMP End_Line

XNYP D Neg:
ADD BX/D1 ;If d < □ then d = d + dl
LOOP XNYP_Next
JMP End_Line

XNYP Update Seg
PUSH AX
INC PageNo ;Select next page
MOV AL/PageNo
CALL Select Page
POP AX
LOOP XNYP_Next
JMP End_Line

; Draw line where DX > 0 and DY < □ and x major

XPYN:

Programming Examples—16-Color Graphics 191

XPYN_Next: ;Loop over pixels to be set
OUT DX / AL ;Set next mask
NOT BYTE PTR [DI] ;Latch data, then set to new value
ROR AL,1 ;Update mask
ADC DI, SI ;and address (if needed)
OR BX, BX ;If d >= □ then ...
JS XPYN D Neg
ADD BX, DE ;... d = d + dE
SUB DI,Pitch ;Update offset
JC XPYN Update Seg ;Update page number if needed
LOOP XPYN Next
JMP End_Line

XPYN_D_Neg:
ADD BX A DI ;If d < □ then d = d + dl
LOOP XPYN Next
JMP End_Line

XPYN Update Seg
PUSH AX
DEC PageNo ;Select previous page
MOV AL,PageNo
CALL Select Page
POP AX
LOOP XPYN Next
JMP End_Line

; Draw line where DX < □ and DY < □ and x major

XNYN:
XNYN Next: ;Loop over pixels to be set

OUT DX, AL ;Set next mask
NOT BYTE PTR [DI] ;Latch data, then set to new value
ROL AL, 1 ;Update mask
SBB DI, SI ;and address (if needed)
OR BX,BX ;If d > = □ then ...
JS XNYN D Neg
ADD BX,DE ;... d = d + dE
SUB DI,Pitch ;Update offset
JC XNYN Update Seg ;Update page number if needed
LOOP XNYN Next
JMP End_Line

XNYN_D_Neg:
ADD BX, Dl ;If d < □ then d = d + dl
LOOP XNYN Next
JMP End_Line

XNYN Update Seg
PUSH AX
DEC PageNo ;Select previous page
MOV AL,PageNo
CALL Select Page
POP AX
LOOP XNYN Next
JMP End_Line

; Diagonal line for y-major

; Compute constants for dx < dy

Y_Major:
MOV CX,DI ;Set counter to dy+1
INC CX
SAL SI,1 ;D1 = dx * E
MOV BX, SI ;D = dx * E - dy
SUB BX, DI

192 Advanced Programmer’s Guide to Super VGAs

NEG DI ;D2 = -dy + dx * 2 - dy
ADD DI,BX
MOV d2, DI ;Save d2
MOV dl , SI ;Save dl
POP DI ’.Restore address of first pixel
MOV AL,First Mask ;Fetch mask
XOR SI,SI ;Keep □ in SI

; Jump according to sign of dx and dy

OR Pitch,SI ;Check if dy is positive
JNS YM Y Pos
NEG Pitch
OR Delta X,SI
JS NXNY Jump
JMP PXNY ;Go do dy negative dx positive

NXNY Jump:
JMP NXNY ;Go do both dy and dx negative

YM Y Pos:
OR Delta X,SI ;Check if dx also positive
JNS PXPY ;Jump if both dx and dy are positive
JMP NXPY ;Jump if dx is negative and dy positive

; Draw line where DX > 0 and DY > □ and y major

PXPY:
OUT DX, AL ;Set mask

PXPY Next:
NOT BYTE PTR [DI] ;Latch data, then set to new value
ADD DI,Pitch ;Update offset
JC PXPY_Update_Seg ;Update page number if needed

PXPY Updated:
OR BX, BX ;If d >= □ then ...
JS PXPY_D_Neg

ADD BX, D2 ;... d = d + d2
ROR AL, 1 ;Update mask
OUT DX, AL ;Set mask
ADC DI, SI ;and address (if needed)
LOOP PXPY_Next
JMP End_Line

PXPY D_Neg:
ADD BX, Dl ;If d < □ then d = d + dl
LOOP PXPY_Next
JMP End_Line

PXPY Update Seg
PUSH AX
INC PageNo ;Select next page
MOV AL,PageNo
CALL Select Page
POP AX
JMP PXPY Updated

; Draw line where DX < 0 and DY > □ and y major

NXPY:
OUT DX, AL ;Set mask

NXPY Next:
NOT BYTE PTR [DI] ;Latch data, then set to new value
ADD DI,Pitch ;Update offset
JC NXPY Update Seg ;Update page number if needed

NXPY_Updated:
OR BX, BX ; If d >= □ then . . .
JS NXPY_D_Neg

Programming Examples—16-Color Graphics

ADD BX, DE ... d = d + dE
ROL AL, 1 Update mask
OUT DX, AL Set mask
SBB DI, SI and address (if needed)
LOOP NXPY Next
JMP End_Line

NXPY D Neg:
ADD BX, DI If d < 0 then d = d + dl
LOOP NXPY Next
JMP End_Line

NXPY Update Seg
PUSH AX
INC PageNo Select next page
MOV AL,PageNo
CALL Select Page
POP AX
JMP NXPY_Updated

; Draw line where DX > □ and DY □ and y major

PXNY:
OUT DX,AL ;Set mask

PXNY Next:
NOT BYTE PTR [DI] ;Latch data, then set to new 1
SUB DI,Pitch Update offset
JC PXNY_Update_Seg ;Update page number if needed

PXNY Updated:
OR BX, BX If d > = □ then . . .
JS PXNY_D_Neg

ADD BX, DE ... d = d + dE
ROR AL, 1 Update mask
OUT DX, AL Set mask
ADC DI, SI and address (if needed)
LOOP PXNY Next
JMP End_Line

PXNY D Neg:
ADD BX,DI ; If d < 0 then d = d + dl
LOOP PXNY Next
JMP End_Line

PXNY_Update Seg
PUSH AX
DEC PageNo ;Select previous page
MOV AL,PageNo
CALL Select Page
POP AX
JMP PXNY Updated

Draw line where DX < □ and DY < □ and y major

NXNY:
OUT

NXNY_Next:
NOT
SUB
JC

NXNY_Updated
OR
JS

DX, AL

BYTE PTR EDI]
DI,Pitch
NXNY_Update_Seg

BX, BX
NXNY_D_Neg

;Set mask

;Latch data, then set to new value
;Update offset
;Update page number if needed

; If d > = □ then . . .

ADD BX,DE
ROL AL,1
OUT DX,AL

... d = d + dE
Update mask
Set mask

194 Advanced Programmer’s Guide to Super VGAs

SBB DI, SI ;and address (if needed)
LOOP NXNY_Next
JMP End_Line

NXNY D Neg:
ADD BX,D1 ;If d < 0 then d = d + dl
LOOP NXNY_Next
JMP End_Line

NXNY Update Seg
PUSH AX
DEC PageNo ; Select previous page
MOV AL,PageNo
CALL Select Page
POP AX
JMP NXNY_Updated

; Clean up and return to caller

End Line:
POP ES ;Restore segment register
POP DS
POP SI
POP DI

MOV SP,BP ;Standard C exit point
POP BP
RET

_Line ENDP

_TEXT ENDS
END

Draw Scan Line

Scan line fill is a key building block in most fill algorithms. In the programming
example _Scan_Line, the input coordinates are first ordered so that XO < XI, and the
starting coordinate X0,Y is translated to Page:Offset. Scan line drawing must be per¬
formed in three parts, since a scan line can start in the middle of a byte, and can end in
a middle of a byte. First, the leading partial byte is drawn if needed, then some number
of full bytes are drawn, and finally the trailing partial byte is drawn if needed.

No page boundary checking is performed, since for all commonly found 16-color
modes there are never any page boundaries in mid-scanline.

Listing 8-4. File: l6COL\SCANLINE.ASM

* *

* File: SCANLINE.ASM - 4 Bit Planar Scan Line *
* Routine: _Scan_Line *
* Arguments: XD, XI, Y, Color *
* Returns: Color in AX *
* *

INCLUDE VGA.INC
EXTRN Select_Color:NEAR
EXTRN Video_Pitch:WORD
EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR

Programming Examples—16-Color Graphics

PUBLIC _Scan_Line

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_XD EQU WORD PTR [BP+4] ;Formal parameters
Arg XI EQU WORD PTR [BP+L]
Arg_Y EQU WORD PTR [BP+fl]
Arg_Color EQU BYTE PTR [BP+1D]

_Scan Line PROC NEAR
PUSH BP
MOV BP, SP

PUSH DI
PUSH SI
PUSH DS
PUSH ES

MOV AX,Arg XD ;Make sure that xl
MOV CX,Arg XI
CMP CX, AX
JGE In_Order
MOV Arg XD,CX
MOV Arg XI,AX

Compute address of first pixel, load set/reset (color) register

; Compute page number and select the page

In_Order:
MOV AX,Arg_Y
MUL CS:Video Pitch
MOV CX,Arg XD
SHR CX,1
SHR CX,1
SHR CX, 1
ADD AX, CX
ADC DX, D
MOV DI, AX
MOV ES,CS:Graf Seg
MOV AL, DL
CALL Select_Page

Fetch y coordinate
multiply by raster width
add x coordinate/fl

;Save offset within page
;Fetch segment
;Select proper page

; Load set/reset registers with current color, select bit mask reg

MOV AL,Arg_Color
CALL Select_Color

MOV CX,Arg XI
SUB CX,Arg XD
INC CX

;Fetch color to use
;Also sets DX to gr Ctrl data register

;Compute number of pixels to draw

Draw the scanline

; Draw pixels from the leading

MOV AX,Arg XD
AND AX,7
JZ Full
MOV BL,OFFh
XCHG BH, CL
MOV CL, AL
SHR BL, CL
XCHG BH, CL
ADD CX, AX
SUB CX,fl
JGE Mask_Set

partial byte

;Fetch x coordinate
;Check for partial byte

;Compute the mask
;Preserve counter (CL into BH)

;Restore counter
;Update counter

;Modify mask if only one byte

196 Advanced Programmer’s Guide to Super VGAs

NEG CX
SHE BL,CL
SHL BL , CL
XOR CX,CX ;Restore counter

Mask : Set:
MOV AL, BL ;Fetch mask
OUT DX , AL ;Set mask register
MOV AH,ES: [DI] ;Latch data
STOSB ;Write new data

; Draw pixels from the middle complete bytes

Full:
MOV BX,CX ;Save count of bits in last byte
SHE CX,1 ;Compute count
SHR CX,1
SHR CX,1
JZ Trail
MOV AL,OFFh ;Set mask
OUT DX, AL
REP STOSB

; Draw pixels from the trailing partial byte

Trail
AND BL, 7
JZ End Scan Line
MOV AL,DFFh •.Compute mask
MOV CX,BX
SHR AL, CL
NOT AL
OUT DX, AL ;Set the mask
MOV AL,ES: : EDI] ;Latch data
STOSB ;Set new data

; Cleanup and exit

End_Scan_Line:
POP ES ;Restore saved registers

POP DS
POP SI
POP DI
MOV SP, BP ; Restore stack
POP BP
RET

_Scan_Line ENDP

TEXT ENDS
END

Programming Examples—16-Color Graphics 197

Fill Solid Rectangle

A rectangle is the easiest figure to fill. _Solid_Rect uses the same algorithm
described for __Scan__Line, except that the procedure is repeated for a specified
number of scan lines with an appropriate page and offset update between successive
scan lines.

Listing 8-5. File: l6COL\RECT.ASM

* *

* File: RECT.ASM - < Bit Planar Solid Rectangle *
* Routine: _Solid_Rect *
* Arguments: XD, YD, XI, Yl, Color *
* *

INCLUDE VGA.INC

EXTRN Select_Color:NEAR
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD
EXTRN Graf_Seg:WORD

PUBLIC _Solid_Rect

TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg XD EQU WORD PTR
Arg YD EQU WORD PTR
Arg Xl EQU WORD PTR
Arg_Yl EQU WORD PTR
Arg_Color EQU BYTE PTR

Last_Mask EQU BYTE PTR
Start_Page EQU BYTE PTR
PageNo EQU BYTE PTR

_Solid Rect PROC NEAR
PUSH BP
MOV BP, SP
SUB SP,4

PUSH DI
PUSH SI
PUSH DS
PUSH ES

[BP+<] ;Formal parameters
[BP + L]
CBP+fl]
[BP + 1D]
[BP + 15 3

[BP-1] ;Local variables
[BP-5]
[BP-3]

;Allocate local variables

;Preserve registers

Rearange corners so that xD < xl and yO < yl

MOV
MOV
CMP
JGE
MOV
MOV

X_In_Order:
MOV
MOV
CMP
JGE
MOV
MOV

Y_In_Order:

AX,Arg_XD
BX,Arg_Xl
BX, AX
X_In_Order
Arg_XD,BX
Arg_Xl,AX

AX,Arg_YD
BX,Arg_Yl
BX, AX
Y_In_Order
Arg_YD,BX
Arg_Yl,AX

;Force xD < xl

;Force yD < yl

198 Advanced Programmer’s Guide to Super VGAs

Compute address of first pixel, load set/reset (color) register

; Compute page number and select the page

MOV AX,Arg YD ;Fetch y coordinate
MUL CS:Video Pitch ; multiply by raster width
MOV CX,Arg XD ; add x coordinate/a
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, □
MOV DI, AX ;Save offset within page
MOV ES,CS:Graf Seg ;Fetch segment
MOV AL, DL ;Select proper page
MOV PageNo,AL ;Save page number for later
MOV Start_Page,AL
CALL Select_Page

; Load set/reset registers with current color, select bit mask reg

MOV AL,Arg_Color
CALL Select_Color ;Also sets DX to gr Ctrl data register

MOV CX,Arg_Xl ;Compute number of pixels in a line
SUB CX,Arg XD
INC CX
MOV SI,Arg Y1 ;Compute number of lines to do
SUB SI,Arg YD
INC SI

Draw the rectangle (in three strips = lead, full middle, trail)

; Draw pixels from the leading partial byte

MOV AX,Arg XD ;Fetch x coordinate
AND AX,? ;Check for partial byte
JZ Full
XCHG BH, CL ;Preserve counter (CL into BH
MOV BL,OFFh ;Compute the mask
MOV CL, AL
SHR BL, CL
XCHG BH, CL ; Restore counter
ADD CX, AX ;Update counter
SUB CX, a
JGE Mask Set ;Modify mask if only one byte
NEG CX
SHR BL, CL
SHL BL, CL
XOR CX,CX ;Indicate no more bytes

Mask_Set:
MOV AL, BL ;Fetch mask
OUT DX, AL ;Set mask register
PUSH CX ;Preserve counters
PUSH DI ;Save first byte offset
MOV CX,SI ;Number of lines to do
MOV BX,CS:Video Pitch

Lead_Loop:
MOV AH,ES:[DI] ;Latch data
MOV ES: EDI],AH ;Write new data
ADD DI, BX ;Point to next raster
JC Lead_Update_Seg
LOOP Lead_Loop
JMP Lead_Done

Lead Update Seg ;Fix page if needed
XCHG AL,PageNo ;Fetch page number (preserve i

Programming Examples— 16-Color Graphics 199

INC AL
CALL Select_Page
XCHG AL,PageNo
LOOP Lead_Loop

Lead_Done:
POP DI
POP CX
INC DI

; Draw pixels from the middle

Full:
MOV Last_Mask,CL
AND Last_Mask,7
SHR CX,1
SHR CX,1
SHR CX,1
JCXZ Trail
MOV BX,CS:Video_Pitch
SUB BX,CX
INC BX
MOV AL/Start_Page
MOV PageNo,AL
CALL Select_Page
MOV AL,DFFh
OUT DX,AL
PUSH SI
PUSH DI

Outer_Loop:
PUSH CX
REP STOSB
DEC DI
ADD DI, BX
JC Full_Update_Seg

Outer_Update:
POP CX
DEC SI
JG Outer_Loop

POP DI
POP SI
ADD DI, CX
JMP Trail

Full_Update_Seg:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL/PageNo
JMP Outer_Update

;Advance to next page

;Save new page number (restore AL)

;Restore counters

;Point to first full byte

complete bytes

;Save count of bits in last byte

;Compute count of full bytes

;Skip if no full bytes
;Compute line to line increment

;Restore page number

;Set mask

;Preserve counter in CX

;Point to last byte drawn
;Point to next line
;Check of page crossing

;Restore counter (within line)
;Update counter of lines
;If not done, go do another line

;Restore pointer
;Restore line counter
;Point to the trailing byte

;Fetch page number (preserve AL)
;Advance to next page

;Save new page number (restore AL)

; Draw pixels from the trailing partial byte

Trail:
MOV CL,Last_Mask
OR CL,CL
JZ End_Rect
MOV AL,Start_Page
MOV PageNo,AL
CALL Select_Page
MOV BX,CS:Video_Pitch
MOV AL,OFFh
SHR AL,CL
NOT AL
OUT DX,AL
MOV CX,SI

Trail_Loop:
MOV
MOV

;Compute number of trailing bits

;Restore page number

;Get line to line increment
;Compute mask

;Set the mask
;Counter of bytes to do

AL,ES:[DI]
ES: EDI],AL

;Latch data
;Set new data

200 Advanced Programmer’s Guide to Super VGAs

ADD DI,BX
JC Trail_Update_Seg
LOOP Trail_Loop
JMP End_Rect

• date _Seg:
XCHG AL,PageNo
INC AL
CALL Select_Page
XCHG AL,PageNo
LOOP Trail_Loop

;Point to next line
;Update page if needed

;Fetch page number (preserve AL)
;Advance to next page

;Save new page number (restore AL)

Clean up and return to caller

End_Rect:
POP ES
POP DS
POP SI
POP DI
MOV SP/BP
POP BP
RET

Solid_Rect ENDP

;Restore saved registers

; Restore stack

TEXT ENDS
END

Clear Screen

A full screen can be filled most efficiently by avoiding all address translations and
page boundary detection. _Clear__Screen shows how to efficiently erase the screen. At
the start of the procedure, display refresh is disabled to allow data to be moved into
display memory at the fastest possible rate. Display refresh normally imposes wait
states on the processor when display memory is read or written. Display refresh is re¬

enabled at the end of the procedure.

Listing 8-6. File: l6COL\ CLEAR.ASM

.***
• * *

;* File: CLEAR.ASM - A Bit Planar Pixel Clear Screen *
;* Routine: _Clear_Screen *
;* Arguments: Color *
- * *

I***

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pages:WORD
EXTRN Select_Color:NEAR

PUBLIC _Clear_Screen

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_Color EQU BYTE PTR [BP+4]

_Clear_Screen PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP/SP

Programming Examples—16-Color Graphics 201

PUSH ES ;Preserve registers
PUSH DI

; Enable maximum access to display memory (disable video refresh)

MOV DX,SEQUENCER PORT
MOV AL, 1
OUT DX, AL
INC DX
IN AL, DX
MOV AH, AL
OR AL,EDh
OUT DX, AL
MOV AL, 1
PUSH AX

; Clear display memory

MOV AL,Arg_Color
CALL Select Color
MOV AL,OFFh
OUT DX, AL
MOV ES,CS:Graf Seg
XOR AX, AX

Cls_Page_Loop:
CALL Select Page
XOR DI, DI
MOV CX,AOODh
REP STOSW
INC AX
CMP AX,CS:Video_Pages
JL Cls_Page_Loop

; Restore video refresh

MOV DX,SEQUENCER PORT
POP AX
OUT DX, AX

POP DI
POP ES
MOV SP, BP
POP BP
RET

_Clear_Screen ENDP

TEXT ENDS
END

Copy Block

;Fetch address of sequencer
;Index of clock select register
;Select register

;Read current value (to be restored)
;Save current value
;Set disable video bit
;Disable video refresh

;Save old value for later

;Color to fill with

;Enable A bits for write

;Select first segment
jlnitialize page counter

;Select next page
;Set offset
;Number of words to clear
;Clear the next segment
;Update page counter
;A11 pages cleared?
;If not go clear next one

;Fetch address of sequencer
;Fetch previous value
;Restore

;Restore registers

;Restore stack

_BitBlt shows how to perform simple block copying where both the source and des¬
tination are in display memory. The dual page capability of some VGA boards could be
used to improve performance. The module BITBLT.ASM is divided into two sections
according to direction of traversal, which is determined by overlaps between the
source and destination rectangle. Except for movement between scan lines, the sec¬
tions are identical. Each scan line is transferred using the following steps:

Convert starting x,y addresses to Page:Offset
Call procedure Compute_Phase to get phase and masks
Loop over scan lines, and call procedure Copy__Raster to do following:

202 Advanced Programmer’s Guide to Super VGAs

Get enough bits from source (from one or two bytes) for one destination byte
Rotate bits into place (using phase computed earlier)
Move first byte into intermediate buffer (first partial byte for destination)
Loop constructing intermediate bytes as follows:

Fetch source
Rotate into place
Save left-over bits (rotated out) for next loop
Combine with left-over from previous loop
Move to next byte in intermediate buffer

Setup mask for first partial byte of destination
Latch destination byte, then write first byte from intermediate buffer
Setup mask to write all eight bits

Copy rest of the bytes from intermediate buffer to destination
Setup mask for last partial byte
Latch destination byte, then write last byte from intermediate buffer

Each raster is first aligned and copied into intermediate buffer, and then the inter¬
mediate buffer is copied into destination (properly masking off the first and last partial
bytes).

A significant performance improvement can be obtained for cases where the source
is byte-aligned with the destination (phase = 0), or when the VGA board is capable of
two separate pages. In such cases latched write mode 1 can be used with the MOVSB
instruction to transfer data for each scan line.

Listing 8-7. File: l6COL\BITBLT.ASM

* *

* File: BITBLT.ASM - 4 Bit Planar Bit Block Transfer *
* Routine: _BitBlt *
* Arguments: Source X, Source Y, Destination X, Destination Y, *
* Width, Height, Logical function for function register *
* *

INCLUDE VGA.INC

EXTRN Select_Page:NEAR
EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Ras_Buffer:BYTE

PUBLIC _BitBlt

TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_Src_X EQU WORD PTR [BP+4] ;Formal parameters
Arg_Src_Y EQU WORD PTR [BP + L]
Arg_Dst_X EQU WORD PTR [BP+fl]
Arg Dst Y EQU WORD PTR [BP+1D]
Arg DX EQU WORD PTR [BP+15]
Arg_DY EQU WORD PTR [BP+14]
Arg_Fn EQU BYTE PTR [BP+1L]

Programming Examples—16-Color Graphics 203

Src_Pitch EQU WORD PTR [BP-03];Local variables
Dst_Pitch EQU WORD PTR CBP-04]
First_Mask EQU BYTE PTR [BP-05]
Last_Mask EQU BYTE PTR [BP-OL]
Phase EQU BYTE PTR EBP-07]
First_Fetch EQU BYTE PTR [BP-DA]
Full_Count EQU BYTE PTR [BP-DR]
Plane EQU BYTE PTR [BP-10]
Byte_Count EQU WORD PTR [BP-12]
SrcPage EQU BYTE PTR [BP-13]
DstPage EQU BYTE PTR [BP-14]
FirstSrc EQU BYTE PTR [BP-15]
FirstDst EQU BYTE PTR [BP-lb]

_BitBlt PROC NEAR
PUSH BP
MOV BP, SP
SUB SP, It ;Allocate space for local variables

PUSH DS ;Preserve segment registers
PUSH ES
PUSH DI
PUSH SI

; Set source and destination pitch

MOV CX,CS:Video_Pitch ;Fetch screen width
MOV Src_Pitch,CX ;Set src and dst pitch
MOV Dst_Pitch,CX

CALL Reset_Graphics_Controller ;Put gr Ctrl in known state

; Set logical function

;Select data rotate and Arg_Fn register

;Force function into 0-3 and rotate
;into bits 3,4

; Set

Determine direction of traversal
(Note that a check for x reversal is not needed since an
intermediate buffer is being used for transfer)

MOV DX/GRAPHICS CTRL PORT
MOV AL,Fn_SEL_REG
MOV AH/Arg Fn
AND AH, 3
SHL AH, 1
SHL AH ,1
SHL AH /1
OUT DX, AX

MOV AX,Arg_Dst_Y ;Check dsty,srcy
CMP AX,Arg_Src_Y
JL BB_XPYP
JMP BB_XPYN

Traverse x+ y+

BB_XPYP:

; Compute src and dst address

MOV AX,Arg_Src_Y
MUL CS:Video_Pitch
MOV CX,Arg Src X
SHR CX,1
SHR CX,1
SHR CX, 1
ADD AX, CX
ADC DX, 0
MOV DS,CS:Graf_Seg

;Convert x,y to Page:0ffset

;Put address in DS:SI

204 Advanced Programmer’s Guide to Super VGAs

MOV SI, AX
MOV SrcPage,DL ;Save page number
MOV FirstSrc,DL
MOV AX,Arg Dst Y ;Convert x,y to Page:Offset
MUL CS:Video Pitch
MOV CX,Arg Dst X
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, 0
MOV ES,CS:Graf Seg ;Put address in ES:DI
MOV DI,AX
MOV DstPage,DL ;Save page number
MOV FirstDst,DL

; Compute phase and masks

CALL Compute_Phase ;Get alignment info, masks, ...
MOV First Mask,AL ;Save masks
MOV Last Mask,AH
MOV Phase,CL ;Save phase
MOV First Fetch,BH ;Save number of bytes for first byte
MOV Full_Count,CH ;Save number of full bytes

; Loop over planes to be copied

MOV Plane,3 ;Number of planes to do
XPYP Plane Loop

MOV DL,Plane ;Fetch next plane to do
CALL Select Plane ;Select plane for read and write
MOV AL,FirstSrc ;Reset page numbers
MOV SrcPage,AL
MOV AL,FirstDst
MOV DstPage,AL

PUSH SI ;Preserve starting addresses
PUSH DI
MOV BX,Arg DY ;Number of rasters to transfer

XPYP_Raster_Loop:
PUSH BX •.Preserve raster counter
CALL Copy Raster ;Copy the block
POP BX ;Pointers to current raster
DEC BX ; Update number of rasters to do
JLE XPYP RasterDone
ADD SI,Src Pitch ;Update pointer to point to next raster
JNC XPYP_NUSPage ; Update page on carry
INC SrcPage ;Update page number

XPYP NUSPage:
ADD DI,Dst Pitch
JNC XPYP_NUDPage ; Update page on carry
INC DstPage ;Update destination page number

XPYP NUDPage:
JMP XPYP Raster_Loop ;And repeat if not all done

XPYP_RasterDone

POP DI ; Restore starting addresses
POP SI

DEC Plane ;Update number of planes to do
JGE XPYP Plane Loop ;And do next plane if any left to do
JMP End BitBlt

; Traverse x+ y-

BB_XPYN:

; Compute src and dst addresses

Programming Examples—16-Color Graphics 205

MOV AX/Arg Src Y ;Convert x,y to Page:Offset
ADD AX,Arg DY
DEC AX
MOV CX,Arg Src X
SHR CX,1
SHR CX,1
SHR CX,1
MUL CS:Video Pitch
ADD AX, CX
ADC DX, 0
MOV DS, CS:Graf Seg ;Put address in DS:SI
MOV SI, AX
MOV SrcPage,DL
MOV FirstSrc,DL

MOV AX,Arg Dst Y ;Convert x,y to PagerOffset
ADD AX/Arg DY
DEC AX
MOV CX,Arg Dst X
SHR CX,1
SHR CX,1
SHR CX,1
MUL CS:Video Pitch
ADD AX, CX
ADC DX, □
MOV ES,CS:Graf Seg ;Put address in ES:DI
MOV DI, AX
MOV DstPage,DL
MOV FirstDst,DL

; Compute phase and masks

CALL Compute_Phase ;Get alignment info, masks, ...
MOV First_Mask,AL ;Save masks
MOV Last_Mask,AH
MOV Phase,CL ;Save phase
MOV First_Fetch,BH ;Save number of bytes for first byte
MOV Full_Count,CH ;Save number of full bytes

; Loop i over planes to be copied

MOV Plane, 3 ;Number of planes to do
XPYN_Plane_Loop

MOV DL,Plane ;Fetch next plane to do
CALL Select_Plane ;Select plane for read and write
MOV AL,FirstSrc ; Reset page numbers
MOV SrcPage,AL
MOV AL,FirstDst
MOV DstPage,AL

PUSH SI ;Preserve starting addresses
PUSH DI
MOV BX,Arg_DY ;Number of rasters to transfer

XPYN_Raster_Loop:
PUSH BX ;Preserve raster counter
CALL Copy Raster ;Copy the block
POP BX ;Pointers to current raster
DEC BX ;Update number of rasters to do
JLE XPYN RasterDone
SUB SI,Src Pitch ; Update pointer to point to next raster
JNC XPYN_NUSPage ; Update page on carry
DEC SrcPage ;Update page number

XPYN_NUSPage:
SUB DI,Dst Pitch
JNC XPYN_NUDPage ; Update page on carry
DEC DstPage ;Update destination page number

XPYN_NUDPage:
JMP XPYN_Raster_Loop ;And repeat if not all done

XPYN_RasterDone

206 Advanced Programmer’s Guide to Super VGAs

POP DI
POP SI
DEC Plane
JGE XPYN_Plane_Loop
JMP End_BitBlt

;Restore starting addresses

;Update number of planes to do
;And do next plane if any left to do

Cleanup and return

End_BitBlt:
CALL Reset_Graphics_Controller

POP SI ;Restore segment registers
POP DI
POP ES
POP DS
MOV SP,BP ;Restore stack
POP BP
RET

BitBlt ENDP

*

Compute_Phase *
Compute alignment and masks for blit when *

Entry: Src_X, Src_Y *
Dst_X, Dst_Y *
DX , DY Blit description passed via [BP+<]... *

*

Exit: AL - Mask for first byte *
AH - Mask for last byte (or 0 if not needed) *
CL - Phase alignment *
CH - Number of "full" bytes *
BH - Number of fetches needed for first byte *

*

Compute_Phase PROC NEAR

; Compute masks for first and last byte

MOV CX,Arg Dst X ;Number of clear bits in first byte
AND CL,7
MOV AL,OFFh ;Compute mask to clear leading bits
SHR AL, CL
MOV BL, A ;Save number of bits in first byte
SUB BL, CL
XOR BH, BH

MOV CX,Arg Dst X ;Get address of last bit
ADD CX,Arg DX
AND CL,7 ;Position just after last bit
MOV AH,OFFh ;Compute mask to keep bits after
SHR AH,CL
NOT AH ;Complement to keep leading bits

; Combine masks if all bits in the same byte

CMP BX,Arg_DX ;Check if first byte has all the bits
JLE Masks Done ;Jump if not
AND AL, AH ;Combine masks,
XOR AH, AH ;indicate no last byte,
MOV

Masks_Done:
BX,Arg DX ;and adjust BX to have the actual number

;Compute phase alignment

MOV CX,Arg Dst X ;Compute bit distance between
SUB CX,Arg_Src_X ;bit positions in first bytes

Programming Examples—16-Color Graphics

AND CL,7 ;of source and destination bytes
;as (DST-SRC)&7

; Compute number of "full" bytes

NEG BX ;Negate number of bits in first byte
ADD BX,Arg DX ;Add total number of bits to trasfer
SHR BX, 1 ;Convert bit count to byte count
SHR BX, 1
SHR BX, 1
MOV CH, BL ;Copy count into CH

;Compute number of fetches needed for first byte

MOV BX,Arg Src X ;Check if need one or two bytes
AND BL, 7 ;for first byte of destination
MOV DX,Arg Dst X ;If (src mod 7) > (dst mod 7) then 2
AND DL, 7
CMP BL, DL
MOV BH, 1 ;Assume one fetch
JLE Fetches ;Jump if only one fetch needed
INC BH ;Must use two fetches

Fetches:
RET

Compute_Phase ENDP

*

Copy_Raster *
Transfer pixels from one raster. The transfer is done in the *
following steps: *

*

(1) LEADING PARTIAL BYTE FOR DESTINATION IS PLACED IN TMP BUF*
(E) FULL BYTES OF DESTINATION ARE MOVED INTO TEMP BUFFER *
(3) TRAILING PARTIAL BYTE FOR DESTINATION IS PLACED IN TMP *
(A) TEMPORARY BUFFER IS COPIED INTO DESTINATION *

Entry: *
First_Mask EQU BYTE PTR [BP-05] *
Last Mask EQU BYTE PTR [BP-OL] *
First_Fetch EQU BYTE PTR [BP-Dfl] *
Full Count EQU BYTE PTR [BP-03] *
DS: SI Source *

ES: DI Destination *

BX Number of lines to transfer *

CL Phase *
*

Copy_Raster PROC NEAR

PUSH SI ;Preserve pointers
PUSH DI

Construct data for destination in a temporary buffer

PUSH ES
PUSH DI
LEA DI,CS:Ras Buffer
MOV AX, CS
MOV ES, AX
MOV AL,SrcPage
CALL Select_Page

; Get enough bits from s<

MOV CL,Phase
CMP First Fetch,1
JLE Get_l

;Setup ES:DI to point to temp buff

;Select source page

to construct first partial byte of dst

;Fetch phase alignment
;Check if need one or two bytes of src
;for first byte of destination
;Get next byte of source

207

Get_2:

208 Advanced Programmer’s Guide to Super VGAs

LODSB ;Fetch first source byte
;Place into 'left over' byte MOV AH, AL

Get 1:
LODSB ;Get next byte of source
MOV BH, AL ;Save for later
ROR AX, CL ;Rotate into place
MOV AH, BH ;Put unused bits into AH
STOSB ;Set destination

; Loop over complete bytes within a single source raster

MOV BL,Full Count ;Number of bytes to copy
XOR BH, BH
OR BX,BX
JZ Last ;Skip if none

Full_Loop:
LODSB ;Fetch next source byte
MOV DH, AL ;Save unused bits for later
SHR AX,CL ; Align
MOV AH, DH ;Keep unused bits
STOSB ;Save the byte in destination
DEC BX
JG Full_Loop

; Construct the final partial byte

Last:
LODSB ;Fetch next byte of source
SHR AX,CL ;Align with destination
STOSB ;Set destination

; Copy data from temporary buffer to destination

POP DI ;Restore pointers
POP ES
LEA SI,CS:Ras Buffer ;Setup DS:SI to temp buffer
MOV AX, CS
MOV DS, AX
MOV AL,DstPage ;Select destination page
CALL Select_Page

; Move first leading partial byte from temp buffer to destination

MOV DX,GRAPHICS CTRL PORT 1 ;Set write mask to First_Mask
MOV AL,BIT_MASK_REG
MOV AH,First Mask
OUT DX, AX

MOV AH,ES:[DI] ;Latch destination byte
MOVSB ;Set first partial byte

; Move middle complete bytes from temp buffer to destination

MOV AH,DFFh ;Reset write mask to all bits
OUT DX, AX

MOV CL,Full Count ;Number of bytes to move
XOR CH, CH
JCXZ FullDone
CMP Arg_Fn,□ ;Use MOVS if function is □ (SRC)
JZ FnSrc

FullLoop:
MOV AH,ES:[DI] ;Latch destination
MOVSB ;Combine source and latch into dst
LOOP FullLoop
JMP FullDone

FnSrc:
REP MOVSB ;Move data from temporary buf to dst

Programming Examples—16-Color Graphics 209

FullDone:

; Move the last partial byte from temporary buffer to destination

MOV AH,Last Mask ;Set write mask to Last Mask
OUT DX, AX

MOV AL/ES:[DI] ;Latch data
MOVSB ;Write new data

MOV DS,CS:Graf Seg ;Restore pointers
POP DI
POP SI

RET
Copy_Raster ENDP

j***

; Reset_Graphics_Controller *
; Restore registers modified by bitblt routines *

************************************** **********************************

Reset Graphics Controller PROC NEAR
MOV DX/GRAPHICS CTRL PORT ;Set write mask to all bits
MOV AL,BIT MASK REG
MOV AH,OFFh
OUT DX, AX

MOV AL,Fn SEL REG ;Set function to direct write
MOV AH, □
OUT DX, AX

MOV AL,READ PLANE REG ;Select read plane to 0
OUT DX, AX

MOV AL,SR ENABLE REG ;Disable set/rest function
OUT DX, AX

MOV DX,SEQUENCER PORT ;Fetch register port
MOV AL,PLANE ENABLE REG ;Fetch register index
MOV AH, DFh ;Enable all planes for write
OUT DX, AX ;Select plane for write
RET

Reset_Graphics_ Controller ENDP

• ************** ***

; Select Plane *

; Select plane passed in DL for read and write *

; Entry: DL - Page number *

:***

Select Plane PROC NEAR
PUSH DX
MOV AH, DL
;Enable read
AND AH,3 ;Force into range
MOV DX,GRAPHICS CTRL PORT ;Fetch register port
MOV AL,READ PLANE REG ;Fetch register index
OUT DX, AX ;Select plane for read
;Enable write
XCHG AL, CL ;Preserve CL
MOV CL, AH ;Convert plane number
MOV AH, 1 ; to bit position
SHL AH,CL
XCHG AL, CL ;Restore CL
MOV DX,SEQUENCER PORT ;Fetch register port

210 Advanced Programmer’s Guide to Super VGAs

MOV
OUT
POP
RET

Select_Plane

_TEXT ENDS
END

Set Cursor, Move Cursor, Remove Cursor

This module contains three procedures to define, move, and remove a cursor in the
display memory.

In the procedure _Set__Cursor, monochrome XOR and AND masks are expanded
according to the parameters FG_Color (foreground color) and BG_Color (back¬
ground color). In this implementation these masks are stored on screen in an area
immediately below the first scan line in order to clearly see how the cursor is con¬
structed. By changing one line of marked code, the cursor mask storage area can be
moved offscreen. The entire cursor mask storage area must reside within one page of
display memory.

At the end of the _set_Cursor procedure, the variables Last_Cursor_X and
Last_Cursor__Y are initialized to ensure proper operation during the first call to
_Move__Cursor.

In the procedure _Move_Cursor, the cursor masks are logically combined with the
background data from the new cursor position specified. A block twice the size of the
cursor is used to minimize flicker for small changes in cursor position. Background
data for a block around the cursor position is kept immediately next to the cursor
masks. A check is made to see if the cursor moved outside of the current block, and if
so, the cursor is removed from the screen (by calling _Remove_Cursor) and a new
block is copied to the save area. Next, the background save area is copied into the build
area (next to the save area), where the cursor masks are combined with the back¬
ground data. The data in the build area is then copied to the display.

For a small motion of the cursor (within the same block), the cursor in the display
area is removed and placed in its new position in a single transfer; the cursor never
disappears from the screen and flicker is eliminated (until an edge of the block is
reached).

__Remove__Cursor restores the area under the cursor by transferring data from the
save area to the display.

Listing 8-8. File: l6COL\ CURSOR.ASM

; * *
;* File: CURSOR.ASM - 4 Bit Planar Cursor Routines *
;* Routines: _Set_Cursor, _Move_Cursor, _Remove_Cursor *
; * *

AL,PLANE_ENABLE_REG ;Fetch register index
DX,AX ;Select plane for write
DX

ENDP

INCLUDE VGA.INC

Programming Examples— 16-Color Graphics 211

EXTRN _BitBlt:NEAR
EXTRN Select_Color:NEAR

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Video_Height:WORD
EXTRN Select_Page:NEAR
EXTRN Select_Write_Page:NEAR
EXTRN Select_Read_Page:NEAR
EXTRN Two_Pages:BYTE

PUBLIC _Set_Cursor
PUBLIC _Move_Cursor
PUBLIC _Remove_Cursor

TEXT SEGMENT BYTE PUBLIC 'CODE'

Common cursor definitions

CUR WIDTH EQU 35
CUR_HEIGHT EQU 35

Save_Area_Off DW □
Save_Area_Page DB D
Save_Area_x DW 5*CUR .width
AND_Area_y LABEL WORD
XOR_Area_y LABEL WORD
Build_Area_y LABEL WORD
Save_Area_y DW □
Build_Area_x DW 4*CUR .WIDTH
AND_Area_x DW 0
XOR_Area_x DW CUR WIDTH
Last_Cursor_x DW 0
Last_Cursor_y DW □

* *

* _Set_Cursor *
* This procedure will expand the two cursor masks into *
* four planes. Normally the masks should be stored after the *
* last visible scan line (global parameter 'Video_Height', *
* however in this demo, the cursor masks and the 'save buffer' *
* will be stored immediately above the last line. This is done *
* so that the reader can clearly see the AND mask, the XOR mask, *
* and the area under the cursor in 'save buffer'. *
* *

* Entry: *
* AND_Mask - 4x35 bytes with AND mask *
* XOR_Mask - 4x35 bytes with XOR mask *
* BG_Color - Foreground color *
* FG_Color - Background color *
* *

**

Arg AND Mask EQU WORD PTR [BP + 4] ;Formal parameters
Arg_XOR_Mask EQU WORD PTR [BP + L 3
Arg_BG_Color EQU BYTE PTR [BP+fl]
Arg_FG_Color EQU BYTE PTR CBP+1Q]

Set Cursor PROC NEAR
PUSH BP ;Standard high-level
MOV BP, SP

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Setup Graphics Controller to use 'Set/Reset' mode with

212 Advanced Programmer’s Guide to Super VGAs

; Set/Reset value set to background color

MOV AL,Arg_BG_Color ;Select background color
CALL Select_Color
MOV AL/QFFh ;Enable A bits for write
OUT DX,AL ;(Select_Color selected register)

; Fill with background, the area where both masks will be stored
; (Note that this will work only if save area is contained in one page)

MOV CX,0 ;Set x to start of save area
MOV AX,CS:Video_Height ;Set y to below last line on the screen
;!!!!!!!!! The next line should be removed !!!!!!!!!!!!!!!!
;!!!!!!!!! if you do not want to see the save !!!!!!!!!!!!!!!!
;!!!!!!!!! regions on the screen !!!!!!!!!!!!!!!!
MOV AX,0
MOV CS:Save_Area_y,AX
MUL CS:Video_Pitch
MOV CS:Save_Area_Off,AX
MOV DI,AX
MOV ES,CS:Graf_Seg
MOV AL,DL
CALL Select_Page
MOV CX,CUR_HEIGHT
MOV BX,CS:Video_Pitch
SUB BX,E*CUR_WIDTH/A

;Make visible for demo !!!!!!!!!!
;Save y for other cursor procs
;Convert x,y to Seg:Off
;Setup SegrOff for other routines
;Set DI to save area offset
;Point ES to save area segment
;Select page

;Number of scanlines to do
;Calculate scan-to-scan increment

Fill_Background:
STOSW
STOSW
STOSW
STOSW
ADD DI,BX
LOOP Fill_Background

Bits for AND mask

Bits for XOR mask

Point to next scanline

; Set foreground bits for the AND mask in the save area

MOV AL,Arg_FG_Color ;Load Set/Reset with foreground color
CALL Select_Color ;Bit mask register now selected

MOV CX,CUR HEIGHT initialize counter
MOV DI,CS:Save Area Off ;Get pointer to save area
MOV SI,Arg AND Mask ;Advance pointer to AND-mask section
ADD BX,CUR WIDTH/A ;Set scan-to-scan increment

AND FG:
LODSB ;Fetch next byte from the mask
OUT DX,AL ;Set bit mask register using cursor mask
MOV AH,ES:[DI] ;Latch data
STOSB ;Write next A bits
LODSB ;Fetch next byte from the mask
OUT DX,AL ;Set bit mask register using cursor mask
MOV AH,ES:[DI] ;Latch data
STOSB ;Write next A bits
LODSB ;Fetch next byte from the mask
OUT DX,AL ;Set bit mask register using cursor mask
MOV AH,ES:[DI] ;Latch data
STOSB ;Write next A bits
LODSB ;Fetch next byte from the mask
OUT DX,AL ;Set bit mask register using cursor mask
MOV AH,ES:(DI] ;Latch data
STOSB ;Write next A bits
ADD DI,BX
LOOP Set_AND_FG

; Change foreground bits for the XOR mask in the save area

MOV CX,CUR_HEIGHT
MOV DI,CS:Save_Area_Off
ADD DI,CUR_WIDTH/A
MOV SI,Arg_XOR_Mask

Set_XOR_FG:
LODSB

;Initialize counter
;Fetch pointer to save area
;Advance pointer to XOR-mask section
;Get pointer to XOR mask

;Fetch next byte from the mask

Programming Examples—16-Color Graphics 213

OUT DX,AL
MOV AH/ES:[DI]
STOSB
LODSB
OUT DX,AL
MOV AH,ES:EDI]
STOSB
LODSB
OUT DX,AL
MOV AH,ES:[DI]
STOSB
LODSB
OUT DX/AL
MOV AH,ES:[DI]
STOSB
ADD DI, BX
LOOP Set_XOR_FG

;Set bit mask register using cursor mask
;Latch data
;Write next A bits
;Fetch next byte from the mask
;Set bit mask register using cursor mask
;Latch data
;Write next A bits
;Fetch next byte from the mask
;Set bit mask register using cursor mask
;Latch data
;Write next A bits
;Fetch next byte from the mask
;Set bit mask register using cursor mask
; Latch data
;Write next A bits

; Save 'previous cursor' to save area (this is needed for first
; call to Move_Cursor procedure, because it always restores and
; we need meaningful data for the first restore)

MOV AX,CS:Save_Area_x ;Use save area as last cursor pos
MOV CS:Last_Cursor_x,AX
MOV AX,CS:Save_Area_y
MOV CS:Last_Cursor_y,AX ;Save 'where it came from'

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

_Set_Cursor ENDP

* *

* _Move_Cursor *
* This procedure is used to move the cursor from one *
* location to another. The cursor move is performed using the *
* following steps: *
* 1 - Check if new cursor is outside 'cursor block' *
* 2 - If outside 'cursor block' restore area under *
* previous block. *
* Save area under new block. *
* 3 - Copy saved are into cursor build area (both save and *
* build areas are normally off-screen). *
* A - Combine AND and XOR masks with build area. *
* 5 - Copy build area to where new cursor should be (this *
* in most cases overwrites the old cursor). *
* The 'build area' is a rectangle twice the size of the cursor. *
* It is used to eliminate flicker for small movement of the *
* cursor, since cursor may not need to be erased if it moves *
* only by a few pixels. *
* *

* Entry: *
* Curs_X - Position of the new cursor *
* Curs_Y *
* *

Arg_Curs_x
Arg_Curs_y

EQU
EQU

WORD PTR CBP+4] ;Formal parameters
WORD PTR [BP+L]

_Move_Cursor PROC NEAR
PUSH BP
MOV BP,SP

;Standard high-level entry

214 Advanced Programmer’s Guide to Super VGAs

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Check if new area needs to be saved

MOV AX,Arg Curs x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ; Round to nearest buffer block
MOV BX,Arg Curs y ; Fetch new y
AND BX,NOT(CUR_HEIGHT-1) ;Round to nearest buffer block

CMP
JNE

AX,CS:Last_Cursor_x
Cursor_New_Block

; Check if x moved into next block

CMP
JNE
JMP

BX,CS:Last_Cursor_y
Cursor_New_Block
Build_Cursor

; Check if y moved into next block

; For new block, call to remove old cursor, then use _BitBlt
; to save block under next cursor location into the save area

Cursor_New_Block:
CALL _Remove_Cursor ;Restore last location
MOV AX,Arg_Curs_x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ;Round to nearest buffer block
MOV CS:Last_Cursor_x,AX ;Save as 'last x'
MOV AX,Arg_Curs_y ;Fetch new y
AND AX,NOT(CUR_HEIGHT-1) ;Round to nearest buffer block
MOV CS:Last_Cursor_y,AX ;Save as 'last y'

MOV AX,FUNC_COPY ;Push function on the stack
PUSH AX
MOV AX,5*CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX
PUSH CS:Save_Area_y ;Push x and y of destination
PUSH CS:Save_Area_x
PUSH CS:Last_Cursor_y ;Push x and y of source
PUSH CS:Last_Cursor_x
CALL _BitBlt
ADD SP,14

; Use _BitBlt to copy save area into build area

Build_Cursor:
MOV AX,FUNC_COPY
PUSH AX
MOV AX,5*CUR_HEIGHT
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX
PUSH CS:Build_Area_y
PUSH CS:Build_Area_x
PUSH CS:Save_Area_y
PUSH CS:Save_Area_x
CALL _BitBlt
ADD SP,14

; Use _BitBlt procedure to mix AND and XOR masks of the cursor
; with build area

MOV AX,FUNC_AND ;Push function on the stack
PUSH AX
MOV AX,CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,CUR_WIDTH
PUSH AX
MOV AX,Arg_Curs_y ;Compute offset of new cursor in block
AND AX,CUR_HEIGHT-1
ADD AX,CS:Build_Area_y ;Add location of build block

;Push function on the stack

;Push width and height

;Push x and y of destination

;Push x and y of source

Programming Examples—16-Color Graphics 215

PUSH AX
MOV AX,Arg_Curs_x
AND AX/CUR_WIDTH-1
ADD AX,CS:Build_Area_x
PUSH AX
PUSH CS:AND_Area_y
PUSH CS:AND_Area_x
CALL _BitBlt
ADD SP,1<

MOV AX/FUNC_XOR
PUSH AX
MOV AX,CUR_HEIGHT
PUSH AX
MOV AX,CUR_WIDTH
PUSH AX
MOV AX,Arg_Curs_y
AND AX/CUR_HEIGHT-1
ADD AX, CS:Build_Area_y
PUSH AX
MOV AX/Arg_Curs_x
AND AX/CUR_WIDTH-1
ADD AX,CS:Build_Area_x
PUSH AX
PUSH CS:XOR_Area_y
PUSH CS:XOR_Area_x
CALL _BitBlt
ADD SP,14

;Compute offset of new cursor in block

;Add location of build block

;Push x and y of source

;Push function on the stack

;Push width and height

;Compute offset of new cursor in block

;Add location of build block

;Compute offset of new cursor in block

;Add location of build block

;Push x and y of source

; Use _BitBlt procedure to copy build area to screen (and erase old
; cursor with the new cursor block).

MOV AX,FUNC_COPY
PUSH AX
MOV AX,5*CUR_HEIGHT
PUSH AX
MOV AX,2*CUR_WIDTH
PUSH AX
MOV AX,Arg_Curs_y
AND AX/NOT(CUR_HEIGHT-1)
PUSH AX
MOV AX,Arg_Curs_x
AND AX/NOT(CUR_WIDTH-1)
PUSH AX
PUSH CS:Build_Area_y
PUSH CS:Build_Area_x
CALL _BitBlt
ADD SP,14

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP,BP
POP BP
RET

_Move_Cursor ENDP

;Push function to use

;Push width and height

;Push x and y of destination

;Push x and y of source

;Restore segment registers

;Restore stack

* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* and to restore the screen to its original appearance *
* *

_Remove_Cursor PROC NEAR
PUSH BP ;Standard high-level entry

216 Advanced Programmer’s Guide to Super VGAs

MOV BP,SP
PUSH SI
PUSH DI
PUSH ES
PUSH DS

Save registers

; Use _BitBlt to restore area under the last cursor location

MOV AX/FUNC COPY ; Push function to use
PUSH AX
MOV AX,2*CUR HEIGHT ; Push width and height
PUSH AX
MOV AX,5*CUR WIDTH
PUSH AX
PUSH CS:Last_Cursor_y ; Push x,y of area to restore
PUSH CS:Last_Cursor_x
PUSH CS:Save_Area_y ; Push x and y of save area block
PUSH CS:Save Area x
CALL BitBlt
ADD SP,14

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

.Remove_Cursor ENDP

TEXT ENDS
END

Load Palette

This module is used to control the color mapping between data in display memory
and the colors seen on the screen. For 16-color modes this is best done by changing
the Palette registers in the Attribute controller.

As an alternative, BIOS function lOh, sub-functions OOh or 02h can be used to change
color mapping.

Listing 8-9. File: l6COL\ PALETTE.ASM

* *

* File: PALETTE.ASM - Load palette registers *
* Routine: _Load_Palette *
* Arguments: Start/ Count, ArrayPtr *
* *

INCLUDE VGA.INC

PUBLIC _Load_Palette

TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_Start EQU WORD PTR [BP+4]
Arg_Count EQU WORD PTR [BP+L]
Arg_ArrayPtr EQU DWORD PTR [BP+fl]

Programming Examples—16-Color Graphics 217

_Load_Palette PROC NEAR
PUSH BP
MOV BP, SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

; Get address of input status

XOR AX, AX
MOV ES, AX
MOV DX,ES:[4L3h]
ADD DX, L

; Load palette registers

IN AL, DX
MOV DX,3CDh
LDS SI,Arg_ArrayPtr
MOV AX,Arg_Start
MOV CX,Arg_Count

Palette_Loop:
OUT DX, AL
XCHG
LODSB

AH, AL

OUT DX, AL
XCHG AH, AL
INC AL
LOOP Palette_Loop

MOV AL, EDh
OUT DX, AL

; Cleanup and return

POP SI
POP DI
POP DS
POP ES

MOV SP, BP
POP
RET

BP

_Load_Palette

TEXT ENDS
END

ENDP

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

registers

;Segment of BIOS data area

;Fetch address of CRTC
;Compute address of input status reg

;Reset data/address flip/flop
;Fetch address of Attribute controller
;Fetch pointer of palette values
;Index of first palette register
;Number of registers to load

;Select next register
;Save register index
;Fetch next register value
;Set next palette register
;Restore register index
;Advance register index
;Check if all done

;Turn Attribute controller on

;Restore segment and index registers

;Restore stack pointer
;Restore BP

Programming Examples
4-Color Graphics

220 Advanced Programmer’s Guide to Super VGAs

Introduction
High resolution four-color graphics modes are useful for applications such as

desktop publishing where resolution is important but colors are not. For the most part,
these modes are from a time when only 256 K of display memory was commonly avail¬
able, and color had to be sacrificed to gain higher resolution. Up to 1024 x 768 resolu¬
tion can be supported with just 256 K of display memory.

Unfortunately, there is no consensus among chip manufacturers on how four-color
high resolution modes should be implemented. Some VGA products even have vary¬
ing levels of support between different versions of the BIOS. This chapter presents the
most common organizations found on the boards we examined, and for each provides
a listing for pixel read and pixel write functions. Other drawing routines can be found
on the accompanying diskette.

We have seen five different memory organizations used for four-color graphics.
Three of these use planar pixels and are similar to VGA mode 12h (640 x 480 16-color
mode), except that different combinations of color planes are used to define pixel col¬
ors. A fifth mode uses packed pixels, and is similar to VGA mode 4 except that interleav¬
ing is not used. Each of the five types is described in the next five sections.

Four Planes
Figure 9-1 shows the organization of display memory for four color high resolution

modes with planar pixels, using all four planes of display memory. Each pixel occupies
one bit position in each of two planes. Pixels in even bytes occupy planes 0 and 2, and
pixels in odd bytes occupy planes 1 and 3. To convert from a pixel position, in X and Y
screen coordinates, to a bit location in display memory, use the following equation:

Segment = AOOOh
Byte offset = Video_Pitch x Y + X/8
Bit position = X modulo 8

Programming Examples—4-Color Graphics 221

Figure 9-1. Display memory organization - four color graphics, four planes

The fact that some pixels are in one pair of planes and others in another, is transpar¬
ent during all operations, as long as color planes are enabled properly, according to
desired color. Table 9-1 contains a mapping used to map requested colors, to plane
enable values. For example, a pixel of color 2 would be obtained by setting bits in
planes 2 and 3 to 1, and clearing bits in planes 0 and 1 to 0.

Table 9-1. Translating color value to plane content - four planes

Color Plane 0 Plane 1 Plane 2 Plane 3
0 0 0 0 0
1 1 1 0 0
2 0 0 1 1
3 1 1 1 1

The next two programming examples show how to read and write a pixel.

222 Advanced Programmer’s Guide to Super VGAs

Write Pixel

Listing 9-1. File: ..\4COL\WPIXELASM

* *

* File: WPIXEL.ASM - 2 Bit Planar Pixel Write (alt D&E and 1&3) *
* Routine: _Write_Pixel *
* Arguments: X, Y, Color *
* *

* Routine: Select_Color *
* Arguments: AL = Color *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel
PUBLIC Select_Color

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x EQU WORD PTR [BP+4]
Arg_y EQU WORD PTR [BP+L]
Arg_Color EQU BYTE PTR CBP+fl]

Write Pixel PROC NEAR
PUSH BP ;Preserve
MOV BP,SP ;Preserve

PUSH ES ;Preserve
PUSH DS
PUSH DI
PUSH SI

Preserve segment and index registers

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg y
MUL CS:Video Pitch
MOV CX,Arg x
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX,D
MOV ES,CS:Graf Seg
MOV DI, AX
MOV AL , DL
CALL Select_Page

; Set Graphics Controller

MOV AL,Arg_Color
CALL Select_Color

; Set write mask

MOV CX,Arg x
AND CX, 7
MOV AL,fiOh
SHR AL, CL
MOV DX,GRAPHICS CTRL
MOV AH, AL
MOV AL,BIT MASK REG
OUT DX, AX

Fetch y coordinate
multiply by raster width
add x coordinate/fl

;Put address in ES:DI

;Select proper page

;Fetch color to use
; Select color

;Compute X AND 7 to find mask rotation
;Mask rotation is now in CL
;Shift bit to find mask
;Mask is now in AL
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

Programming Examples—4-Color Graphics

; Set pixel

MOV AH,ES:[DI]
MOV ES:[DI]/AL

; Cleanup and exit

POP SI
POP DI
POP DS
POP ES

MOV SP/BP
POP BP
RET

Write_Pixel ENDP

;Latch previous value
;Write color (using set/reset)

;Restore segment and index registers

;Restore stack pointer
; Restore BP

**
* *

* Routine: Select_Color *
* Utility routine used by all drawing routines to select *
* specified color. It is assumed that all planes are *
* enabled for write, and that 'processor write' mode is *

selected. Routine enables set/reset mechanism of VGA. *
AL = Color *
DX = Points to mask select data register *

* Arguments:
* Returns:

Xlat_Table DB □□h,D3h,OCh,DFFh

Select. _Color PROC NEAR
PUSH AX
PUSH BX
MOV DX,GRAPHICS CTRL PORT
AND AL,03h
LEA BX,CS:Xlat Table
XLAT CS:Xlat Table
MOV AH, AL
MOV AL,SET RESET REG
OUT DX, AX
MOV DX,GRAPHICS CTRL PORT
MOV AL,SR ENABLE REG
MOV AH,OFh
OUT DX, AX
MOV AL,BIT MASK REG
OUT DX, AL
INC DX
POP BX
POP
RET

AX

Select. .Color ENDP

;Use color for set/reset value
;Force color into range
;Translate color

;Enable set/reset

;Select bit mask register

223

TEXT ENDS
END

224 Advanced Programmer’s Guide to Super VGAs

Read Pixel

Listing 9-2. File: ..\4COL\RPIXELASM

* *

;* File: RPIXEL.ASM - 5 Bit Planar Pixel Read (read even planes) *
;* Routine: Read Pixel *

;* Arguments: X, Y *

;* Returns: Color in AX *
• * *
;**

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x EQU WORD PTR [BP+43
Arg_y EQU WORD PTR [BP+L]

_Read_Pixel PROC NEAR

PUSH BP ;Preserve BP
MOV BP , SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Page and Offset

MOV AX/Arg y ;Fetch y coordinate
MUL CS:Video_Pitch ; multiply by raster width
MOV CX/Arg x ; add x coordinate/fl
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX / CX
ADC DX, □
MOV ES/CS:Graf Seg ;Put address in ES:DI
MOV DI, AX
MOV AL,DL ;Select proper page
CALL Select_Page

; Read one bit from plane □

MOV DX,GRAPHICS CTRL PORT ;Select Read Plane register
MOV AL,READ PLANE REG
XOR AH , AH ;Fetch plane to read (E)
OUT DX, AX ;Select plane to read

MOV CX,Arg x ;Compute X AND 7 to find mask rotation
INC CX
AND CX, 7 ;Mask rotation is now in CL
MOV BL,ES:[DI] ;Get byte of video memory
ROL BL, CL ;Rotate bit into place
AND BL,1 ;Mask off unneeded bits

; Read one bit from plane E

MOV AH, E ; Select second plane to read
OUT DX, AX

Programming Examples—4-Color Graphics 225

MOV AL,ES:[DI] ;Fetch byte from next plane
INC CL ;Update mask
ROL AL, CL ;Rotate bit into place
AND AL,2 ;Mask off unneeded bits
OR AL, BL ;Combine both bits
XOR AH, AH ;Clear high order byte

POP SI ;Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ; Restore BP
RET

_Read_Pixel ENDP

TEXT ENDS
END

Two Even Planes
Figure 9-2 shows a typical organization of display memory for four color high reso¬

lution modes with planar pixels, using the two even planes of display memory. Each
pixel occupies one bit position in each of two planes. To convert from a pixel position,
in X and Y screen coordinates, to a bit location in display memory, use the following
equation:

Segment = AOOOh
Byte offset = Video_Pitch x Y + X/8
Bit position = X modulo 8

Figure 9-2. Display memory organization—4-color graphics, even planes

226 Advanced Programmer’s Guide to Super VGAs

This memory organization is similar to the organization described in the previous
section (alternating even/odd pairs), and many drawing routines are the same.

Table 9-2 shows the mapping used to map requested colors to plane enable values.
For example, a pixel of color 2 would be obtained by setting bits in planes 2 to 1, and
clearing bits in plane 0 to 0.

Table 9-2. Translating color value to plane content - two even planes

Color Plane 0 Plane 2

0 0 0
1 1 0
2 0 1
3 1 1
Note: Planes 1 and 3 should be disabled during
drawing operations

The next two programming examples show how to read and write a pixel for this
memory organization.

Write Pixel

Listing 9-3. File: ..\4COL02\WPIXELASM

* *

* File: WPIXEL.ASM - a Bit Planar Pixel Write (even planes) *
* Routine: _Write_Pixel *
* Arguments: X, Y, Color *
* *

* Routine: Select_Color *
* Arguments: AL = Color *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD
PUBLIC _Write_Pixel
PUBLIC Select_Color

_TEXT SEGMENT BYTE PUBLIC •CODE'

Arg_x EQU WORD PTR [BP+4]
Arg_y EQU WORD PTR [BP+L]
Arg_Color EQU BYTE PTR [BP+fl]

Write Pixel PROC NEAR
PUSH BP ;Preserve BP
MOV BP,SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

Programming Examples—4-Color Graphics

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg_y
MUL CS:Video_Pitch
MOV CX,Arg_x
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX,CX
ADC DX,D
MOV ES,CS:Graf_Seg
MOV DI,AX
MOV AL,DL
CALL Select_Page

; Set Graphics Controller for

MOV AL,Arg_Color
CALL Select_Color

; Set write mask

MOV CX,Arg_x
AND CX,7
MOV AL,flDh
SHR AL,CL
MOV DX,GRAPHICS_CTRL_PORT
MOV AH,AL
MOV AL,BIT_MASK_REG
OUT DX, AX

; Set pixel

MOV AH,ES:[DI]
MOV ES : [DI],AL

; Cleanup and exit

POP SI
POP DI
POP DS
POP ES

MOV SP, BP
POP BP
RET

_Write_Pixel ENDP

Fetch y coordinate
multiply by raster width
add x coordinate/fl

;Put address in ES:DI

;Select proper page

proper color

;Fetch color to use
;Select color

;Compute X AND 7 to find mask rotation
;Mask rotation is now in CL
;Shift bit to find mask
;Mask is now in AL
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

;Latch previous value
;Write color (using set/reset)

;Restore segment and index registers

;Restore stack pointer
;Restore BP

***.^,)e))cj|c:!((:j(c3t.,t.3)(;3)(3(<.3t,2)ej(i;3jc;i)e3)<j)c>)c3)c3)(.3)e,ji:;jc;jc^

* *

* Routine: Select_Color *
* Utility routine used by all drawing routines to select *
* specified color. It is assumed that all planes are *
* enabled for write, and that 'processor write' mode is *
* selected. Routine enables set/reset mechanism of VGA. *
* Arguments: AL = Color *
* Returns: DX = Points to mask select data register *
* * ****************************** ^^^^^^^^j^**********^^^^^^^

Xlat_Table DB □□h,Dlh,D<h,D5h

Select Color PROC NEAR
PUSH AX
PUSH BX
; Enable only planes □ and E for write
XCHG AX, BX ;Preserve color
MOV DX,SEQUENCER PORT ;Address of sequencer
MOV AX,PLANE ENABLE REG+D5D0h ;Select planes D&E for write
OUT DX, AX
XCHG AX, BX ; Restore color

228 Advanced Programmer’s Guide to Super VGAs

Read Pixel

Listing 9-4. File: ..\4COL02\RPIXELASM

• * *

;* File: RPIXEL.ASM - E Bit Planar Pixel Read *
;* Routine: _Read_Pixel *
;* Arguments: X, Y *
;* Returns: Color in AX *
. * *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x EQU WORD PTR [BP+4]
Arg_y EQU WORD PTR [BP+L]

_Read_Pixel PROC NEAR
PUSH BP
MOV BP,SP

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg_y ; Fetch y coordinate
MUL CS:Video_Pitch ; multiply by raster width
MOV CX,Arg x ; add x coordinate/fi
SHR CX,1
SHR CX,1

; Preserve BP
;Preserve stack pointer

Programming Examples—4-Color Graphics 229

SHR CX,1
ADD AX, CX
ADC DX / 0
MOV ES,CS:Graf Seg ;Put address in ES:DI
MOV DI, AX
MOV AL, DL ;Select proper page
CALL Select_Page

; Read one bit from plane □

MOV DX,GRAPHICS_CTRL_PORT ;Select Read Plane register
MOV AL,READ PLANE REG
XOR AH, AH ;Fetch plane to read (5)
OUT DX, AX ;Select plane to read

MOV CX,Arg x ;Compute X AND 7 to find mask rotation
INC CX
AND CX,7 ;Mask rotation is now in CL
MOV BL,ES:[DI] ;Get byte of video memory
ROL BL, CL ;Rotate bit into place
AND BL,1 ;Mask off unneeded bits

; Read one bit from plane 2

MOV AH,5 ;Select second plane to read
OUT DX, AX
MOV AL,ES:[DI] ;Fetch byte from next plane
INC CL ;Update mask
ROL AL, CL ;Rotate bit into place
AND AL, 2 ;Mask off unneeded bits
OR AL, BL ;Combine both bits
XOR AH, AH ;Clear high order byte

POP SI ;Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ;Restore BP
RET

Read_Pixel ENDP

TEXT ENDS
END

Two Consecutive Planes
Figure 9-3 on page 230 shows a typical organization of display memory for four

color high resolution modes with planar pixels, using planes 0 and 1 of display mem¬
ory. Each pixel occupies one bit position in each of two planes. To convert from a pixel
position in X and Y screen coordinates to a bit location in display memory, use the
following equation:

Segment = AOOOh
Byte offset = Video_Pitch x Y + X/8
Bit position = X modulo 8

230 Advanced Programmer’s Guide to Super VGAs

Figure 9-3. Display memory organization—4 color graphics, consecutive planes

This memory organization is similar to the organization described in the previous
two sections, and many drawing routines are the same. No color mapping is needed.

The next two programming examples show how to read and write a pixel for this
memory organization.

Write Pixel

Listing 9-5. File: .A4COL01 \WPIXEL.ASM

**
* *

* File: WPIXEL.ASM - A Bit Planar Pixel Write *
* Routine: _Write_Pixel *
* Arguments: X, Y, Color *
* *

* Routine: Select_Color *
* Arguments: AL = Color *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel
PUBLIC Select_Color

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x EQU WORD PTR [BP+<]
Arg_y EQU WORD PTR [BP+L]
Arg_Color EQU BYTE PTR [BP+fl]

Programming Examples—4-Color Graphics 231

_Write_Pixel PROC NEAR
PUSH BP
MOV BP,SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Pi

MOV AX,Arg_y
MUL CS:Video_Pitch
MOV CX,Arg_x
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX,CX
ADC DX,□
MOV ES,CS:Graf_Seg
MOV DI, AX
MOV AL,DL
CALL Select_Page

; Set Graphics Controller for

MOV AL,Arg_Color
CALL Select_Color

; Set write mask

MOV CX,Arg_x
AND CX/7
MOV AL,flOh
SHR AL,CL
MOV DX/GRAPHICS_CTRL_PORT
MOV AH/AL
MOV AL,BIT_MASK_REG
OUT DX,AX

; Set pixel

MOV AH,ES:[DI]
MOV ES:[DI],AL

; Cleanup and exit

POP SI
POP DI
POP DS
POP ES

MOV SP,BP
POP BP
RET

_Write_Pixel ENDP

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

ge and Offset

;Fetch y coordinate
; multiply by raster width
; add x coordinate/fl

;Put address in ES:DI

;Select proper page

proper color

;Fetch color to use
;Select color

;Compute X AND 7 to find mask rotation
;Mask rotation is now in CL
;Shift bit to find mask
;Mask is now in AL
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

;Latch previous value
;Write color (using set/reset)

;Restore segment and index registers

;Restore stack pointer
;Restore BP

* Routine: Select_Color *
* Utility routine used by all drawing routines to select *
* specified color. It is assumed that all planes are *
* enabled for write, and that 'processor write' mode is *
* selected. Routine enables set/reset mechanism of VGA. *
* Arguments: AL = Color *
* Returns: DX = Points to mask select data register *

Select_Color
PUSH

PROC NEAR
AX

232 Advanced Programmer’s Guide to Super VGAs

MOV DX,GRAPHICS_CTRL_ .PORT ;Use color for set/reset value
AND AL, 3 ;Force color into range
MOV AH, AL
MOV AL,SET RESET REG
OUT DX, AX
MOV DX,GRAPHICS CTRL .PORT ;Enable set/reset
MOV AL,SR ENABLE REG
MOV AH,DFh
OUT DX, AX
MOV AL,BIT MASK_REG ;Select bit mask register
OUT DX, AL
INC DX
POP AX
RET

Select. _Color ENDP

_TEXT ENDS
END

Read Pixel

Listing 9-6. File: .A4COL01 \RPIXEL.ASM

* *

* File: RPIXEL.ASM - 4 Bit Planar Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE '

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]

Read Pixel PROC NEAR
PUSH BP ;Preserve BP
MOV BP, SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg y
MUL CS:Video_Pitch
MOV CX,Arg x
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, □
MOV ES,CS:Graf Seg
MOV DI, AX
MOV AL, DL
CALL Select_Page

Fetch y coordinate
multiply by raster width
add x coordinate/fl

;Put address in ES:DI

;Select proper page

Programming Examples—4-Color Graphics 233

; Setup to read the value at the computed address

MOV DX,GRAPHICS_CTRL PORT ;Select Read Plane register
MOV AL,READ PLANE REG
OUT DX, AL
INC DX ;Point DX to data register

MOV AL,3 ;Plane number
MOV CX,Arg_x ;Compute X AND 7 to find mask rotation
AND CX, 7 ;Mask rotation is now in CL
MOV BL,flDh ;Shift bit to find mask
SHR BL, CL ;Mask is now in BL
XOR BH, BH ;Initialize return value to zero

Plane_Loop:

OUT DX, AL ;Select plane n for reading (from AL)

; Read byte, mask correct bit and add it into the return value

SHL BH, 1 ;Shift return value up
MOV AH,ES:[DI] ;Get byte of video memory
AND AH, BL ;Mask out unwanted bits
JZ RP_Not Set ;Jump if bit not set
OR BH,1 :Set bit in return value

RP_Not_Set:
DEC AL ;Decrement plane number
JGE Plane Loop ;Do another plane if there are more
MOV AL, BH ;Put return value in AL
XOR AH, AH ;Clear AH

POP SI ;Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP '.Restore BP
RET

_Read_Pixel ENDP

TEXT ENDS
END

Four Alternating Planes

Figure 9-4 shows a typical organization of display memory for four color high reso¬

lution modes with planar pixels, using planes 0 and 1 for even pixels, and planes 2 and
3 for odd pixels. Each pixel occupies one bit position in each of two planes. Sixteen
pixels are addressed by each byte. To convert from a pixel position in X,Y screen coor¬
dinates to a bit location in display memory, use the following equation:

Segment
Byte offset
Bit position

= AOOOh
- VideoJPitchxY + X/16
= X modulo 16

234 Advanced Programmer’s Guide to Super VGAs

Figure 9-4. Display memory organization—4 color graphics, consecutive planes

This memory organization is one of the most difficult to support. Efficient drawing
algorithms can be very complex. The next two programming examples show how to
read and write a pixel.

Write Pixel

Listing 9-7. File: ..\4COLATI\WPIXELASM

*

*

*

*
*
*
*
*

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel
PUBLIC Select_Color

TEXT SEGMENT BYTE PUBLIC 'CODE'

**
*
* File: WPIXEL.ASM - E Bit Planar Pixel Write
* Routine: _Write_Pixel
* Arguments: X, Y, Color
*

* Routine: Select_Color
* Arguments: AL = Color
*

**

Arg_x
Arg_y

EQU WORD PTR [BP+4]
EQU WORD PTR [BP+L]

Programming Examples—4-Color Graphics 235

Arg_Color EQU BYTE PTR [BP+fl]

_Write_Pixel PROC NEAR

PUSH BP
MOV BP, SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to

MOV AX,Arg y
MUL CS:Video_Pitch
MOV CX,Arg x
SHR CX, 1
SHR CX,1
SHR CX,1
SHR CX,1
ADD AX, CX
ADC DX, 0
MOV ES,CS:Graf Seg
MOV DI, AX

; Set Sequencer for proper pl<

MOV DX,SEQUENCER PORT
MOV AL,PLANE ENABLE REG
MOV AH,D3h
TEST Arg_x,1
JNZ Sel Plane
MOV AH,DCh

Sel Plane:
OUT DX, AX

; Set Graphics Controller for

MOV AL,Arg_Color
CALL Select_Color

; Set write mask

MOV CX,Arg_x

SHR CX,1
AND CX, 7
MOV AL,fidh
SHR AL, CL
MOV DX,GRAPHICS CTRL PORT
MOV AH, AL
MOV AL,BIT MASK REG
OUT DX, AX

; Set pixel

MOV AH,ES:[DI]
MOV ES: [DI],AL

; Enable all planes for write

MOV DX,SEQUENCER PORT
MOV AX,PLANE ENABLE REG+DF
OUT DX, AX

; Cleanup and exit

POP SI
POP DI
POP DS

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

Fetch y coordinate
multiply by raster width
add x coordinate/lL

;Put address in ES:DI

Set plane enable for odd pixel
Check if odd pixel
...Yes, leave enable as is
...No, set enable for even pixel

;Select plane

;Fetch color to use
;Select color

;Compute X AND 7 to find mask rotation

;Mask rotation is now in CL
;Shift bit to find mask
;Mask is now in AL
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

;Latch previous value
;Write color (using set/reset)

; Fetch sequencer port
;Set index and data
;Enable planes

; Restore segment and index registers

236 Advanced Programmer’s Guide to Super VGAs

POP ES

;Restore stack pointer
;Restore BP

RET
Write_Pixel ENDP

MOV SP,BP
POP BP

* *

* Routine:
*

*

*

*
* Arguments:
* Returns:
*

Select_Color
Utility routine used by all drawing routines to select
specified color. It is assumed that all planes are
enabled for write, and that 'processor write' mode is
selected. Routine enables set/reset mechanism of VGA.
AL * Color
DX = Points to mask select data register

*
*
*
*
*
*

*
*

Select_Color PROC NEAR
PUSH AX
AND AL,3
MOV AH, AL
SHL AL,1
SHL AL, 1
OR AH, AL
MOV DX,GRAPHICS CTRL PORT
MOV AL,SET RESET REG
OUT DX, AX
MOV DX,GRAPHICS CTRL PORT
MOV AL,SR ENABLE REG
MOV AH,OFh
OUT DX, AX
MOV AL,BIT MASK REG
OUT DX, AL
INC DX
POP AX
RET

Color ENDP

;Force into range
;Duplicate color from D-l to 2-3

;Use color for set/reset value

;Enable set/reset

;Select bit mask register

TEXT ENDS
END

Read Pixel

Listing 9-8. File: ,.\4COLATI\RPIXEL.ASM

**
* *

* File: RPIXEL.ASM - 5 Bit Planar Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x EQU WORD PTR [BP+4]
Arg_y EQU WORD PTR [BP+L]

Programming Examples—4-Color Graphics

_Read_Pixel PROC NEAR
PUSH BP
MOV BP/SP

Preserve BP
Preserve stack pointer

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Offset

MOV AX,Arg_y
MUL CS:Video_Pitch
MOV CX,Arg x
SHR CX,1
SHR CX,1
SHR CX,1
SHR CX, 1
ADD AX, CX
ADC DX, □
MOV ES,CS:Graf Seg
MOV DI, AX

Fetch y coordinate
multiply by raster width
add x coordinate/lL

;Put address in ES:DI

; Setup to read the value at the computed address

MOV DX,GRAPHICS_CTRL_PORT
MOV AL/READ_PLANE_REG
OUT DX,AL
INC DX

MOV AL,3
MOV CX,Arg_x
SHR CX,1
JC PlaneSet
MOV AL/1

PlaneSet:
AND CX,?
MOV BL,flDh
SHR BL,CL
XOR BH,BH

; Read byte, mask correct bit,

;Select Read Plane register

;Point DX to data register

;Starting plane number for even pixel
;Check if even pixel

;...Yes, leave first plane as is
;...No, set first plane for odd pixel

;Compute mask

initialize return value to zero

and add it into the return value

;First bit
OUT DX, AL
SHL BH, 1
MOV AH,ES:[DI]
AND AH, BL
JZ RP Not Set
OR BH, 1

Set:
;Second bit
DEC AL
OUT DX, AL
SHL BH, 1
MOV AH,ES:[DI]
AND AH, BL
JZ RP Not Setl
OR BH, 1

RP_Not_Setl:

; Return the value just read in

MOV AL, BH
XOR AH, AH

POP SI
POP DI
POP DS
POP ES

;Select plane n for reading
;Shift return value up
;Get byte of video memory
;Mask out unwanted bits
;Jump if bit not set
;Set bit in return value

;Get next plane number
;Select plane n for reading
;Shift return value up
;Get byte of video memory
;Mask out unwanted bits
;Jump if bit not set
;Set bit in return value

;Put return value in AL
;Clear AH

(from AL)

(from AL)

237

;Restore segment and index registers

238 Advanced Programmer’s Guide to Super VGAs

;Restore stack pointer
;Restore BP

RET
.Read_Pixel ENDP

TEXT ENDS
END

Packed Pixels

MOV SP,BP
POP BP

Figure 9-3 shows a typical organization of display memory for four color high reso¬
lution modes with packed pixels. Each pixel occupies two consecutive bits in a byte.
Each byte of display memory contains four pixels. The most significant two bits repre¬
sent the left-most pixel for that byte. To convert from a pixel position in X,Y screen
coordinates to a bit location in display memory, use the following equation:

Segment = AOOOh
Byte offset = Video_Pitch xY + X/4
Bit position = X modulo 4

Figure 9-5. Display memory organization—4 color graphics, packed pixels

The next two programming examples show how to read and write a pixel for this
memory organization.

Programming Examples—4-Color Graphics 239

Write Pixel

Listing 9-9. File: ..\4COLPACK\WPIXELASM

;* *
;* File: WPIXEL.ASM - 5 Bit Packed Pixel Write *
;* Routine: _Write_Pixel *
;* Arguments: X, Y, Color *
;* *
j***

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg_x
Arg_y
Arg_Color

EQU WORD PTR CBP+<]
EQU WORD PTR [BP + L 3
EQU BYTE PTR [BP+fl]

_Write_Pixel PROC NEAR
PUSH BP
MOV BP/SP

Preserve BP
Preserve stack pointer

PUSH ES ;Preserve segment and index registers
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Page and Offset

MOV AX/Arg_y
MUL CS:Video_Pitch
MOV CX,Arg_x
SHR CX,1
SHR CX,1
ADD AX,CX
ADC DX,0
MOV ES,CS:Graf_Seg
MOV DI, AX
MOV AL,DL
CALL Select_Page

; Set write mask

MOV CX/Arg_x
AND CX,3
SHL CX,1
MOV AL,DCOh
SHR AL,CL
MOV DX/GRAPHICS_CTRL_PORT
MOV AH,AL
MOV AL,BIT_MASK_REG
OUT DX/AX

; Rotate color into place

MOV AL,Arg_Color
AND AL, 3
ADD CL,5
ROR AL/CL

; Set pixel

Fetch y coordinate
multiply by raster width
add x coordinate/^

;Put address in ES:DI

;Select proper page

;Compute X AND 7 to find mask rotation
;Mask rotation is now in CL
;Adjust rotation for 5-bit pixels
;Two-bit mask for pixel within byte
;Rotate mask into position
;Fetch graphics controller port
;Put mask in AH
;Select bit mask register
;Set bit mask

;Fetch color
;Force into range
;Adjust rotation for bits in lsb
;Rotate color into place

240 Advanced Programmer’s Guide to Super VGAs

AND BYTE PTR ES:[DI] ,□ ;Latch previous value and set pix to
OR ES:[DI],AL ;Write color

; Cleanup and exit

POP SI ; Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP,BP ; Restore stack pointer
POP BP ;Restore BP
RET

Write _Pixel ENDP

TEXT ENDS
END

Read Pixel

Listing 9-10. File: ..\4COLPACK\RPIXEL.ASM

* *

* File: RPIXEL.ASM - 2 Bit Packed Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *
* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE i

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]

Read Pixel PROC NEAR
PUSH BP ;Preserve BP
MOV BP, SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel addres to Page and Offset

MOV AX,Arg_y
MUL CS:Video Pitch
MOV CX,Arg x
SHR CX,1
SHR CX, 1
ADD AX, CX
ADC DX, 0
MOV DS,CS:Graf Seg
MOV SI, AX
MOV AL, DL
CALL Select_Page

Fetch y coordinate
multiply by raster width
add x coordinate/^

;Put address in DS:SI

;Select proper page

; Compute rotation factor to move pixel color into bits D&l

MOV CX,Arg x

Programming Examples—4-Color Graphics 241

;Compute X AND 3 to find mask rotation
AND CX / 3 ; Rotation factor is now in CL
SHL CX, 1 ;Adjust for E-bit pixels
ADD CX , 5 ;Adjust to move pixel into bits D&l
AND CX, 7 ;No need to rotate more then fi

; Read byte, rotate into place and mask off one pixel

MOV AL,[SI] ;Get byte of video memory
ROL AL, CL ;Rotate pixel into bits D&l
AND AL, 3 ;Mask off other pixels
XOR AH, AH ;Clear AH

; Cleanup and return

POP SI ; Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ; Restore stack pointer
POP BP ; Restore BP
RET

_Read_Pixel ENDP

_TEXT ENDS
END

10

Ahead V5000
Ahead VGA

Wizard/Deluxe

AHEAD}

243

244 Advanced Programmer’s Guide to Super VGAs

Introduction
Ahead Systems, Inc. designed the V5000 VGA chip for use on their VGA Wizard/

Deluxe display adapters. At this time, two versions of the chip have been made (ver¬
sions A and B). As with most SuperVGAs, the Ahead V5000 VGA chips are fully IBM
VGA-compatible, include register level compatibility for EGA, CGA, MDA and Hercules,
and include extended high resolution text and graphics modes. High resolution appli¬
cations software drivers are also available. Ahead Systems has captured the distinction
of being the first company to ship a VGA product in volume that supports 1024x768
resolution with 256 colors. Wizard/Deluxe was selected as 1990 Video Board of the

Year by InfoWorld magazine.
Version B of the V5000 VGA chip contains features that are not available in version A,

which is no longer being produced. Information given in this chapter applies to ver¬
sion B only unless stated otherwise.

Chip Versions
Ahead V5000 VGA chips contain a version number that can be read from the least

significant nibble of the Master Enable Register (I/O address 3CFh, index OFh). See sec¬
tion “Detection and Identification” for details on how the chip version can be

determined.

New Display Modes
Table 10-1 lists the enhanced display modes that are supported by the Ahead VGA

Wizard/Deluxe.

Memory Organization
For all extended display modes of the VGA Wizard/Deluxe, display memory organi¬

zation is closely patterned after standard IBM VGA display modes.
For some extended modes, a memory paging mechanism is also used. Memory pag¬

ing is described in detail in the programming examples.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3, and 7), except that the number of characters per line, or
number of lines per screen, is increased. Display memory is organized as shown in
Figure 5-1 (see Chapter 5).

Ahead V5000—Ahead VGA Wizard/Deluxe 245

Table 10-1 Enhanced display modes—Ahead VGA Wizard/Deluxe

Mode Type Resolution
22h Text 132 col x 44 rows
23h Text 132 col x 25 rows
24h Text 132 col x 28 rows
2Fh Text 160 col x 50 rows
34h Text 80 col x 66 rows
50h Text 132 col x 25 rows
52h Text 132 col x 44 rows

25h,26h Graphics 640x480
60h Graphics 640x400
6lh Graphics 640x480
62h Graphics 800x600
63h Graphics 1024x768
6Ah,71h Graphics 800x600
70h Graphics 720x396
74h Graphics 1024x768
75h Graphics 1024x768
76h Graphics 1024x768

Memory Display
Colors Required Type
16 256 KB EGA
16 256 KB EGA
16 256 KB EGA
16 256 KB EGA
16 256 KB Super VGA
Mono 256 KB MDA
Mono 256 KB MDA

16 256 KB VGA
256 256 KB VGA
256 512 KB VGA
256 512 KB Super VGA
256 1024 KB 8514
16 256 KB Super VGA
16 256 KB Super VGA
16 512 KB 8514
4 512 KB 8514
Mono 512 KB 8514

2-Color Graphics Mode

Memory organization for this mode resembles VGA mode llh (640x350 2-color
graphics) except that both the number of pixels per scan line and the number of scan
lines are increased, and mode 76h requires paging.

4-Color Graphics Mode

Memory organization for this mode does not closely resemble any standard VGA
modes; it somewhat resembles planar graphics mode 12h except that the memory
planes are utilized differently. Planes 0 and 2 are used to store bytes at even host mem¬
ory addresses. Planes 1 and 3 are used to store bytes at odd host memory addresses.
See “Four Planes” in Chapter 9 to learn more about this type of memory organization.

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Mode 74h (1024x768 16-color graphics) requires display memory

246 Advanced Programmer’s Guide to Super VGAs

paging. Display memory organization is shown in Figure 7-1. See Chapter 7 for pro¬

gramming examples.

256-Color Graphics Modes

Memory, organization for these modes resembles VGA mode 13h (320x200 256-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased, and extended modes require paging. Display memory organi¬
zation is shown in Figure 8-1. See Chapter 8 for programming examples.

New Registers
Several new registers have been added to the V5000 chip to control display memory

paging and CGA/EGA/MDA emulation modes. This extended register set resides in the
address space of the Graphics Controller (I/O address 3CEh/3CFh) starting at index
OCh. Table 10-2 contains a list of the registers in the extended register set; the program¬
ming examples in this chapter contain examples showing how to access the extended

registers.

Table 10-2. Extended register set

Address
3CEh/3CFh

Index Description
OCh Mode D7,D6 = Emulation mode

11 CGA
10 Hercules
01 EGA
00 VGA

D5 = Enhanced mode enable
D4 = 16 bit memory access enable
D3 = High speed sequencer enable

D2 = Reserved
D1,D0 = Miscellaneous control

11 Reserved

10 Reserved
01 Enable 8 simultaneous fonts

00 Standard text mode

ODh Segment D4-D7 = Write page
D0-D3 = Read page

OEh Clock D4-D7 = Divide input clock 0-3 by 2

D1-D3 = Reserved
DO = Clock 4 & 3 select enable

OFh Master Enable D5 = Extended register access enable
D0-D3 = Chip revision (READ ONLY)

Ahead V5000—Ahead VGA Wizard/Deluxe 247

Table 10-2.

Address

Extended register set (continued)

Index
lOh

llh

12h

13h
I4h

13h
I6h

17h

ICh

lDh

Description

Trap D7 = Select 6843 as CRT controller

D5 = Enable 3Cxh to cause traps
D4 = Enable 3D8h, 3D9h to cause trap

D3 = Enable 3B8h, 3BFh to cause trap
D2 = Enable CRTC access to cause trap

D1 = Enable 6845 access
DO = Enable CRTC access

Trap Source D6-D7 = Reserved

D5 = 3Cxh
D4 = 3BFh

D3 = 3D9h
D2 = 3B8h, 3D8h

D1 = 3B3h, 3D5h
DO = 3Dxh

Attribute D7 = Enable CGA palette when in CGA mode

D6 = Lock VGA internal palette

D0-D5 = Reserved
Diagnostics D0-D7 = Reserved
Lock D7 = Lock clock select in 3C2h

D6= Lock CRTC index 13h

D5 = Lock CRTC index OAh, OBh

D4= Lock CRTC index 9
D3= Lock CRTC index 9
D2 = Lock CRTC vertical timing
D1 = Lock CRTC horizontal timing
DO = Lock sync polarity in 3C2

3B8h, 3D8h Readback

3BFh, 3D9h Readback D0-D5 = 3D9h

D6-D7 = 3BFh bits 0 & 1
Miscellaneous D2-D7 = Reserved

D1 = Must be 0
DO = Must be 1

CRTC Control D6-D7 = Reserved
D5 = Enable double scan
D4 = Reserved

D2-D3 = 00 Normal
01 Reserved
10 Reserved
11 Interlaced mode

D1 = Start address bit 17
DO = Start address bit 16

Control D0-D7 = Reserved

248 Advanced Programmer’s Guide to Super VGAs

Table 10-2. Extended register set (continued)

Address Index Description
lEh Scratch Used by BIOS for flags

lFh PowerUp (Read Only)

D4-D7 = Multiple Chip ID
0000 - ID 0, BIOS enabled

0001 - ID 1, BIOS enabled

0002 - ID 2, BIOS disabled

1111 - ID 15, BIOS disabled

D3 = 16-bit BIOS
D2 = 0 for 24k BIOS, 1 for 32k BIOS

D0-D1 = Memory type

00 - 2 44256 DRAMs

01 - 4 or 16 44256 DRAMs

10 - 8/16 4464 DRAMs
11 -8 44256 DRAMs

46E8h Setup Control register
D5-D7 = Reserved
D4 = 0 for Setup Mode, 1 for Normal Mode

D3 = 0 for VGA disabled, 0 for VGA disabled

103h Multiple chip ID register
D0-D3 = Must match Power Up register bits 0-3

V5000 allows up to 16 chips
VGA Wizard/Delux allows up to 4 boards in one

system

Note: Bits marked ‘reserved’ must be preserved when modifying register contents.

Most registers in the extended register bank are generally not useful to the applica¬
tions programmer. Listed below are the registers that we found useful enough to use in

the programming examples.

Master Enable Register (I/O Address 3CFh Index OFh)

D7,D6 - reserved
D5 - Extended Register Access Enable (1 = enabled)

D4 - reserved
D3-D0 - Chip Revision (read only)

Extended Register Access Enable must be true before any other registers in the
extended register bank can be accessed.

Ahead V5000—Ahead VGA Wizard/Deluxe 249

This bit is normally set for extended graphics modes by the BIOS mode select
function.

Memory Page Select Register (I/O Address 3CFh Index ODh)

D7-D4 - Write page select
D3-D0 - Read page select

Programming Examples

Display Memory Paging

The Page Select register, located in the extended register bank at I/O address 3CFh
Index ODh, selects which page of display memory is enabled. Two display memory
pages may be selected simultaneously, one for reading and one for writing. Both pages
reside at the same host memory address (normally A000:0). Dual page capability is use¬
ful when transferring data from one part of display memory to another, as for on¬
screen to on-screen BITBLT operations (see the BITBLT programming examples).

Figure 10-1 shows the format of the Page Select register. The read and write page
may be set to the same value to achieve one memory page that is both readable and
writable.

Paging Register:
Port = 3CEh
Index = ODh

7 6 5 4 3 2 1 0
—1-1—1— -1-1-1-

Write Page # Read Page #
1■ ■ ■ i i

Figure 10-1. Page Select register format—V5000 Version B

Version A of the V5000 chip does not support dual memory pages; only one page is
available. Page selection is not as straightforward as it is version B. A memory page is
selected using bits 0-2 at 3CEh index ODh. The page can be enabled for writing using
bit 5 at 3C2h and/or enabled for reading using register 3CCh. This is illustrated in Fig¬
ure 10-2.

250 Advanced Programmer’s Guide to Super VGAs

Figure 10-2. Page Select register format—V5000 Version A

For all graphics display modes except 256-color modes, a byte of display memory
contains multiple pixels. Many drawing algorithms can be implemented efficiently
by using a ’moving mask’ to modify partial bytes. The BIT MASK register, index 8 of

the Graphics Controller, is selected at the start of the algorithm:

MOV DX,3CEh

MOV AL,A

OUT DX,AL

INC DX

Inside the drawing loop of the algorithm, the mask data can be updated without

rewriting the Index register:

MOV AL,Mask

OUT DX/AL

Since the Ahead Paging register resides at the same I/O address as the Graphics
Controller, care must be taken to ensure that after a new page is selected, the BIT

MASK register index is restored.

Ahead V5000—Ahead VGA Wizard/Deluxe 251

Display memory paging is illustrated in the following programming example. It
includes a procedure __Select__Graphics to select mode (mode number is obtained
from the include file MODE.INC), and three procedures for paging: _Select__Page,

_Select__Read_Page and _Select__Write_Page. Note that all three page select proce¬
dures preserve the previous value of the Graphics Controller Index register to assure
that drawing routines that preselect the Bit Mask register of the Graphics Controller
operate properly.

Listing 10-1. File: AHEAD \ SELECT.ASM

File: AHEADSELECT.ASM

* File: SELECT.ASM *

* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points: *
* _Select_Graphics - Select a graphics mode *
* _Select_Text - Set VGA adapter into text mode *
* _Select_Page - Set page for read and write *
* _Select_Read_Page - Select read page only *
* _Select_Write_Page - Select write page only *
* Uses: *

* MODE.INC - Mode dependent constants *
* Following are modes and paths for Ahead boards: *
* i 55L colors-1 i—It colors —i A colors E col *
* L<Dx<DD ^AOxA&Q ADDxLOD 10E<x7LA AODxLDD 1DE4X7LA 10£<x7LA 1DE4x7LA*
*Mode: LOh Llh LEh L3h LAh(71h) 7<h 75h 7Lh *
*Path:E5LC0L E5LC0L E5LC0L E5LC0L 1LC0L 1LC0L 4C0LDE ECOL *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

Data segment variables

DATA
DATA

SEGMENT WORD PUBLIC 'DATA'
ENDS

252 Advanced Programmer’s Guide to Super VGAs

Constant definitions

Code segment variables

TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf Seg DW □ADDDh
DW OADODh

OffScreen_Seg DW □ADODh
Video_Pitch DW SCREEN PITCH
Video Height DW SCREEN HEIGHT
Video_Width DW SCREEN WIDTH
Video_Pages DW SCREEN PAGES
Ras_Buffer DB 1DE4 DUP (□)
R Page DB DFFh
W_Page DB DFFh
RW_Page DB DFFh
Two_Pages DB CAN DO _RW

;Graphics segment addresses

;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen
;Working buffer
;Most recently selected page

;Indicate separate R & W capability

• * *

;* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
;* Initialize VGA adapter to L4Dx4DD mode with *
;* E5L colors. *

*

;* Entry: *
;* None *
; * *

;* Returns: *
;* VertPtr - Vertical resolution *
;* HorizPtr - Horizontal resolution *
;* ColorsPtr - Number of supported colors *
; * *

Arg_HorizPtr EQU WORD PTR CBP+4] ;Formal parameters
Arg_VertPtr EQU WORD PTR [BP+L] ;Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+fl] ;Formal parameters

_Select_Graphics PROC NEAR
PUSH BP ; Standard C entry point
MOV BP, SP

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Select graphics mode
INT IDh

; Reset 'last selected page'

MOV AL,DFFh ;Use 'non-existent' page number
MOV CS:R_Page,AL ;Set currently selected page
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI,Arg_VertPtr ;Fetch pointer to vertical resolution
MOV WORD PTR [SI 3,SCREEN_HEIGHT ;Set vertical resolution
MOV SI/Arg_HorizPtr ;Fetch pointer to horizontal resolution
MOV WORD PTR [SI],SCREEN_WIDTH ;Set horizontal resolution

Ahead V5000—Ahead VGA Wizard/Deluxe 253

MOV SI/Arg_ColorsPtr ;Fetch pointer to number of colors
MOV WORD PTR [SI],SCREEN_COLORS ;Set number of colors

; Clean up and return to caller

POP ES ;Restore segment registers
POP DS
POP SI
POP DI

MOV SP,BP ;Standard C exit point
POP BP
RET

_Select_Graphics ENDP

*

Select_Page *
Entry: *

AL - Page number *
*

Select_Page PROC NEAR
CMP AL,CS:RW_Page ;Check if already selected
JNE SP_Go
RET

SP_Go:
PUSH AX
PUSH BX
PUSH DX
;Save currently selected page number
AND AL,0Fh
MOV CS:RW_Page,AL
MOV CS:R_Page,AL
MOV CS:W_Page,AL
;Fetch gr. Ctrl, index
MOV DX,3CEh
XCHG BL,AL
IN AL,DX
XCHG BL/AL
;Move page number into
MOV AH,AL
SHL AL/1
SHL AL/1
SHL AL,1
SHL AL/1
OR AH,AL
;Select new page
MOV AL,DDh
OUT DX,AX
;Restore gr.
XCHG AL/BL
OUT DX,AL

;Force page number into range
;Save as most recent RW page
;Invalidate R and W pages

(some drawing routines need it preserved)
;Fetch address of page select
;Save AL
;Must save current gr. Ctrl, index

proper bits
;Copy page number into high nibble

Ctrl, index

;Fetch page register index
;Write out the new page select

;Restore gr. Ctrl, index

POP DX
POP BX
POP AX
RET

Select_Page ENDP

*

Select_Read_Page *
Entry: *

AL - Page number *
*

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page ;Check if already selected

254 Advanced Programmer’s Guide to Super VGAs

JNE SRP_Go
RET

SRP_Go:
PUSH AX
PUSH BX
PUSH DX
; Save new values
MOV CS:RW_Page/QFFh invalidate RW page value
AND AL,QFh ;Force page # into range
MOV CS:R_Page,AL
MOV AH/AL ;Save page number
;Fetch gr. Ctrl, index (some drawing routines need it preserved)
MOV DX/3CEh ;Fetch address of page select
IN AL,DX ;Must save current gr. Ctrl, index
MOV BL/AL
;Move page number into proper bits and select new page
MOV AL/ODh ;Fetch page register index
OUT DX/AL ;Select register
INC DX
IN AL/DX ;Fetch previous value of page reg
AND AL, OFIDh ;Preserv write page
OR AL,AH ;Move page number into ""read" bits
OUT DX/AL ;Write out the new page select
;Restore graphics controller index
MOV AL/BL ;Restore gr. Ctrl, index
DEC DX
OUT DX/AL
; Clean up and return
POP DX
POP BX
POP AX
RET

Select_Read_Page ENDP

*** ***************************

Select_Write_Page *
Entry: *

AL - Page number *
*

**

Select_Write_Page PROC NEAR
CMP AL,CS:W_Page ;Check if
JNE SWP_Go
RET

SWP_Go:
PUSH AX
PUSH BX
PUSH DX
; Save new values
MOV CS:RW_Page, OFFh jlnvalidat
MOV CS:W_Page/AL ;Save new
MOV AH/AL
;Fetch gr. Ctrl, index (some drawin
MOV DX,3CEh ;Fetch add
IN AL/DX ;Must save
MOV BL,AL
;Move page number into proper bits
SHL AH/1 ;Copy page
SHL AH/1
SHL AH/1
SHL AH/1
MOV AL/ODh ;Fetch pag
OUT DX,AL ;Select re
INC DX
IN AL/DX ;Get curre
AND AL/OFh ;Preserve
OR AL,AH ;Move page
OUT DX/AL ;Write out

already selected

;Fetch add
;Must save

e RW page value
write value

g routines need it preserved)
ress of page select
current gr. Ctrl, index

and select new page
into hi nibble of AH

MOV AL/ODh ;Fetch pag<
OUT DX,AL ;Select re<
INC DX
IN AL/DX ;Get curre
AND AL/OFh ;Preserve
OR AL,AH ;Move page
OUT DX/AL ;Write out
;Restore graphics controller index

e register index
gister

nt values
read page number

number into ""write" bits
the new page select

Ahead V5000—Ahead VGA Wizard/Deluxe 255

MOV AL,BL ;Restore gr. Ctrl, index
DEC DX
OUT DX,AL
; Clean up and return
POP DX
POP BX
POP AX
RET

Select_Write_Page ENDP

* *

* Enable_Dual_Page *
* Disable_Dual_Page *
* Not supported by Ahead based boards *

****************** *

Enable_Dual_Page
RET

Enable_Dual_Page

Disable_Dual_Page
RET

Disable_Dual_Page

PROC NEAR

ENDP

PROC NEAR

ENDP

*

_Select_Page(PageNumber) *
Entry: *

PageNumber - Page number *
*

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL/Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Page

_Select_Page ENDP

> *

; _Select_Read_Page(PageNumber) *
; Entry: *
; PageNumber- Page number for read *
I *

Arg_PageNumber EQU BYTE PTR CBP+<]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL/Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_Page ENDP

j***^**^^*^.^^^
I *
; _Select_Write_Page(PageNumber) *
; Entry: *
; PageNumber - Page number for write *
» *

Arg_PageNumber EQU BYTE PTR [BP+4]

256 Advanced Programmer’s Guide to Super VGAs

Select_Write_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

Select_Write_Page ENDP

* *

* _Select_Text *
* Set VGA adapter to text mode *
* *

Select_Text
MOV
INT
RET

Select_Text

PROC NEAR
AX,TEXT_MODE
lOh

ENDP

Select mode 3
Use BIOS to reset mode

Last_Byte:
_Text ENDS

END

Detection and Identification

Ahead VGA cards can be detected by a signature field located in the Ahead BIOS
ROMs at location C000:0025h, containing the ASCII characters ’AHEAD’. Chip version
can be obtained from register index 20h in the extended register set. Version A chips
return a value of 20h, and version B chips return a value of 21h. For example:

MOV DX,3CEh
MOV AL,OFh
OUT DX, AL
INC DX
MOV AL,3Dh
OUT DX, AL
JMP $ + 3
IN AL, DX
TEST AL, 1
JNZ VersionB

VersionA:

;Fetch I/O Address
;Fetch index of 'Enable' reg
;Select 'Master Enable' register
;I/0 address of data
;Fetch ENABLE value
;Enable extended register set
;Wait for I/O to complete
;Fetch chip version
;Test for version B

VersionB:

ATI 18800
ATI VGAWONDER

Ay
Technology you can Trust .

257

258 Advanced Programmer’s Guide to Super VGAs

Introduction
By developing their own VLSI VGA controller chip, ATI achieved true BIOS and reg¬

ister compatibility not only with VGA, but with the EGA, CGA, MDA, and Hercules dis¬
play adapters as well. In addition to VGA-compatible analog displays, the VGA
WONDER can also drive the TO displays that are compatible with other video adapters.

The WGAWONDER can be purchased in either of two memory configurations: 256K
of DRAM or 512K of DRAM. Some of the enhanced display modes of the adapter can
only be used if a full 512K of DRAM is present.

Versions of the Adapter
At the heart of the VGAWONDER is the ATI18800 controller chip, a VLSI integrated

circuit developed by ATI Technologies. Two versions of this device have been used on
the VGAWONDER. They will be referred to here as the Rev.l chip and the Rev.2 chip.

Another device, the ATI18810 Video Dot Clock Generator, was developed by ATI to
generate the many different clock frequencies required to support multiple resolu¬
tions. This device replaces several oscillator devices that would otherwise be required.

This chapter applies to three different versions of the AGAWONDER adapter. Table
11-1 lists the three adapter versions and shows which chip versions each of the adapt¬
ers uses. To determine the version of our board, see the BIOS ROM constants
described in the section “Identifying the AGAWONDER.”

Table 11-1. AGAWONDER versions

Board Version V3 V4 V5
ATI18800 version Rev.l Rev.2 Rev.2
ATI 18810 used No No Yes
ROM BIOS label V3M-x.xx V4M-x.xx V5M-x.xx

Differences between the Rev.l and Rev.2 controller chip will be noted in detail later
in this chapter.

New Display Modes
Table 11-2 lists the enhanced display modes that are supported by VGAWONDER.

ATI 18800—ATI VGAWONDER 259

Table 11-2. Enhanced display modes — VGAWONDER

Mode Type Resolution Colors
Memory

Required
Display

Type
23h Text 132 col x 25 rows 16 256 KB EGA
27h Text 132 col x 25 rows mono 256 KB EGA
33h Text 132 col x 44 rows 16 256 KB EGA
37h Text 132 col x 44 rows mono 256 KB EGA
54h,6Ah Graphics 800x600 16 256 KB SuperVGA

55h(l) Graphics 1024x768 16 512 KB 8514 or XL
6lh Graphics 640x400 256 256 KB VGA
62h Graphics 640x480 256 512 KB VGA
63h Graphics 800x600 256 512 KB SuperVGA
65h Graphics 1024x768 16 512 KB 8514 or XL
67h Graphics 1024x768 4 256 KB 8514 or XL

NOTE: Boards with chip version 1 do not support mode 55h.

It is important to verify that the display being used is capable of supporting the col¬
ors and resolution of the selected display mode, and that the VGAWONDER has been
properly configured for that display type. Otherwise, the BIOS mode-select function
may not initialize the mode properly.

A utility program VCONFIG, normally supplied with the VGAWONDER, can be used
to configure the board.

Memory Organization

For most extended modes, display memory organization is patterned after the

organization used in one or more standard IBM VGA modes. For some modes, the
memory organization is totally different from any previous industry precedents.

VGAWONDER includes a display memory paging mechanism that is needed in some
display modes to make the entire display memory accessible to the processor. Display
memory paging is described in detail later in this chapter.

High Resolution Text Modes (23h, 27h, 33h, 37h)

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0, 1, 2, 3 and 7), except that the number of characters per line is
increased from 80 to 132. This increases the number of bytes used per text line from
160 to 264. Display memory is organized as shown in Figure 5-1 (see Chapter 5).

260 Advanced Programmer’s Guide to Super VGAs

High Resolution Graphics Modes

Modes 54h - 800x600 (16 colors)

Memory organization for this mode resembles VGA mode 12h (640x480 16-color

graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

Only 256K of display memory are required to support this mode; display memory
paging is not required.

Mode 55h - 1024x768 (16 colors)

Memory organization for this mode resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

To support this mode, 512K of display memory are required. Display memory pag¬
ing is required. Default colors are the same as for mode 12h (16-color graphics).

Modes 61h, 62h, 63h (256 colors)

These modes, because of their higher resolutions, require larger amounts of display
memory which exceed the 64K page size of display memory. The Memory Page Select
register, in the extended register bank, is used to select which memory page can be
accessed by the processor.

Display memory organization for these modes resembles VGA mode 13h (320x200
256-color graphics), except that both the number of pixels per scan line and the
number of scan lines are increased. The memory map for these modes can be seen in
Figure 8-1 (see Chapter 8). Default colors are the same as for mode 13h.

Mode 65h - 1024x768 (16-colors)

Display memory organization in this mode does not resemble any standard VGA
mode. Instead of the planar pixels used in other 16-color modes, packed pixels are
used. Pixels are packed two per byte. Color planes are not used; the memory is
mapped as a single memory plane of 512K, which is segmented into eight pages of 64K
each. Memory pages are selected using the Page Select register in the extended regis¬
ter bank. To display one screen at 1024x768 resolution 384K of display memory are
required.

ATI 18800—ATI VGAWONDER 261

Because this mode is unique to ATI, a separate set of programming examples is
included in the ATI directory. Listings for the Write Pixel and Read Pixel routines are
shown in the text at the end of this chapter. See Figure 11-1 for the memory map used
in mode 65h.

Default colors are the same as for mode 12h (16-color graphics), but the palette reg¬

isters are programmed differently. If the color palette is to be modified in this mode, it
must be done by modifying the DAC registers. The palette registers of the Attribute

Controller should not be altered while in this mode. The first sixteen DAC registers,

registers OOh through OFh should be loaded with the desired colors, and then the fif¬
teen registers at lOh, 20h, 30h,..., FOh should be set to match registers 0 through OFh
(register lOh should match register Olh, 20h should match 02h, 30h should match 03h,
etc.).

One nibble per pixel H :v--- ••• ••• -

Two pixels per byte
1 ■ ..

Even pixels from high nibbles
Odd pixels from low nibbles

1
■ - j re

Segment = AOOOh
Page = (200h x Y + X) /10OOh
Offset = (200h x Y + X) modulo 10OOh
Mask = FOh when X is even

OFh when X is odd

Display Memory

Figure 11-1. Display memory organization — mode 65h

Mode 67h - 1024x768 (4 Colors)

This mode is also unique for ATI cards. Display memory is organized as two sets of
two memory planes. Each pixel requires two bits of display memory; planes 0 and 1
contain odd numbered pixels and planes 2 and 3 contain even numbered pixels. A sin¬
gle host memory byte address addresses sixteen pixels (see Figure 11-2 on the follow¬
ing page). Only 256K of display memory are required for this mode. Memory paging is

not required.

262 Advanced Programmer’s Guide to Super VGAs

Four standard color sets are supported in this mode, as shown in Table 11-3. Colors
are selected using bits 0 and 1 of the Color Select register of the Attribute Controller
(port 3C0h, index 34h).

Table 11-3 Mode 67h color sets

Color Set Color Index and Result
D1 DO 00 01 10 11
00 Black White Gray Intens. White
01 Black Cyan Red White
1 0 Black Green Red Yellow
11 Black Cyan Magenta White

Note: The Mode Control register of the Attribute Controller (index lOh)
must have bit 7 set to one to enable operation of the Color Select register.

To learn more about mode 67h see section ‘‘Four Alternating Planes” in Chapter 9.

Figure 11-2. Display memory organization — mode 67h

ATI 18800—ATI VGAWONDER 263

New Registers
Contained within the VGA controller chip on the VGAWONDER is an extended bank

of registers that is used to access the advanced features of the adapter. All registers in
the extended register bank have read and write capability.

The default I/O address of the extended register bank is stored in the BIOS ROM at
memory address COOO-.lOh. To guarantee compatibility with future ATI products, soft¬
ware written for the VGAWONDER should not assume that this I/O address will remain
constant.

The extended register bank must be treated slightly differently than other VGA regis¬
ters. After an index value is written to the index register, the data register may only be
written or read once; the index must be rewritten before another access is made. All
input from the extended register bank must be performed in bytes; the instruction IN
AX,DX will not work properly. To write extended registers, ALWAYS use the word out¬
put instruction OUT DX,AX.

Care should be taken not to modify registers which are not described. All register
bits marked as reserved should be preserved if the register is modified. The following
code can be used to access a particular register in the extended register bank.

Programming examples that illustrate the proper methods for reading and writing
extended registers can be found later in this chapter under “Programming Examples.”
The following code can be used to access a particular register in the extended register
bank:

; Fetch I/O address of ATI extended registers
MOV AX, DCDDDh ;Fetch segment address of VGA BIOS
MOV DS, AX
MOV SI,IDh ;Fetch offset of ATI register address
MOV DX,DS:[SI] ;Get I/O address of ATI registers

; Fetch value of extended register XXXX (Input)

MOV AL,XXXX ;Get index of desired register
OUT DX, AL ; Select register index
INC DX ;Advance port number to data register
IN AL, DX ;Read the register data
DEC DX ;Restore port number

; Write new value to extended register XXXX (Output)

MOV AL,XXXX ; Get index of desired register
MOV AH,Data ; Get data value
OUT DX, AX ; MUST WRITE IT AS A WORD

Table 11-4 on page 264 shows the registers of the extended register bank.

264 Advanced Programmer’s Guide to Super VGAs

Table 11-4. Extended register bank — VGAWONDER

Index Register

BOh DRAM timing

Blh EGA compatibility and double scanning enable

B2h Memory page select register

B3h Enable 1024 x 768 graphics

B4h Emulation control

B5h Misc. control
B6h High resolution enable

B7h Reserved
B8h Register write protect and clock select
B9h Miscellaneous control

BAh Miscellaneous control

BBh Input status register
BCh EGA switch settings
BDh Miscellaneous control

BEh Miscellaneous register

ATI Register 0 (Index BOh)

D7 - Reserved

D6 - Hercules 300 line emulation
Dl, D2, D4, D3 - DRAM timing

D3 - Enable 8 CRT accesses for each CPU access
DO - Reserved

ATI Register 1 - EGA Compatibility and Double Scanning
Enable (Index Blh)

D7 - Reserved

D6 - Divide vertical timing parameters by 2 (1 = true)
D5-D3 - double scanning / 3 of 4 scanning enable

001 - Enable double scanning in graphics mode
010 - Enable 3 of 4 scanning in graphics mode
101 - Enable double scanning in text mode

110 - Enable 3 of 4 scanning in text mode
D2 - General purpose read/write
Dl - Force all registers to be EGA compatible (1 = true)

DO - Force all I/O addresses to be EGA compatible (1 = true)

ATI 18800—ATI VGAWONDER 265

ATI Register 2 - Memory Page Select (Index B2h)

The Revision 2 VGA chip has additional paging capabilities that the Revision 1 chip
does not.

For the Revision 1 chip:

D7 - Reserved
D6 - External clock select

D5 - Enable internal DIP switch settings (EGA mode)
D4-D1 - Display memory page select
DO - Enable interlace mode (1 = true)

For the Revision 2 chip:

D7-D5 - Read Page select
D4 - Reserved
D3-D1 - Page select
DO - Reserved

When operating the VGAWONDER in high resolution graphics modes that require

more than one page (64K) of memory per plane, the Memory Page Select register is
used to select which 64K page can be accessed by the host CPU.

For the Revision 1 ATI VGA chip, only one memory page may be selected at a time.
The Revision 2 chip has an optional mode that allows two pages to be selected simulta¬
neously, one page being read only and one page being write only. For compatibility,
the Revision 2 chip defaults on initialization to the single page mode.

Dual page mode is enabled through the Miscellaneous register in the extended reg¬
ister bank (index BEh).

To determine which revision chip is present on an adapter, see “Detection and Iden¬
tification” in the “Programming Examples” section.

ATI Register 3 (Index B3h)

For the Revision 1 chip, control of this register should be left to the VGA BIOS. This
register should not be modified.

D7 - Reserved
D6 - Reserved
D5 - Enable 16-bit operation
D4 - Enable PS/2 decoding
D3 - EEPROM chip select
D2 - Enable EEPROM interface

266 Advanced Programmer’s Guide to Super VGAs

D1 - EEPROM clock source
DO - EEPROM data input

For the Revision 2 chip:

D7 - Enable double scanning for 200-line modes (Rev. 2. only)
D6 - Enable 1024x768 16-color planar pixel mode (Rev. 2 only)
D5 - Enable 16-bit operation
D4 - Disable memory beyond 256K
D3 - EEPORM chip select
D2 - Enable EEPROM interface
D1 - EEPROM clock source
DO - EEPROM data input

ATI Register 4 (Index B4h)

D7 - Override locking of CR117
D6 - Lock CR0-CR7 instead of CR117
D5 - Lock CR80-CR86 and CR140-CR144
D4 - Lock cursor start and end
D3 - Lock vertical timing registers
D2 - lock CR90-94, CR97
D1 - Enable Hercules emulation
DO - Enable CGA emulation

ATI Register 5 (Index B5h)

D7 - reserved
D6 - Enable CGA Cursor Emulation
D5-Disable Cursor Blinking (1 = disabled)
D4 - Enable 8 simultaneous fonts
D3 - Select Map 3 as programmable character generator
D2 - Enable display signal skew
D1 - Invert blanking signal polarity
DO - Select display enable as blanking signal

Enable CGA Cursor Emulation, when set to 1, adds five to the cursor start and end
registers, so that a cursor which is set by software to work in the CGA 8x8 character cell
will appear properly in a larger 8x14 character cell.

Disable Cursor Blinking forces the cursor to display steadily without blinking.

ATI 18800—ATI VGAWONDER 267

ATI Register 6 (Index B6h)

D7 - Disable blanking screen blank in CGA and Hercules emulation
D6 - Select composite sync for output
D5 - Enable vertical interrupt
D4 - Select 16-color high res modes
D3 - Select 4-color high res modes
D2 - Reserved

D1 - Enable 640x400 Hercules emulation
DO - Reserved

ATI Register 7 (Index B7h)

DO to D7 - Reserved

ATI Register 8 (Index B8h)

D7, D6 - Clock divider
D5 - Lock vertical sync polarity
D4 - Lock horizontal sync polarity
D3 - Lock write to 3C2h
D2 - Lock all VGA registers except CRTC start and end
D1 - Lock Overscan register in Attribute Controller
DO - Lock Palette registers in Attribute Controller

ATI Register 9 (Index B9h)

D7 - Lock Line Compare register
D6 - Set horizontal total = register value + 2 (vs + 5)
D4, D5 - Wait cycles for 16 bit access to ROM
D3, D2 - ROM address space
D1 - Select input to clock chip
DO - Clock select

ATI Register A (Index BAh)

D7 - Delay chain resolution compensation
D6 - Reserved
D5 - Enable monochrome gray scale circuit
D4 - Enable EGA color simulation for RGB monitors
D3 - Disable secondary red output (for RGB monitors)
D2-D0 - Delay chain timing compensation

268 Advanced Programmer’s Guide to Super VGAs

ATI Register B - Input Status Register (Index BBh)

This register is actually just a one byte read/write latch which is set up by the
WGAWONDER BIOS to contain the following information:

D7 - Reserved
D6 - Reserved
D5 - Memory size (0 = 256K, 1 = 512K)
D4 - Reserved
D3-D0 - Display Type. The board is configured for:

0 = EGA
1 = PS/2 Analog monochrome
2 = TIL monochrome
3 = PS/2 color
4 = Analog RGB
5 = Multisync or similar
7 = IBM 8514
9 = NEC VGA monitor
D = NEC Multisync XL

ATI Register C (Index BCh)

DO to D7 - Reserved

ATI Register D (Index BDh)

D4 to D7 - EGA switch settings
DO to D3 - Reserved

ATI Register E - Miscellaneous Register (Index BEh - Rev. 2
only)

This register is only present in the Revision 2 ATI VGA chip.

D7 - enable 1024x768 4-color mode
D6 - enable 1024x768 16-color mode
D5,D4 - reserved
D3 - Enable dual page Mode
D2 - Select internal EGA DIP Switch value
D1 - Enable interlaced mode
DO - Unlock Vertical Display End register of the CRT Controller

ATI 18800—ATI VGAWONDER 269

For an explanation of dual page mode, see the Page Select register (index B2h).

The BIOS
All modes of the VGAWONDER can be set using the BIOS Mode Set command (func¬

tion 0). In addition, the VGAWONDER BIOS supports a new command that will return a
pointer to the BIOS parameter table (the table that is used to initialize registers during
a mode set) so that registers can be loaded directly. Extended text modes are fully sup¬
ported by all functions of the ROM BIOS. In enhanced graphics modes, however, only
the Mode Set and Load Palette BIOS functions are supported.

The following sequence can be used to invoke an extended display mode:

MOV AH, □ ;Setup mode select function
MOV AL,MODE NUMBER ;Setup mode number
INT 1DH ;Select mode by using BIOS

Extended BIOS Functions

BIOS function 12h Sub function 6 - Get Parameter Table Pointer

Input Parameters:

AH = 12h
BL = 6
BH = 55h

AL = Mode Number
BP = OFFFFh (set to known “illegal” value)
SI = 0 (set to know “illegal” value)

Return Value:

ES:BP = Pointer to parameter table
BP = Remains unchanged if the requested mode is not supported in this configuration
ES:SI = pointer to table override pairs (table index, table value) terminated with index

3Fh

Example:

MOV AH, 12h ;Select BIOS function
MOV BX,550th ;Sub-function L
MOV AL/Mode Number ;Desired display mode number
MOV Bp,QFFFFh initialize BP to known invalid value
XOR SI,SI
INT lOh ;Do BIOS call
CMP BP,OFFFFh ;Check for error
JE Bad_Mode

270 Advanced Programmer’s Guide to Super VGAs

After a successful return from the Get Parameter Table, the ES:BP points to a parame¬
ter table that is formatted the same as the parameter table that is included in the BIOS
Environment Table. ES:BP points to the extended register values for that mode. If any

values in the table need modification (e.g., due to special configuration), then ES:BP

points to a list of pairs that define the override values. The first byte in the pair contains
an index into the parameters table returned in ES:BP and the second byte contains the

replacement value. The table is terminated with index 3Fh.

Extended BIOS Data Area

The VGA BIOS is located in the system memory space starting at address C000:0000.

At the beginning of the BIOS are several constants which are used to determine the
version and capabilities of the adapter. These constants are listed in Table 11.5.

Table 11-5. YGAWONDER BIOS constants

ROM Address ROM Data

C000:10 WORD

C000:31 "761295520"

C000:40 "31"

"32"

C000:42 BYTE

Description

I/O address of Extended Register Block (see Note 1)

ASCII ATI signature found in all ATI BIOS products

ASCII VGAWONDER signature code

ASCII EGAWONDER 800 + signature code

DO = 1: Can switch between 8 or 16 bit ROM

D1 = 1: mouse interface on board

D4 = 1: Use clock chip

D7 = 1: Use C000:0000 to D000:FFFF with 16-bit ROM

C000:43 T
'2'

'3'

C000:4C BYTE

C000:4D BYTE

YGAWONDER with version 1 chip

YGAWONDER with version 2 chip (see Note 2)

YGAWONDER with version 2 chip, VRAM version

Major BIOS revision number (binary)

Minor BIOS revision number (binary)

Note 1: If address C000:0010 cannot be accessed dynamically, use ICEh as the I/O address.
Note 2: Revision 2 of the ATI VGA chip has capabilities that Revision 1 does not.

To detect the presence of a YGAWONDER in a system, it is recommmended that the
VGA BIOS ROM, which is located at address C000:0 in host memory, be interrogated
for the presence of a specific code. The codes which can be checked are shown in
Table 11-5. The section “Programming Examples - Identification and Configuration”
contains examples on how to access BIOS data.

ATI 18800—ATI VGAWONDER 271

Programming Examples

Accessing Extended Registers

Extended registers on the VGAWONDER are accessed using two sequential I/O
addresses, the first address to select index and the second address to access the data.
Use 8 bit I/O instructions; 16-bit I/O is not supported during read operations.

MOV DX,I0_Address
MOV AL,REG INDEX
OUT DX, AL
INC DX
IN AL, DX

;Load I/O address
;Load register index
;Select register
;Advance I/O address
;Get the register data value

Extended registers of the VGAWONDER should be written using a single 16-bit out¬
put instruction (OUT DX^AX). Do not use 8-bits I/O instructions to reference the
index and then the data. Code similar to the following should be used:

MOV AL,Index Load register index
MOV AH,Data Load register data
MOV DX,I0_Address Load I/O address
OUT DX, AX Write to extended register

“IO__Address”, the address of the ATI extended register bank, is stored in the BIOS
ROM at address C000:0010h and is typically ICEh. It should not be assumed that this

I/O address will be the same for all ATI adapters. The following code shows how to find
the proper I/O addresses for the extended register bank of the VGAWONDER:

MOV AX,DCODOH ;Fetch segment of VGA BIOS
MOV DS, AX ;Load segment register
MOV SI,IDh ; Setup offset of register address
MOV AX,DS:[SI] ;Get I/O address of ATI registers
MOV IO_Address,SI ;Save I/O address

Further examples showing access to the extended register bank can be found in the
example procedures Select__Page, Select__Read_Page and Select_Write__Page, and
INFO.C shown below.

Display Memory Paging

An I/O register (the Page Select register), located in the extended register bank at

index B2h, is used to define which page of display memory is selected. To select a
page, the desired page number is written to the appropriate bits of the Page Select reg¬
ister (see Figure 11-3 on page 272).

272 Advanced Programmer’s Guide to Super VGAs

For V4 and later versions of VGAWONDER, an optional enhanced paging mode is
included that permits one page of display memory to be enabled for reading while a
different page of display memory is enabled for writing (see Figure 11-4). Both pages
reside at the same host memory address. This mode is useful when transfering data
from one part of display memory to another as for on-screen to on-screen BITBLT
operations (see BITBLT programming examples).

Figure 11-4. Separate read & write paging registers

Some ATI documentation may refer to display memory pages as memory planes
which is an unfortunate choice, since it is then easily confused with VGA color planes.

For compatibility, all versions of the VGAWONDER default on initialization to the
single page mode of operation. For those versions of the VGAWONDER that support
dual page operation (versions V4 and V5, which use the Revision 2 VGA chip), dual
page mode is enabled through the Miscellaneous register, index BEh, in the extended
register bank.

The paging mechanism is illustrated in the following progamming examples.
_Select_Graphics selects the display mode (mode number is obtained from include

ATI 18800—ATI VGAWONDER 273

file MODE.INC). Three procedures, _Select_Page, _Select_Read_Page and
_Select_Write__Page, support display memory paging.

Select_Mode: This procedure is used by the program DEMO.C to initialize the
board to graphics mode. It demonstrates how to obtain the extended register bank
address, how to check if the board has separate read/write page capability, and how to
enable separate read and write pages, if available.

Select_Page: This procedure demonstrates how to select a page for both read and
write. It uses the flag ’Two_Pages’ (initialized by the procedure Select_Mode) to
determine which paging scheme to use. Note that the page select procedure will detect
if the correct page is already selected to save time.

Select Read Page and Select Write Page: These procedures demonstrate how to
select separate read and write pages by changing the corresponding nibbles in
extended register B2h. Note that the other nibble is preserved when selecting either
write or read page.

This module also uses the include file VGA.INC and the include file MODE.INC
(included on the diskette in directory \ATI).

Listing 11-1. File: ATI\SELECT.ASM

* File: SELECT.ASM *
* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points: *
* _Select_Graphics - Select a graphics mode *
* _Select_Text - Set VGA adapter into text mode *
* _Select_Page - Set page for read and write *
* _Select_Read_Page - Select read page only (ver2 chip) *
* _Select_Write_Page - Select write page only (verE! chip) *
* Uses: *
* MODE.INC - Mode dependent constants *
* Following are modes and paths for ATI boards: *
* i-25L colors-1 i— It colors —i A colors 2 colors *
* iaAOxAQO bADxA&O ADDxLOO ADDxLOD 1D2<x7LA 1D2<x7LA lD24x7Lfl *
* Mode: Llh L2h L3h LAh(54h) 55h L7h N/A *
* Path: 25LC0L 2SLC0L 25LC0L 1LC0L 1LC0L 4C0LATI N/A *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

274 Advanced Programmer’s Guide to Super VGAs

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages
PUBLIC IO_Address
PUBLIC Last_Byte

Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

Constant definitions

PAGE SELECT EQU 0B2h ;Index for page select
PAGE MASK EQU □Elh ;Page mask for Read+Write select
RPAGE MASK EQU □ IFh ;Read page mask
WPAGE MASK EQU □ Flh ;Write page mask
DIFF RW PAGE EQU □ □Ah ; Separate R & W pages bit in misc
MISCe REG EQU □ BEh ;Index for misc register 2

Code segment variables

TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW DADDDh ;Graphics segment addresses
DW □ADDDh

OffScreen_Seg DW □ADDDh ;First byte beyond visible screen
Video Pitch DW SCREEN PITCH ;Number of bytes in one raster
Video Height DW SCREEN HEIGHT ; Number of rasters
Video_Width DW SCREEN WIDTH ;Number of pixels in a raster
Video_Pages DW SCREEN PAGES ; Number of pages in the screen
Ras_Buffer DB 1024 DUP (0) ;Working buffer
R Page DB □ FFh ;Most recently selected page
W Page DB OFFh
RW_Page DB □ FFh
Two_Pages DB 0 jlndicate separate R & W capability

IO_Address DW 0 ;Address of extended registers

* *

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to the graphics mode defined in MODE.INC *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

Arg_HorizPtr EQU WORD PTR [BP + 4] ; Formal parameters
Arg_VertPtr EQU WORD PTR [BP+L] ; Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+A] ;Formal parameters

_Select_Graphics PROC NEAR
PUSH BP
MOV BP,SP

;Standard C entry point

ATI 18800—ATI VGAWONDER 275

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Fetch address of ATI extended register

MOV AX,DCDDDh ; Point DS to BIOS ROM segment
MOV ES, AX
MOV SI,IDh
MOV AX,ES:[SI 3 ;Fetch address of register
MOV CS:IO_Address,AX ;Save address for later

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Select graphics mode
INT IDh

Check chip version to see if capable of separate R&W

MOV CS:Two_Pages,□ ;Assume version 1 (R&W not separate)
MOV SI,Oh ;Offset of version byte in BIOS ROM
CMP BYTE PTR ES:[SI],'1' ;Check if version 1
JE Pages_Set ; yes, done

; Ensure that separate read/write page selection is enabled

MOV DX,CS:10 Address ;Fetch address of extended registers
MOV AL,MISC2_REG ;Fetch index for misc register 5
OUT DX, AL ;Select misc register
INC DX
IN AL, DX ;Read previous value
DEC DX
MOV AH, AL ;Copy old value into AH
OR AH,DIFF RW PAGE ;Set 'separate R&W page' bit
MOV AL,MISC2_REG ;Fetch index for misc register 5
OUT DX, AX ;Enable separate R&W pages
MOV CS:Two_Pages,1 ; no, set flag that R&W separate

Pages_Set:

; Reset 'last selected page'
MOV AL,DFFh
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

;Use 'non-existent' page number
;Set currently selected page

Set return parameters

MOV SI,Arg_VertPtr
MOV WORD PTR [SI],SCREEN_HEIGHT
MOV SI,Arg_HorizPtr
MOV WORD PTR [SI],SCREEN_WIDTH
MOV SI,Arg_ColorsPtr
MOV WORD PTR [SID,SCREEN_COLORS

;Fetch pointer to vertical resolution
;Set vertical resolution
;Fetch pointer to horizontal resolution
;Set horizontal resolution
;Fetch pointer to number of colors
;Set number of colors

Clean up and return to caller

POP ES ;Restore segment registers
POP DS
POP SI
POP DI

MOV SP, BP ;Standard C exit point
POP BP
RET

Select_Graphics ENDP

276 Advanced Programmer’s Guide to Super VGAs

**
*

Select_Page *
Two versions of page select are needed, one for version 1 and *
another for later versions of the chip. *

Entry: *
AL - Page number *

*

**

Select_Page PROC NEAR

SP_Go:

CMP AL,CS:RW_Page ;Check if already selected
JNE SP_Go
RET

PUSH AX
PUSH DX
CMP CS:Two_Pages,0 ;Check for separate R&W
JNZ SP_Two_Pages
; Perfom page select for version 1 chip (combined R&W pages)
MOV AH, AL ;Copy page number into AH
MOV CS:RW_Page,AL ;Save as most recent RW page
MOV CS:R_Page,DFFh ;Invalidate R and W pages
MOV CS:W_Page,DFFh
MOV DX,CS:IO_Address ;Fetch extended register address
MOV AL,PAGE_SELECT ;Fetch page select index
OUT DX, AL ;Selet page select register
INC DX
AND AH,07h ;Map page number into bits 1-3
SHL AH, 1
IN AL, DX ;Fetch current value of page select reg
DEC DX
AND AL,PAGE_MASK ;Clear previous page setting
OR AH, AL ;Combine with new page selection
MOV AL,PAGE_SELECT ;Set page select index
OUT DX, AX ;Select new page
POP DX
POP AX
RET

Perfom
SP_Two_Pages:

AND AL,0?h
MOV CS:RW_Page,AL
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV AH, AL
SHL AH, 1
ROR AL, 1
ROR AL, 1
ROR AL, 1
OR AH, AL
MOV DX,CS:IO_Address
MOV AL,PAGE_SELECT
OUT DX, AX
POP DX
POP AX
RET

page select for version E chip (separate R&W pages)

;Force page number into range
;Save as most recent RW page

;Copy page number into AH
;Copy page number into bits 1-3
;Copy page number into bits 5-7

;Combine R&W pages *
;Fetch extended register address
;Fetch page select index
;Select page number

Select_Page ENDP

**
*

Select_Read_Page *
This routine will not operate properly on earlier versions of *
VGA WONDER. It will work for revision E and later. *

Entry: *
AL - Page number *

**

ATI 18800—ATI VGAWONDER 277

Select_Read_Page PROC NEAR
CMP AL/CS:R_Page ;Check if already selected
JNE SRP Go
RET

SRP_Go:
PUSH AX
PUSH DX
; Select new read page
AND AL/D7h
MOV CS:RW_Page,aFFh
MOV CS:R_Page/AL
MOV AH,AL
ROR AH/1
ROR AH/1
ROR AH f1
MOV DX/CS:IO_Address
MOV AL,PAGE_SELECT
OUT DX,AL
INC DX
IN AL,DX
DEC DX
AND AL,RPAGE_MASK
OR AH/AL
MOV AL/PAGE_SELECT
OUT DX/AX
; Clean up and return
POP DX
POP AX
RET

Select_Read_Page ENDP
.*********************************

; Select_Write_Page
; This routine will not operate
; VGA WONDER. It will work for
; Entry:
; AL - Page number

•*********************************:

;Force page number into range
;Invalidate RW page value
;Save new read value
;Keep copy in AH
;Map page number into bits 5-7

;Fetch address of extended registers
;Fetch index for page select reg
;Select page select register

;Fetch current value

;Clear previous page select
;Combine with new page number
;Fetch index for page select reg
;Select new page

*

*

properly on earlier versions of *
revision 5 and later. *

*

*

*

Select_Write_Page PROC NEAR
CMP AL,CS:W_Page
JNE SWP_Go
RET

SWP_Go:
PUSH AX
PUSH DX
; Select new write page
AND AL/D7h
MOV CS:RW_Page,OFFh
MOV CS:W_Page,AL
MOV AH,AL
SHL AH/1
MOV DX/CS:IO_Address
MOV AL/PAGE_SELECT
OUT DX/AL
INC DX
IN AL/DX
DEC DX
AND AL/WPAGE_MASK
OR AH/AL
MOV AL/PAGE_SELECT
OUT DX/AX
; Clean up and return
POP DX
POP AX
RET

Select_Write_Page ENDP

;Check if already selected

;Force into range
invalidate RW page value
;Save new write value
;Keep copy in AH
;Map page number into bits 1-3
;Fetch address of extended registers
;Fetch index for page select reg
;Select page select register

;Fetch current value

;Clear previous page select
;Combine with new page number
;Fetch index for page select reg
;Select new page

278 Advanced Programmer’s Guide to Super VGAs

j**

; _Select_Page(PageNumber) Entry point from C routines *
; _Select_Read_Page(PageNumber) *
; _Select_Write_Page(PageNumber) *
; Entry: *
; PageNumber - Page number *

•**

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP
MOV SP,BP
MOV AL,Arg_PageNumber
POP BP
JMP Select_Page

_Select_Page ENDP

_Select_Read_Page PROC NEAR
PUSH BP
MOV SP,BP
MOV AL/Arg_PageNumber
POP BP
JMP Select_Read_Page

_Select_Read_Page ENDP

_Select_Write_Page PROC NEAR
PUSH BP
MOV SP,BP
MOV AL,Arg_PageNumber
POP BP
JMP Select_Write_Page

_Select_Write_Page ENDP

* *

* _Select_Text *
* Set VGA adapter to text mode *
* *

**

Select_Text PROC NEAR
MOV AX,TEXT_MODE
INT lOh
RET

.Select_Text ENDP

* *

* Enable_Dual_Page *
* Disable_Dual_Page *
* Not supported by ATI based boards *
* *

.**

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

Last_Byte:
_Text ENDS

END

;Select mode 3
;Use BIOS to reset mode

;Setup frame pointer

;Fetch argument
;Restore BP

;Setup frame pointer

;Fetch argument
;Restore BP

;Setup frame pointer

;Fetch argument
;Restore BP

ATI 18800—ATI VGAWONDER 2 79

Mode 65h - 1024x76816-Color Graphics
(4-Bit Packed Pixels)

A 4-bit packed pixel memory organization does not follow any previous industry

precedent and is unique to ATI boards. A separate set of example drawing routines is
provided for this mode, similar to those in Chapters 7 through 9.

Converting (x,y) to Page:Offset

Figure 11-1 shows the organization of display memory for this mode. Each pixel
occupies four bits; each byte contains two pixels. To convert from a pixel position in

x,y coordinates to a byte offset and page number in display memory, use the following
equations:

Byte Offset = (Video_Pitch * y + x/2) mod lOOOOhex

Page Number = (Video__Pitch * y + x/2) / lOOOOhex
Nibble Number = x mod 2

Due to their excessive lengths, not all listings for programming examples for this

memory organization are included in the text; they are available on the diskette. For
each routine, the name, file, and description is included in Table 11-6.

Table 11-6. Progamming examples for mode 65h

Procedure File Name Description
Write_Pixel l6COLATI\WPIXELASM Set pixel at (x,u) to new color
Read__Pixel 16COLATI \ RPKEL.ASM Return color of pixel at (x,y)
Line l6COLATI\LINE.ASM Line drawing using Bresneham’s

incremental algorithm
Rect 16COLATI \ RECT. ASM Draw a solid rectangle
Scanline 16COLATI \ SCANLINE.ASM Fill section of scanline with solid color
Bitblt 16COLATI \ BITBLT. ASM Copy block of pixels from one section of

screen to another
Set_Cursor 16COLATI \ CURSOR. ASM Define shape of the cursor
Move__Cursor 16COLATI \ CURSOR. ASM Move cursor from one position on the

screen to another
Remove_Cursor 16COLATI \ CURSOR. ASM Remove cursor from the screen
Read_DAC 16COLATI \ DAC.ASM Copy R,G,B values from DAC registers to a

buffer
Load_DAC 16COLATI \ DAC.ASM Copy R,G,B values from a buffer to DAC

registers

280 Advanced Programmer’s Guide to Super VGAs

Write Pixel

The logic needed to write a pixel in this mode, while simpler than for 16-color pla¬
nar modes, is still more complex than for 256-color modes. Besides computing the
Segment, Offset, and Page, the Mask register must also be properly set. Unlike 16-color
planar modes, pixel color registers do not need to be set.

Listing 11-2. File: l6COLATI\WPIXEL.ASM

•*****************************♦:**
- * *

;* File: WPIXEL.ASM - A Bit Packed Pixel Write *
;* Routine: _Write_Pixel *
;* Arguments: X, Y, Color *
j * *

INCLUDE VGA.INC

EXTRN Video_Pitch:WORD
EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR

PUBLIC _Write_Pixel

_TEXT SEGMENT BYTE PUBLIC ' 'CODE i

Arg_x EQU WORD PTR C BP + 4]
Arg_y EQU WORD PTR [BP + L]
Arg_Color EQU BYTE PTR [BP + fi]

Write Pixel PROC NEAR
PUSH BP ;Preserve BP
MOV BP, SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index
PUSH DS
PUSH DI
PUSH SI

; Calculate address of pixel

MOV AX/Arg y Convert (x,y) to Page:Offset
MUL CS:Video Pitch multiply y by pitch
MOV CX,Arg x fetch x
SHR CX,1 convert pixel to byte numb
ADD AX, CX add to previous product
ADC DX,D and take care of carry
MOV DS,CS:Graf Seg Put address in DS:DI
MOV DI , AX
MOV AL, DL ;Copy page number into AL
CALL Select_Page ; Select proper page

; Move value into proper nibble

MOV AL,Arg Color Put color in AL
MOV BL,DFh Set mask assuming lower nibble
SHR Arg_x,1 Check if odd numbered address
JC Value In and if so skip shifting of nibble
SHL AL,1 ;Shift lower nible into upper one
SHL AL, 1
SHL AL, 1
SHL AL, 1
NOT BL ;Set mask for upper nibble

Value_In:

ATI 18800—ATI VGAWONDER 281

; Set pixel to

AND AL,BL
NOT BL
AND [DI],BL
OR CDI],AL

; Clean up and

POP SI
POP DI
POP DS
POP ES

MOV SP,BP
POP BP
RET

_Write_Pixel ENDP

supplied value

;Mask to keep new bits
;Set mask for bits to keep
;Preserve the other pixel in the byte
;Combine new pixel value into byte

return

;Restore segment and index registers

;Restore stack pointer
;Restore BP

TEXT ENDS
END

Read Pixel

Read Pixel is a companion to the Write Pixel programming example. It illustrates
how to convert (x,y) position to Page:Segment:Offset address, and how to access a
pixel at that location. Note that in this memory organization, after a byte is obtained
from display memory, each pixel must be masked and rotated into place.

Listing 11-3. File: l6COLATI\RPIXEL.ASM

* File: RPIXEL.ASM - 4 Bit Packed Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *

INCLUDE VGA.INC

EXTRN Video_Pitch:WORD
EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE i

Arg_x EQU WORD PTR [BP + 4]
Arg_y EQU WORD PTR [BP + L]

Read .Pixel PROC NEAR
PUSH BP ;Preserve BP
MOV BP, SP ;Preserve stack pointer

PUSH ES ;Preserve segment and index
PUSH DS
PUSH DI
PUSH SI

; Calculate address of pixel and a mask

282 Advanced Programmer’s Guide to Super VGAs

MOV AX,Arg y ;Convert (x,y) to PagerOffset
MUL CS:Video_Pitch ; multiply y by pitch
MOV CX,Arg x ; fetch x
SHR CX,1 ; convert pixel to byte number
ADD AX, CX ; add to previous product
ADC DX, 0 ; and take care of carry
MOV DS,CS:Graf Seg ;Put address in DS:SI
MOV SI, AX
MOV AL,DL ;Copy page number into AL
CALL Select_Page ;Select proper page

; Fetch the pixel value

MOV AL,[SI] ;Get byte of video memory
XOR AH, AH ;Clear upper byte (for return)

; Move pixel into lower nibble and clear the upper nibble

SHR Arg_x, 1 ;Check if odd numbered address
JC Pixel In ;and if so skip shifting of nibble
SHR AL, 1 ;Shift upper nible into lower one
SHR AL, 1
SHR AL, 1
SHR AL, 1

Pixel In:
AND AX,OFh ;Clear all bits except lower nibble

; Cleanup and return

POP SI ;Restore segment and index registers
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ; Restore BP
RET

_Read_Pixel ENDP

TEXT ENDS
END

Eight Simultaneous Fonts

To enable eight simultaneous fonts, extended register 5 (index B5) bit 4 must be set
to 1. For each character, the attribute byte is redefined to set both color and font. The
low nibble of the attribute byte defines color and the high nibble defines the font.
Background color is always 0.

Font numbers do not match the set number used with BIOS service llh. Table 11-7
has locations and corresponding set numbers (used in BIOS service llh) for each of
the valid font numbers. It should be noted that ATI boards are capable of supporting
two sets of eight fonts, for a total of 16, using memory plane 3 for the second set.

ATI 18800—ATI VGAWONDER 283

Table 11-7. Font number vs. Character set

Font Number Offset Character Generator
in plane 2 Set Number

0 0 0
1 32k 4
2 8k 1
3 40k 5
4 16k 2
5 48k 6
6 24k 3
7 56k 7

The programming example in Listing 11-4 demonstrates how to download fonts,
enable eight simultaneous fonts, and display text using all eight fonts. It starts by creat¬
ing seven new fonts from the standard 8x14 and 8x8 fonts, making normal, bold, itali¬
cized, and inverse fonts from each. Each font is copied to memory plane 2 using BIOS
function llh, sub function 0 (Load Custom Character Generator). Note that the charac¬
ter set number is set according to the desired font number, as show in Table 11-7.

Show_Text is used to display text in each font. For each font a label is displayed,
followed by 26 upper- and lower case characters, and numbers. Each font is displayed
using BIOS service 13h, Write Text String, with the attribute set for the specified font.

Listing 11-4. File: ATI \TEXT.ASM

;**
; * *

;* File: TEXT.ASM - Load fl simultaneous fonts *
;* Description: A program to load fl character generators and to display *
;* eight simultaneous fonts. *
;* It is assumed that color VGA monitor is attached to VGA.*
; * * ;**

INCLUDE VGA.INC

_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT, ES:NOTHING, DS:NOTHING, SS:_STACK

Text PROC FAR
PUSH DS ;Save return address
XOR AX,AX
PUSH AX

MOV AX, CS
MOV DS/AX ;Set Data seg to Code seg

; Force into text mode 3

MOV AX,3 ;Set for mode 3, function □
INT IDh ;Use BIOS for force mode 3

; Fetch flxl4 character generator and load it bold as char gen 1

284 Advanced Programmer’s Guide to Super VGAs

MOV AX,1130h ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on fixl4
INT lOh ;Use BIOS to get pointer to CG

MOV DL,IA ;Character height
CALL Make_Bold ;Convert char gen to bold

MOV AX,HOOh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35b ;Number of characters
MOV DX / □ ;Start with character □
MOV BX,0E04h ;Set=l, Height=13 bytes
INT lOh ;Let BIOS load the character generator

; Fetch flxl< character generator and load it italicized as char gen 3

MOV AX,1130h ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxl<
INT IDh ;Use BIOS to get pointer to CG

MOV DL,14 ;Character height
CALL Make_Italics ;Italicize the char gen

MOV AX,llODh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35b ; Number of characters
MOV DX, □ ;Start with character D
MOV BX,DEDlh ; Set=3, Height=13 bytes
INT IDh ;Let BIOS load the character generator

; Fetch fixl4 character generator and load it inverted as char gen 3

MOV AX,1130h ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxl4
INT IDh ;Use BIOS to get pointer to CG

MOV DL,1 A ;Character height
CALL Make_Inverted ; Invert the char gen

MOV AX,llODh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,SSL ; Number of characters
MOV DX, D ; Start with character D
MOV BX,DE05h ;Set=3, Height=13 bytes
INT lOh ;Let BIOS load the character generator

; Fetch flxfl character generator and load it as char gen A

MOV AX,113Dh ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxfl
INT IDh ;Use BIOS to get pointer to (:g

MOV AX, UDOh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35L ; Number of characters
MOV DX, □ ;Start with character D
MOV BX,OfiOSh ;Set=4, Height=fl bytes
INT IDh ;Let BIOS load the character generator

; Fetch flxfl character generator and load it bold as char gen 5

MOV AX,113Dh ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxfl
INT IDh ;Use BIOS to get pointer to < :g

MOV DL, fl ;Character height
CALL Make_Bold ;Convert char gen to bold

MOV AX,llODh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35b ; Number of characters
MOV DX, D ;Start with character D
MOV BX,DflDbh ;Set=5, Height=fl bytes
INT IDh ;Let BIOS load the character generator

; Fetch flxfl character generator and load it italicized as char gen b

ATI 18800—ATI VGAWONDER 285

MOV AX, 113Dh ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxfl
INT lOh ;Use BIOS to get pointer to CG

MOV dl , a ;Character height
CALL Make_Italics jltalicize the char gen

MOV AX,llOOh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35L ;Number of characters
MOV DX, D ;Start with character 0
MOV BX,0fl03h ; Set=b, Height=fl bytes
INT lOh ;Let BIOS load the character generator

; Fetch flxfl character generator and load it inverted as char gen 7

MOV AX,113Dh ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on flxfl
INT lOh ;Use BIOS to get pointer to CG

MOV DL, A ;Character height
CALL Make_Inverted ;Invert the char gen

MOV AX, UDOh ;Fn=Char Gen, SubFn = Custom CG
MOV CX,35b ; Number of characters
MOV DX, Q ;Start with character □
MOV BX,0fl07h ;Set=7, Height=fl bytes
INT lDh ;Let BIOS load the character generator

; Enable multiple character fonts

MOV DX,ICEh ;Extened register bank
MOV AL,0B5h ;Index for font enable register
OUT DX, AL ; Select register
INC DX
IN AL, DX ;Fetch previous value
DEC DX
OR AL,lOh ;Set enable bit
MOV AH, AL
MOV AL,0B5h
OUT DX, AX ;Enable multiple fonts

; Display title line

MOV BX,OOOTh ;Page=0, attribute=07h (font=D, color=7)
MOV CX, 3D ; 30 characters
MOV DX,QllEh ;Row=01, column=30
LEA BP,Title Msg ;Fetch pointer to string
MOV AX,1300h ;Fn=String, SubFn=Use BL for attr.
INT lOh •.Display the string

; Loop over fonts, displaying label and b3 character alphabet for each

XOR BX, BX ;Set counter of fonts to do
Loop:
PUSH BX ;Preserve counter, & put font # on stack
SHL BX,1 ;Convert counter to index
PUSH CS ;Put address of text on the stack
PUSH WORD PTR CS:MSG_ Ptr [BX]
CALL Show Text ;Draw next set of text
ADD sp,4 ;’Pop' text address
POP BX ; Restore counter
INC BX ;Update index
CMP Bx,a ;Check if all fonts done
JL Font_Loop ;Go do next font if needed

; Wait for a key to be pressed

MOV AH,DDh ;Function return key
INT lbh ;Use BIOS to get the key

; Disable multiple character fonts

286 Advanced Programmer’s Guide to Super VGAs

MOV DX,ICEh
MOV AL,0B5h
OUT DX,AL
INC DX
IN AL, DX
DEC DX
AND AL,NOT lOh
MOV AH,AL
MOV AL,DB5h
OUT DX,AX

; Clean up and exit

Show_Done:
RET ;Exit

Text ENDP

;Extened register bank
;Index for font enable register
;Select register

;Fetch previous value

;Clear enable bit

;Disable multiple fonts

*

Show Text (font, text) *
Display 'text1 as a label, followed by L2 characters of alphabet *
in row '2*font' with color 'font+1' *

*

Arg_Text EQU DWORD PTR [BP+4]
Arg_Font EQU BYTE PTR CBP+fl]

Alphabet DB
DB

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
'D12345L7flq'

Show_Text PROC NEAR
PUSH BP
MOV BP,SP

; Convert font number to attribute value

MOV BL,Arg_Font
SHL BL,1
SHL BL,1
SHL BL, 1
SHL BL,1
OR BL,1
ADD BL,Arg_Font

;Fetch font number
;Move into bits 4-7

;Set initial fg color to 1
;Use color 'font+1'

; Setup parameters for BIOS service call and call it to show label

MOV BH, □
MOV CX,lfl
MOV DH,Arg Font
SHL DH, 1
ADD DH, 3
MOV DL, □
LES BP,Arg Text
MOV AX,130Dh
INT lOh

;Page D
;1L characters
;Compute starting row
; as 'font*2 + 3'

;Starting column
;Fetch pointer to string
;Fn=String, SubFn=Use BL for attr.
;Display the string

; Alphabet

ADD DL,Ifl
MOV CX,L2
LEA BP,CS:Alphabet
MOV AX,130Dh
INT lOh

;Start in column Ifl
characters to show

;Pointer to alphabet string
;Fn=String, SubFn=Use BL for attr.
;Display string

; Clean up and exit

POP BP
RET

Show_Text ENDP

ATI 18800—ATI VGAWONDER 287

*
Make_Bold y *

Convert flxN character genertor to bold, by shifting each byte *
to the right and ORing it with the original. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

*

New_CG DB 1L*25L DUP (0) ;Buffer for new char gen

Make_Bold PROC NEAR

;Setup counters

MOV BX, 25L ; Set counter of characters
XOR CH, CH ; Set counter of bytes
MOV AX, ES ; Set pointer to source
MOV DS, AX
MOV SI,BP
LEA DI,CS:New CG ; Set pointer to destination
MOV AX, CS
MOV ES, AX

; Loop over characters to change

MB_Char_Loop:
MOV CL,DL ;Set counter of bytes

; Loop over bytes to change

MB_Byte_Loop:
LODSB
MOV AH,AL
SHR AL,1
OR AL,AH
STOSB
LOOP MB_Byte_Loop
DEC BX
JG MB_Char_Loop

; Clean up and exit

;Fetch original byte
;Get a copy of the byte
;Shift byte to the right
;Combine bytes to make bold char
;Save new character
;Check if all bytes done

;Check if all chars done

LEA BP,CS:New_CG ; Set pointer to new character generator
RET

Make_Bold ENDP

*

Make_Italics *
Convert fixN character genertor to italics, by shifting each byte *
to the right for top, and left for bottom two bytes. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

*

Make_Italics PROC NEAR

;Setup counters

MOV BL, DL ; Set counter of bytes
XOR BH, BH
MOV DX, 55L ; Set counter of characters
MOV AX, ES ; Set pointer to source
MOV DS, AX
MOV SI,BP
LEA DI,CS:New CG ; Set pointer to destination

288 Advanced Programmer’s Guide to Super VGAs

MOV AX,CS
MOV ES,AX

; Loop over characters to change

MI_Char_Loop:
MOV CX, BX ;Set counter of bytes
REP MOVSB ;Copy next character
SUB DI,BX ;Point at first byte
SHR BYTE PTR ES: CDI] ,1 ;Shift top two lines to the right
SHR BYTE PTR ES: [DI + 1],1
SHR BYTE PTR ES:[DI+5],1
SHR BYTE PTR ES:[DI+33,1
SHL BYTE PTR ES:[DI][BX-1],1 ;Shift last two lines to the left
SHL BYTE PTR ES:CDI][BX-2],1
SHL BYTE PTR ES : C DI] [BX-3],1
SHL BYTE PTR ES:[DI] [BX-4],1
ADD DI, BX ;Point to next character
DEC DX ;Check if all chars done
JG MI Char Loop
MOV DL,BL ;Restore DL

; Clean up and exit

LEA BP,CS:New_CG ; Set pointer to new character generator
RET

Make_Italics ENDP

*

Make_Inverted *
Convert flxN character genertor to inverse, by inverting each *
byte of the original. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

Make_Inverted PROC NEAR

;Setup counters

MOV BX, 25L ; Set counter of characters
XOR CH, CH ; Set counter of bytes
MOV AX, ES ; Set pointer to source
MOV DS, AX
MOV SI,BP
LEA DI,CS:New CG ; Set pointer to destination
MOV AX, CS
MOV ES, AX

; Loop over characters to change

MV_Char_Loop:
MOV CL,DL ;Set counter of bytes
; Loop over bytes to change

MV_Byte_Loop:
LODSB
NOT AL
STOSB
LOOP MV_Byte_Loop
DEC BX
JG MV_Char_Loop

; Clean up and exit

LEA BP,CS:New_CG
RET

Make_Inverted ENDP

;Fetch original byte
;Invert the byte
;Save new character
;Check if all bytes done

;Check if all chars done

; Set pointer to new character generator

ATI 18800—ATI VGAWONDER 289

*

Load_CG *
Load character generator into plane 5 at the given offset. *

Entry: *

DI - Offset of character generator in plane E *
ES:BP - Pointer to character generator *
DL - Height of each character *

*

Load_CG PROC NEAR

; Enable plane E for write at ADOQD

MOV BX , DX ; Save character height
MOV DX,SEQUENCER PORT ; Address of sequencer
MOV AL,PLANE ENABLE REG ; Plane enable reg index
OUT DX, AL ; Select register
INC DX
IN AL, DX ; Fetch current value
PUSH AX ; Save to be restored at the end
MOV AL, A ; Select plane 5
OUT DX, AL

DEC DX
MOV AL,< ; Memory mode reg index
OUT DX, AL ; Select memory mode registers
INC DX
IN AL, DX ; Fetch current value
PUSH AX ; Save to be restored later
OR AL, CKh ; Disable odd/even
OUT DX, AL

MOV DX,GRAPHICS CTRL PORT ; Address of graphics controller
MOV AL,MISC REG ; Index of misc reg
OUT DX, AL ; Select misc reg
INC DX
IN AL, DX ; Read current value
PUSH AX ; Save to be restored later
AND AL,DFlh ; Disable odd/even and select ADDO
OR AL, CKh
OUT DX, AL

; Copy character generator

MOV AX, ES ; Load DS:SI with source
MOV DS, AX
MOV SI,BP
MOV AX,DADODh ; Load ES:DI with destination
MOV ES, AX
MOV DX, BX ; Setup counters
XOR DH, DH
MOV BX,55L

Loopl:
MOV CX, DX ; Number of bytes to copy
REP MOVSB ; Copy bytes for next character
MOV CX,2Dh ; Number of zero’s to fill after char
SUB CX, DX
REP STOSB ; Fill trailing zeros
DEC BX ; Check if all characters done
JG Loopl ; Go do next char, if not all done

; Restore previous state

MOV DX,GRAPHICS CTRL PORT ; Restore graphics controller
POP AX ; Get the original value
XCHG AL, AH ; Setup index and data
MOV AL,MISC REG
OUT DX, AX ; Restore register

290 Advanced Programmer’s Guide to Super VGAs

MOV DX/SEQUENCER PORT ; Restore graphics controller
POP AX ; Get the original value
XCHG AL, AH ; Setup index and data
MOV AL,<
OUT DX, AX ; Restore register

POP AX ; Get the original value
XCHG AL/AH ; Setup index and data
MOV AL/PLANE_ENABLE_REG
OUT DX, AX ; Restore register

RET
Load_CG ENDP

; Data definition *
•*****3*c*3(c**>*c**j)c^ + ^>)<**>(c*>(c***5(c*>|c*>tt^******^*^****5)c*5»c*Jtc*5t:*>»c***Jtcj)c*>*c^^>)c^>(cj(c*^>f;^^

Title Msg DB •A SIMULTANEOUS FONTS
MSG □ DB •0 Default Set '
MSG 1 DB Axl< Bold '
MSG 5 DB '1 Axl4 Italics '
MSG 3 DB '5 Axl< Inverted '
MSG 4 DB •5 AxA Normal 1
MSG_5 DB 1 b AxA Bold '
MSG L DB AxA Italics '
MSG_7 DB •7 AxA Inverted '

MSG_Ptr DW OFFSET MSG_D
DW OFFSET MSG 1
DW OFFSET MSG E
DW OFFSET MSG_3
DW OFFSET MSG 4
DW OFFSET MSG_5
DW OFFSET MSG L
DW OFFSET MSG_7

_TEXT ENDS

_STACK SEGMENT PARA STACK 'STACK'
DB IDDh DUP(?)

_STACK ENDS
END

Detection and Identification

When writing software that can take advantage of ATI extended features in a well-
behaved manner, start by testing for the presence of the VGAWONDER, then check the
revision level of the adapter. See Table 11-5 for the location of the ten signature bytes,
and the chip version byte in the BIOS ROM. The following C program shows how to
test to see if a VGAWONDER is present, how to identify the revision level, and how to
determine other capabilities of the adapter.

Listing 11-5. File: ATIXINFO.C

/* */
/* File: INFO.C */
/* Description: This is a program to illustrate how to obtain */
/* information about/ and state of the ATI VGA WONDER. */
/* */

ATI 18800—ATI VGAWONDER 291

#include <stdio.h>
#include <dos.h>

char ati_signature[] =
char msg_chip_version[]
char msg_BIOS_version[]
char msg_flbit_ROM[] =
char msg_mouse_chip[] =
char msg_interlace[] =
char msg_micro_channel[]
char msg_clock_chip[] =

" 7G12q5520";
"Chip Version : »
"BIOS Version : »
"fl and It bit ROM supported : "
"Mouse chip present : »
"Supports non-interlaced modes: "
"Micro Channel supported : "
"Clock chip present : "

char msg_registerl[] =
char msg_EGA_emul[] =
char msg_EGA_addr[] =
char msg_register2[] =
char msg_reg2_interlace[] =
char msg_register<[] =
char msg_CGA_emul[] =
char msg_registerB[] =
char msg_RAM_size[] =
char msg_display[] =
char *display_type[] = {"EGA",

"RGB"
" ? "

"ATI Extended register 1
" EGA emulation
" EGA I/O addressing
"ATI Extended register 2
" Interlaced mode
"ATI Extended register A
" CGA emulation
"ATI Extended register B
" Video RAM size
" Display type

"PS/2 Mono","TTL Mono","PS/2 Color",
,"Mulitsync","?", "A514/A",

"NEC-2A", "?", h?h,

char msg_registerl7[] =
main()

{

int i' 1/ k;
union REGS regs;
char far *P >
int far *q ;
int ati_reg
char value;

" ? " , " ? " } *
"ATI Extended register 1? :

/* Used for BIOS calls */
/* Used to address RAM directly */

"NEC-XL"

/* Use BIOS to check if any VGA is present in the system */

/* Check for EGA */

regs.h.ah = 0x12;
regs.h.bl = 0x10;
regs.h.bh = 0x55;
intflb(0x10,®s,®s) ;
if (regs.h.bh == 0x55)

{

printf("\n...Error:
exit(□);
}

/* Function = Get EGA Status */

/* Dummy, will change if EGA/VGA*/

/* Quit if BH was not changed */
/* since this means no EGA is */

EGA/VGA not present in the system\n");

/* Check for VGA */

regs.h.ah = OxlA;
regs.h.al = 0x00;
intflfc(0x10,®s,®s);
if (regs.h.al != OxlA)

{

printf("\n...Error:
exit(0) ;
}

/* Function: Read VGA Config. */
/* Subfunction: 0 */

/* Quit if AL was changed since */
/* this means this is EGA BIOS */

EGA in the system but VGA not found\n");

/**/

/* Check for ATI VGA WONDER, by checking for product signature */
/* at C000:D030. It should be ASCII string "7012^5520" */

p = (char far *)OxCOOOOOOO; /* Set pointer to VGA BIOS area */
q = (int far *)OxCOOOOOOO;
for (i = 0; i < 10; i++) /* Check signature bytes */

292 Advanced Programmer’s Guide to Super VGAs

if (p[i+0x30] != ati_signature[i])
{

printf("\n...Error: ATI VGA WONDER not found\n");
exit(0);
}

/3»C***3)C*3(C3*C*^**34c*3(C*5*C******>)c***>»C******>*C***5)C***>»C3|C34c**>tcXC3(C3fL*3(C**3(c*3*C***>(C3)c*/

/* Display chip and BIOS version, and capabilities using data */
/* in the BIOS code area (segment C000). */
/sic***/

printf("£s£c\n", msg_chip_version, p[0x43]);
printf("£s£d.£d\n", msg_BIOS_version, pCOx^C], p[0x4DJ);
printf("2s2s\n", msg_flbit_R0M, (p[0x4E] & 0x01) ? "Yes":"No");
printf("£s£s\n", msg_mouse_chip, (p[0x4E] & OxOE) ? "Yes":"No");
printf("£s$s\n", msg_interlace, (p[0x4E] & 0x04) ? "Yes":"No");
printf("£s£s\n", msg_micro_channel, (p[0x4E] & OxOfl) ? "Yes":"No");
printf("£s£s\n", msg_clock_chip, (p[0x4E] & 0x10) ? "Yes":"No");

/**^

/* Display current status using data in the extended registers */
/**/

ati_reg = qCOxOfl]; /* Fetch ATI ext reg adrress */

/* Display EGA emulation status */

outp(ati_reg, OxBl); /* Select register 1 */
value = inp(ati_reg+l); /* Fetch register 1 data */
printf("£s£.EXh\n", msg_registerl, value);
printf("£s£s\n", msg_EGA_emul, (value & OxOE) ? "On" : "Off");
printf("£s£s\n", msg_EGA_addr, (value & 0x01) ? "On" : "Off");

/* Display interlacing status */

outp(ati_reg, OxBE); /* Select register E */
value = inp(ati_reg+l); /* Fetch register E data */
printf("£s£.5Xh\n", msg_registerE, value);
printf("£s£s\n", msg_regE_interlace, (value & 0x01) ? "On" : "Off");

/* Display CGA emulation status */

outp(ati_reg, 0xB4); /* Select register A */
value = inp(ati_reg+l); /* Fetch register A data */
printf("%s%.EXh\n", msg_register4, value);
printf("£s£s\n", msg_CGA_emul, (value & 0x01) ? "On" : "Off");

/* Display memory size and monitor type detected */

outp(ati_reg, OxBB); /* Select register E */
value = inp(ati_reg+l); /* Fetch register E data */
printf("%s%.EXh\n", msg_registerE, value);
printf ("£s£s\n", msg_RAM_size, (value & OxEO) ? »"51Ek": »55tk»);
printf("£s£s\n", msg_display, display_type[value & 0x0F]);

/* Display status register */

value = inp(0x3CF); /* Fetch status register data */
printf("%s%.EXh\n", msg_registerl?, value);

}

12

Cirrus CL-GD 510,
CL-GD 520

MaxLogic MaxVGA

rCimJS LOGIC

293

294 Advanced Programmer’s Guide to Super VGAs

Introduction
Cirrus Logic started in the VGA chip business under a contract with Video Seven,

designing and building a VGA chip to Video Seven specifications. Many Video Seven
VGA boards carry the Cirrus logo on their VGA chips. In 1988 Video Seven started mak¬
ing their own chips, then merged with G-2 to form Headland Technologies (see Chap¬
ter 15).

Cirrus supplies VGA chips to PC system manufacturers. Their chips can be found on
the motherboards of products such as the Intel 386SX and AT&T computers, and in
many laptop computers. They can also be found on VGA add-in boards from Maxlogic,
STB and Renaissance.

New features in the recently announced Cirrus CL-GD 610/CL-GD 620 chip set
include additional support for lap top displays such as monochrome and color LCDs.
While this chapter focuses on the 510/520 chip set, most of the information is also
applicable to the 610/620 chip set. The only significant software change needed is to
change the value of the Password Key used to enable access to the extended registers.
For more information on this subject see the programming examples later in this
chapter.

MaxVGA is equipped with 256K of display memory and supports resolutions up to
800x600 with 16 colors and 640x400 with 256 colors. It also includes emulation modes
for EGA, CGA, MDA and Hercules. According to MaxLogic, tests performed by PC Labs
have shown the MaxVGA to have the highest level of compatibility in VGA, CGA, MDA
and Hercules modes.

MaxLogic provides drivers for popular programs such as Microsoft Windows, Auto¬
CAD, AutoShade, GEM, Ventura, Microstation, CADKEY, Quattro, Framework, Lotus
1-2-3 and Symphony, and VESA.

Expanded Display Modes
Table 12-1 lists the enhanced display modes of the MaxVGA. Any of these modes can

be selected using the Mode Select command of the BIOS.

Cirrus 510, 520—MaxLogic MaxVGA 295

Table 12-1. Enhanced display modes—MaxVGA

Mode Type Resolution
15h Text 132 col x 25 rows
16h Text 132 col x 44 rows
18h Text 132 col x 30 rows
lEh Text 132 col x 25 rows
lFh Text 132 col x 25 rows
20h Text 132 col x 44 rows
22h Text 132 col x 30 rows
31h Text 100 col x 37 rows
6Ah Graphics 800 x 600
40h Graphics 720x540
50h Graphics 640x400
51h(l) Graphics 512x480

NOTE: Some versions of the BIOS support mode

Memory Display

Colors Required Type

mono 256 KB MDA

mono 256 KB MDA

mono 256 KB Multi
16 256 KB CGA

16 256 KB EGA
16 256 KB EGA
16 256 KB SuperVGA
mono 256 KB SuperVGA
16 256 KB SuperVGA

16 256 KB SuperVGA
256 256 KB SuperVGA

256 256 KB SuperVGA

51h through a RAM resident TSR program only.

Memory Organization

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line and/or the
number of lines per screen is increased. Display memory is organized as shown in Fig¬
ure 5-1 (see Chapter 5).

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640 x 480 16-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased. Mode 74h requires display memory paging. Display memory
organization is shown in Figure 7-1; see Chapter 7 for programming examples.

256-Color Graphics Modes

Memory organization for modes 50h and 51h does not resemble any standard VGA
mode. Each pixel occupies one byte, and bytes are spread throughout the VGA color
planes as shown in the chart on page 296.

296 Advanced Programmer’s Guide to Super VGAs

Pixel # Plane Offset

4*N + 0 0 N

4*N + 1 1 N

4 * N + 2 2 N

4 * N + 3 3 N

Memory organization for these modes is illustrated in Figure 12-1. For mode 50h
(640x400 256 colors), each scan line occupies 160 bytes in each plane. Four consecu¬

tive pixels are addressable at each byte address (one byte per plane). Less than 64
kbytes of display memory are required per plane in these modes, so no display mem¬
ory paging is required. To learn more about this memory organization, see the section
titled 256 Color Drawing later in this chapter.

7 6 5 4 3 2 1 0

r_
—1-1 'IT rtn i-1-1—|

1 Pixel 0 , „ 1
,r^ 1 1 Pix^r H-1

a Pixel 2 ' ' ' |-»

LLi Pixel 3 ^ ' \T
_J_L_J_1_1_

Four pixels at each addressable byte
one pixel in each plane

J! i wmmmmmmmmm

r

_4

1 KJ U

Figure 12-1. Memory organization—mode 50h

Expanded Register Set

A bank of extended registers internal to the 510/520 chip set is used to access the
advanced features of the adapter. The extended register bank is mapped at the same
I/O address as the Sequencer, using the previously unused indexes 6 and 80h-FFh.

Cirrus 510, 520—MaxLogic MaxVGA 297

Most of the registers in the extended bank have read and write capability. Table 12-2
shows the extended register set of the 510/520 chip set.

When accessing the extended register bank, it is recommended that the following
rules be observed:

• Before the first access to extended registers, enable them by writing the proper
password value (ECh) to index 6 of the Sequencer (address 3C4h).

• Disable access to the extended registers whenever possible by writing the proper
password value (CEh) to index 6 of the Sequencer (address 3C4h).

• Always restore the extended registers when done, or at least set them to “non-dis-
ruptive” values (generally zero). BIOS mode select does not always reset the
extended registers.

Different password values are used for the newer 610/620 chip set. The proper
unlocking password value can be obtained for either chip set from the Identification
Register (CRTC index lFh). CRTC index OCh must first be cleared to zero before the
Identification Register is accessed. To learn more about the Identification register and
Extension Control register see section titled Detection and Identification at the end of
this chapter.

Table 12-2. Extended registers—Cirrus 510, 520

I/O Address Index Register
3D4h/3B4h lFh Identification (value ECh XORed with index OCh in CRTC)

(read only)
3C4h 06h Extension Control

80h Miscellaneous Control 1
81h Graphics 1 position
82h Graphics 2 position
83h Attibute Controller Index
84h Write Control
85h Timing Control
86h Bandwidth Control
87h Miscellaneous Control 2
88h Horizontal synch skew
89h CGA, HGC Font Control
8Ah Reserved
8Bh Screen B preset row scan
8Ch Screen B start address high
8Dh Screen B start address low
8Eh Version code (read only)
8Fh Version code (read only)
90h Vertical retrace start
91h Vertical retrace end

298 Advanced Programmer’s Guide to Super VGAs

Table 12-2. Extended registers—Cirrus 510, 520 (continued)

I/O Address Index Register
92h Lightpen high
93h Lightpen low
94h Pointer pattern address high
95h Cursor height adjust

96h Caret width
97h Caret height
98h Caret horizontal position high

99h Caret horizontal position low

9Ah Caret vertical position high
9Bh Caret vertical position low
9Ch Pointer horizontal position high
9Dh Pointer horizontal position low
9Eh Pointer vertical position high
9Fh Pointer vertical position low
AOh Graphics controler memory latch 0
Alh Graphics controler memory latch 1
A2h Graphics controler memory latch 2

A3h Graphics controler memory latch 3

A4h Clock select
A5h Cursor (caret and pointer) attribute
A6h Internal switch source
A7h Status switch control
A8h NMI mask 1

A9h NMI mask 2
AAh Reserved
ABh NMI status 1 (read only)
ACh NMI status 2 (read only)

ADh 256-color mode page control
AEh NMI data cache (four 24-bit words) (read only)

AFh Active adapter state
BOh - BFh Scratch registers
COh - FFh Reserved

Note: Extension registers 80h to FFh must be enabled for write using Extension Control.

Cirrus 510, 520—Max Logic MaxVGA 299

Programming Examples

256-Color Drawing

Drawing algorithms for these modes are unlike any of the drawing algorithms used
for other video boards. A separate directory of the diskette, named 256COLCI, contains
drawing routines for this mode. Due to the overall length of these examples, only
examples Write__Pixel and Read_Pixel are shown in the text (Listings 12-1 and 12-2).

Listing 12-1. File: 256COLCI\WPIXEL.ASM

;* . *

;* File- WPIXEL.ASM - A Bit Pixel Write - Alternating planes *
;* Routine: _Write_Pixel *
;* Arguments: X, Y, Color *
;* *

INCLUDE VGA.INC

EXTRN Graf_Seg:WORD
EXTRN Select_Page:NEAR
EXTRN Video_Pitch:WORD

PUBLIC _Write_Pixel
PUBLIC Select_Plane

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg X EQU WORD PTR [BP+4]
Arg_Y EQU WORD PTR CBP+L]
Arg_Color EQU BYTE PTR [BP+A]

_Write Pixel PROC NEAR
PUSH BP ;Preserve
MOV BP, SP ;Preserve

PUSH ES ; Preserve
PUSH DS
PUSH DI
PUSH SI

; Convert x,y pixel address to Offset and

BP
stack pointer

segment and index registers

Plane enable

MOV AX,Arg Y
MUL CS:Video Pitch
MOV CX,Arg X
SHR CX,1
SHR CX,1
ADD AX, CX
MOV DS,CS:Graf Seg
MOV DI, AX

Fetch y coordinate
multiply by width in bytes
add x/4 to compute offset

;Put new address in DS:SI

MOV AX,Arg_X ;Fetch x coordinate
CALL Select_Plane ;Enable plane according to X

; Set pixel to supplied value

MOV AL/Arg_Color
MOV [DI],AL

; Clean up and return

;Fetch color to use
;Set the pixel

300 Advanced Programmer’s Guide to Super VGAs

POP SI ;Restore segment and index
POP DI
POP DS
POP ES

MOV SP, BP ;Restore stack pointer
POP BP ;Restore BP
RET

Pixel ENDP

Plane_Enable *
Enable plane according to x coorinate (plane = x mod A) *

Entry: AL - x coordinate * **

Select_Plane
PUSH
PUSH
PUSH

PROC NEAR
AX
CX
DX

;Convert plane number to mask
AND
MOV
MOV
MOV
SHL

AL , 3h
CH , AL
CL, AL
AH, Dlh
AH, CL

POP
POP
POP
RET

Select_Plane

;Enable plane for write
MOV DX,SEQUENCER_PORT
MOV AL,PLANE_ENABLE_REG
OUT DX,AX
;Select plane for read
MOV DX,GRAPHICS_CTRL_PORT
MOV AL,READ_PLANE_REG
MOV AH,CH
OUT DX,AX
;Cleanupa and return

DX
CX
AX

ENDP

(for write enable)
;Compute x mod A to get plane number
;Save plane number for later
;Use plane number to get rotate count
;Convert plane number to mask

;Fetch address of sequencer
;Index of plane enable register
;Enable plane for write

;Fetch address of graphics controller
;Index of read plane enable register
;Fetch plane number
;Select plane for read

TEXT ENDS
END

Listing 12-2. File: 256COLCI\RPIXEL.ASM

**
* *

* File: RPIXEL.ASM - fl Bit Packed Pixel Read *
* Routine: _Read_Pixel *
* Arguments: X, Y *
* Returns: Color in AX *
* *

**

INCLUDE VGA.INC

EXTRN
EXTRN
EXTRN
EXTRN

Graf_Seg:WORD
Select Page:NEAR
Video_Pitch:WORD
Select_Plane:NEAR

PUBLIC _Read_Pixel

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Arg X
Arg_Y

EQU WORD PTR [BP+<]
EQU WORD PTR [BP+L]

Cirrus 510, 520—MaxLogic MaxVGA 301

.xel PR0C NEAR
PUSH BP
MOV BP,SP

PUSH ES
PUSH DS
PUSH DI
PUSH SI

;Preserve BP
;Preserve stack pointer

;Preserve segment and index registers

; Convert x,y pixel address to Offset and Plane number

MOV AX/Arg_Y
MUL CS:Video Pitch
MOV CX,Arg X
SHR CX,1
SHR CX,1
ADD AX, CX
MOV DS,CS:Graf Seg
MOV SI / AX

Fetch y coordinate
multiply by width in bytes
add x/A to compute offset

;Put new address in DS:SI

MOV AX,Arg_X ;Fetch x coordinate
CALL Select_Plane ;Enable plane for read

; Fetch the pixel value

MOV AL,[SI] ;Get byte of video memory
XOR AH/AH ;Clear upper byte (for return)

; Cleanup and return

POP SI ; Restore
POP DI
POP DS
POP ES

MOV SP,BP ; Restore
POP BP ;Restore
RET

Read_Pixel ENDP

segment and index registers

stack pointer
BP

TEXT ENDS
END

Graphics Cursor Control

The Cirrus 510,520 VGA chip set includes hardware support for a graphics cursor
that can significantly reduce the processor overhead required for cursor control. Its
usefulness is limited, however, since the hardware cursor cannot be used in 256-color
modes. Figure 12-2 illustrates the operation of the hardware graphics cursor. Seven
registers in the extended register bank are involved in the definition and control of the
graphics cursor.

Advanced Programmer’s Guide to Super VGAs

Index 9Ch Index 9Dh

ZED EL I 1.1-1-1
Index 9Eh Index 9Fh

MM 1TT1

Black (when masks = 00)
Tranparent (when masks =10)
Inverted (when masks =11)
White (when masks = 01)

Index A5h

Enable Cursor

+31
+32
+33
+34

+63

(5,0) W w (5,6)
(0,1) (1.1) (2,1) (3.D

(0,31) 1 (1,31) 1 (2,31) 1 (3,31)

Cursor Masks Stored
Plane 1 Plane 2 Plane 3

AND (0,0) AND(I.O) AND(2,0) AND(3,0)
AND(0,1) AND(1,1) AND(2,1) AND(3,1)
AND(0,2) AND(1,2) AND(2,2) AND(3,2)

AND(0,31) AND(1,31) AND(2,31) AND(3,31)
XOR(0,0) XOR(1,0) XOR(2,0) XOR(3,0)
XOR(0,1) XOR(1,1) XOR(2,1) XOR(3,1)
XOR(0,2) XOR(1,2) XOR(2,2) XOR (3,2)

XOR(0,31) XOR(1,31) XOR(2,31) XOR(3,31)

Figure 12-2. Hardware cursor registers

Hardware cursors operate differently than software cursors. Since the cursor is
drawn as an overlay on the screen, there is never any need to save background data in
the cursor area. The cursor is defined by two monochrome bitmaps, or masks, which
correspond to the conventional AND and XOR masks used for software cursors (for
more on software cursors see our previous text, Programmer’s Guide to the EGA/VGA).

Cursor pattern data must be loaded into offscreen display memory in a scrambled
format. Figure 12-2 shows cursor pattern locations. Each row of cursor, for each mask,
is defined by four bytes of pattern (32 bits for each 32-pixel row of the cursor), each
byte in a separate plane. Each byte defines 8 pixels, with the most significant bit corre¬
sponding to left-most pixel. Bytes for AND mask are in the first 32 bytes (of each plane),
and for XOR mask in next 32 bytes (of each plane). Each byte in Figure 12-2 is labeled
as (column, row) to indicate which byte in the cursor it controls.

Cirrus 510, 520—MaxLogic MaxVGA 303

The programming example in Listing 12-3 illustrates how to define cursor shape and
how to move the cursor around the screen. Three procedures are provided.

Set_Cursor is used to store AND and XOR masks into off-screen display memory,
and how to enable the cursor display.

Move_Cursor is used to determine where the cursor is displayed.
Remove__Cursor disables the cursor display.

Listing 12-3. File: CIRRUS\HWCURSOR.ASM

j******************************
* *
* File: HWCURSOR.ASM *
* Description: This module contains procedures to demonstrate use of a *
* hardware cursor. It defines cursor shape, moves *
* cursor around the screen, and removes cursor. *
* *

* Entry Points: *
* *

* _Set_Cursor *
* _Move_Cursor *
* _Remove_Cursor *

* Uses:
_Select_Page
_Graf_Seg
_Video_Height
_Video_Pitch

- *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Video_Height:WORD
EXTRN Video_Colors:WORD
EXTRN _BitBlt:NEAR
EXTRN Select_Page:NEAR

PUBLIC _Set_Cursor
PUBLIC _Move_Cursor
PUBLIC _Remove_Cursor

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Common cursor definitions

* *

* _Set_Cursor(AND_Mask, X0R_Mask, FG_Color, BG_Color) *
* This procedure saves the two masks in the offscreen memory *
* according to Video 7 schema. Colors are ignored. *
* *

* Entry: *
* AND_Mask - 4x32 bytes with AND mask *
* X0R_Mask - 4x32 bytes with XOR mask *
* BG_Color - Foreground color *
* FG_Color - Background color *
* *

Arg_AND_Mask EQU WORD PTR [BP+4] ;Formal parameters
Arg_XOR_Mask EQU WORD PTR [BP+b]

Advanced Programmer’s Guide to Super VGAs

Arg_BG_Color
Arg_FG_Color

EQU
EQU

BYTE PTR [BP+fi]
BYTE PTR [BP+1D]

_Set_Cursor PROC NEAR
; Jump to software cursor routines if 25L-color mode

CMP
JNE
JMP

Set HW Cursor:

WORD PTR CS:Video_Colors, 25L
Set_HW_Cursor
Set_SW_Cursor

; Save registers

PUSH BP
MOV BP,SP

;Standard high-level entry

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Enable all planes and all bits for write

MOV DX,SEQUENCER_PORT ;Address of Sequencer
MOV AX,PLANE ENABLE REG+DFODh
OUT DX, AX ;Enable all planes for write
MOV DX,GRAPHICS CTRL PORT ;Address of Graphics controller
MOV AX,SR ENABLE_REG+ODDDh ;Index and value for Set/Reset
OUT DX, AX ;Disable set/reset
MOV AX,BIT_MASK REG+DFFOOh ;Index and value for bit mask reg
OUT DX, AX ;Enable all fl bits for write

; Set offset for cursor mask location

MOV DX,SEQUENCER_PORT ;Address of extended register bank
MOV AL,R4h ;Index of pointer pattern address :
MOV AH,OFFh ;Indicate last pointer
OUT DX, AX ;Set the new address

; Copy masks to off-screen memory

MOV ES,CS:Graf Seg ;Segment of display memory
MOV DI,-L< ;Offset is LA bytes before end of]
MOV SI,Arg_AND_Mask ;Address of AND mask

MOV CX, 32 ;Initialize counter
>_Loop:
MOV AX,DlD2h ;Enable first plane for write
OUT DX, AX
MOV BH,DS:[SI + D] ;Fetch next value of AND mask
MOV ES:[DI],BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI + 1] ;Fetch next value of AND mask
MOV ES:[DI],BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI + 2] ;Fetch next value of AND mask
MOV ES:[DI],BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI + 3] ;Fetch next value of AND mask
MOV ES:[DI],BH ;Place it in display memory
INC DI
ADD SI,A
LOOP Copy_AND_Loop

MOV CX, 32 ;Initialize counter
MOV SI,Arg_XOR_Mask ;Fetch pointer to XOR mask

l Loop:
MOV AX,DlD2h ;Enable first plane for write

Cirrus 510, 520—MaxLogic MaxVGA 305

OUT DX, AX
MOV BH,DS:[SI+0] ;Fetch next value of XOR mask
MOV ES:[DI],BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI+1] ;Fetch next value of XOR mask
MOV ES:[DI3,BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI+5] ;Fetch next value of XOR mask
MOV ES:[DI],BH ;Place it in display memory
SHL AH, 1 ;Enable next plane
OUT DX, AX
MOV BH,DS:[SI + 3] ;Fetch next value of XOR mask
MOV ES:[DI],BH ;Place it in display memory
INC DI
ADD SI, A
LOOP Copy_X0R_Loop

; Set cursor postion at x = D and y=last_ line+1

MOV DX, -3C<h ;Addres s of extended registers
MOV AL, -3Ch ;Index of cursor x
XOR AH, r AH ;Value
OUT DX, -AX ; Set hi -x to □
INC AL
OUT DX, -AX ;Set lo -x to □
INC AL
MOV BX, -CS:Video Height ;Fetch number of last _line+l
MOV AH, -BH
OUT DX, -AX ;Set hi -y
INC AL
MOV AH, -BL
OUT DX, -AX ;Set lo -y

; Enable the cursor (will be below last on-screen lin e)

MOV DX, - 3C<h ;Addres s of extended registers
MOV AL, -OASh ;Index of cursor attr reg
OUT DX, - AL ; Select cursor attr reg
INC DX
IN AL, DX ; Fetch current value
OR AL, - ADh ;Turn c ursor on
OUT DX, - AL

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

Set_Cursor ENDP

* *

* _Move_Cursor(Curs_X, Curs_Y) *
* This procedure is used to move the cursor from one *
* location to another, by setting new cursor position registers. *
* *

Arg_Curs_X EQU WORD PTR [BP+<] ;Formal parameters
Arg_Curs_Y EQU WORD PTR [BP+fc>]

_Move_Cursor PROC NEAR
; Jump to software cursor routines if PBt-color mode

306 Advanced Programmer’s Guide to Super VGAs

CMP WORD PTR CS:Video Colors,P5L
JNE Move_HW_Cursor
JMP Move_SW_Cursor

Move_HW_Cursor:

; Save registers

POSH BP
MOV BP,SP
SUB SP,4

PUSH SI
PUSH DI
PUSH ES
PUSH DS

; Set cursor position

MOV DX,3C4h
MOV AL,qCh
MOV BX,Arg_Curs_x

MOV AH,BH
OUT DX,AX
INC AL

MOV AH/BL
OUT DX,AX
INC AL

MOV BX,Arg_Curs_y
MOV AH,BH
OUT DX,AX
INC AL

MOV AH,BL
OUT DX,AX

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP,BP
POP BP
RET

Move_Cursor ENDP

;Standard high-level entry

;Save registers

;Address of extended registers
;Index of first cursor pos reg
;Fetch cursor x

;Set hi-x

;Set lo-x

;Fetch cursor y
;Set hi-y

;Set lo-y

;Restore segment registers

;Restore stack

* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* by disabling cursor display. *
* *

_Remove_Cursor PROC NEAR
: Jump to software cursor routines if E5L-color mode

CMP WORD PTR CS:Video_Colors,25L
JNE Remove_HW_Cursor
JMP Remove_SW_Cursor

Remove_HW_Cursor:

; Save registers

PUSH
MOV

BP
BP, SP

;Standard high-level entry

Cirrus 510, 520—MaxLogic MaxVGA 307

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Disable the cursor

MOV DX,3C4h
MOV AL,DA5h
OUT DX/AL
INC DX
IN AL,DX
AND AL/NOT flOh
OUT DX,AL

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP,BP ;Restore stack
POP BP
RET

Remove_Cursor ENDP

Software Cursor Routines

;Address of extended registers
;Index of cursor attr reg
;Select cursor attr reg

;Fetch current value
;Turn cursor off

Arg_AND_Mask EQU WORD PTR [BP+<] ;Formal parameters
Arg_XOR_Mask EQU WORD PTR [BP+L]
Arg_BG_Color EQU BYTE PTR [BP+fl]
Arg_FG_Color EQU BYTE PTR [BP+10]

308 Advanced Programmer’s Guide to Super VGAs

:ursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP/SP
SUB SP, 5

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Fill with background

MOV CX,0 ;Set x to start of save area
MOV AX,CS:Video_Height ;Set y to below last line on the screen
;!!!!!!!!!!!! The next line should be removed !!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!! if you do not want to see the save !!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!! regions on the screen !!!!!!!!!!!!!!!!!!!
MOV AX,□
MOV CS:Save_Area_y,AX
MUL CS:Video_Pitch
ADD AX,CX
ADC DX/0

MOV DI,AX
MOV CS:Save_0ffset,AX
MOV ES,CS:Graf_Seg
MOV AL,DL
CALL Select_Page

MOV DX/CUR_HEIGHT
MOV BX,CS:Video_Pitch
SUB BX,CUR_WIDTH*2

MOV AL,Arg_BG_Color
MOV AH,AL

Fill_Background:
MOV CX/CUR_WIDTH
REP STOSW
ADD DI/BX

DEC DX
JG Fill_Background

; Change foreground bits for the

MOV DL/CUR_HEIGHT
MOV DH/Arg_FG_Color
MOV DI/CS:Save_Offset
MOV SI,Arg_AND_Mask
ADD BX,CUR_WIDTH

Set_AND_FG:
LODSW
XCHG AL/AH
MOV CX,lb

AND_Bit_Loop:
SHL AX/1
JNC AND_Done
MOV ES:[DI],DH

AND_Done:
INC DI
LOOP AND_Bit_Loop
XOR BX/flOOOh
JS Set_AND_FG

ADD DI,BX
DEC DL
JG Set_AND_FG

Make visible for demo !! ! ! !
Save y for other cursor procs

multiply y by width in bytes
add x coordinate to compute offset
add overflow to upper lb bits

Set DI to save area offset
Save offset for later
Set segment to graphics segment
Copy page number into AL
Select page for save area

Number of scanlines to do
Calculate scan-to-scan increment

;Fetch background color
;Copy color into AH

; Number of words of AND & XOR mask
;Fill next row of AND and XOR masks
;Point to next scanline (assumes in
;one page!!!).

;Check if all scanlines done
;Go do next scanline if not done

AND mask save area

;Initialize raster counter
;Fetch foreground color
;Get pointer to save area
;Fetch pointer to AND-mask section
;Adjust scan-to-scan increment

;Fetch next lb bits from the mask
;Swap byte to compensate for fiOxx mem
;Number of bits to do

;Move next bit into carry
;Do not change if bit not set
;Set pixel to fg color if bit set

; Update pointer
;If not all lb bits done do next bit
;Toggle high bit of BX to check if
; both words have been done

;Point to next scanline
;Check if all scanlines done
;Go do next scanline if not done

; Change foreground bits for the XOR mask save area

Cirrus 510, 520—MaxLogic MaxVGA 309

MOT DL,COF_HEIGHT
MOV DH/Arg_FG_Color
MOV DI, CS:Save_Offset
ADD DI,XOR_OFFSET
MOV SI,Arg_XOR_Mask

Set_XOR_FG:
LODSW
XCHG AL,AH
MOV CX,lb

XOR_Bit_Loop:
SHL AX,1
JNC XOR_Done
MOV ES : [DI3,DH

XOR_Done:
INC DI
LOOP XOR_Bit_Loop
XOR BX,flDDOh
JS Set_XOR_FG

ADD DI,BX
DEC DL
JG Set_XOR_FG

;Initialize raster counter
;Fetch foreground color
;Get pointer to save area
;Advance pointer to XOR-mask section
;Fetch pointer to XOR-mask

;Fetch next It bits from the mask
;Swap byte to compensate for flQxx mem
;Number of bits to do

;Move next bit into carry
;Do not change if bit not set
;Set pixel to fg color if bit set

;Update pointer
;If not all It bits done do next bit
;Toggle high bit of BX to check if
; both words have been done

;Point to next scanline
;Check if all scanlines done
;Go do next scanline if not done

; Set 'last cursor' to save area (this is needed for first
; call to Move_Cursor procedure, since first thing done in there
; is restore area under 'last cursor' position)

MOV AX,CS:Save_Area_y ;Fetch save area y
MOV CS:Last_Cursor_y,AX ;Set last cursor y
MOV CS:Last_Cursor_x,CUR_OFFSET ;Set last cursor x

; Clean up and return

POP DS ;Restore segment registers
POP ES y
POP DI
POP SI

MOV SP, BP
POP BP
RET

Set_SW_Cursor ENDP

Restore stack

*

* _Move_Cursor(Curs_X, Curs_Y) *
* This procedure is used to move the cursor from one *
* location to another. The cursor move is performed using the *
* following steps: *
* 1 - Check if new cursor is outside 'cursor block' *
* B - If outside 'cursor block' restore area under *
* previous block. *
* Save area under new block. *
* 3 - Copy saved are into cursor build area (both save and*
* build areas are normally off-screen). *
* A - Combine AND and XOR masks with build area. *
* 5 - Copy build area to where new cursor should be (this *
* in most cases overwrites the old cursor). *
* The 'build area' is a rectangle twice the size of the cursor. *
* It is used to eliminate flicker for small movement of the *
* cursor, since cursor may not need to be erased if it moves *
* only by a few pixels. *
* *
* Entry: *
* Curs_X - Position of the new cursor *
* Curs_Y *
* *

Arg_Curs_X EQU WORD PTR [BP+43 ;Formal parameters

310 Advanced Programmer’s Guide to Super VGAs

Arg_Curs_Y EQU WORD PTR CBP+b]

Curs_X EQU WORD PTR [BP-5]
Curs_Y EQU WORD PTR [BP-4]

Move_SW_Cursor PROC NEAR
PUSH BP -.Standard high-level entry
MOV BP,SP
SUB SP,4

POSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Check if new area needs to be saved

MOV AX,Arg Curs x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ;Round to nearest buffer block

MOV BX,Arg Curs y ;Fetch new y
AND BX,NOT(CUR_HEIGHT-1) ;Round to nearest buffer block

CMP
JNE

AX,CS:Last_Cursor_x
Cursor_New_Block

;Check if x moved into next block

CMP
JNE
JMP

BX,CS:Last_Cursor_y
Cursor_New_Block
Build_Cursor

;Check if y moved into next block

; For new block call to remove old cursor, then use_BitBlt
; to save block under next cursor location into the save area

Cursor_New_Block:
CALL _Remove_Cursor ;Restore last location
MOV AX,Arg Curs x ;Fetch new x
AND AX,NOT(CUR_WIDTH-1) ;Round to nearest buffer block

MOV CS:Last_Cursor_x,AX ;Save as 'last x'
MOV AX,Arg Curs y ;Fetch new y
AND AX,NOT(CUR_HEIGHT-1) ;Round to nearest buffer block

MOV CS:Last_Cursor_y,AX ;Save as 'last y'

MOV AX,E*CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,E*CUR WIDTH
PUSH AX
PUSH CS:Save Area_y ;Push x and y of destination
MOV AX,CUR OFFSET
PUSH AX
PUSH CS:Last_Cursor_y ;Push x and y of source
PUSH CS:Last Cursor_x
CALL BitBlt
ADD SP, IE

; Use _BitBlt to copy save area into build area

Build_Cursor:
MOV AX,E*CUR_HEIGHT
PUSH AX
MOV AX,E*CUR_WIDTH
PUSH AX
PUSH CS:Save_Area_y
MOV AX,MIX_OFFSET
PUSH AX
PUSH CS:Save_Area_y
MOV AX,CUR_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,IE

; Mix AND & XOR masks into build area (this will work only if all of
; the save area is in the same segment!!!)

;Push width and height

;Push x and y of destination

;Push x and y of source

Cirrus 510, 520—MaxLogic MaxVGA

MOV CX,Arg_Curs_x
AND CX/CUR_WIDTH-1
ADD CX,MIX_OFFSET
MOV AX,Arg_Curs_y
AND AX,CUR_HEIGHT-1
ADD AX,CS:Save_Area_y
MUL CS:Video_Pitch
ADD AX/CX
ADC DX,D

MOV DI,AX
MOV AL/DL
CALL Select_Page
MOV ES,CS:Graf_Seg
MOV DS,CS:Graf_Seg

MOV DL,CUR_HEIGHT
MOV SI,CS:Save_Offset
MOV BX,CS:Video_Pitch
SUB BX,CUR_WIDTH

Mix_Lines:
MOV CX/CUR_WIDTH

Mix_Bytes:
LODSB
MOV AH,[DI]
AND AL,AH
MOV AH/CSI+CUR_WIDTH-1]
XOR AL/AH
STOSB
LOOP Mix_Bytes

ADD DI/BX
ADD SI/BX
DEC DL
JG Mix_Lines

Fetch x
Keep 'odd' bits
Add 'base x' of save area
Fetch y
Keep 'odd' bits
Add 'base y' of save area

multiply y by width in bytes
add x coordinate to compute offset
add overflow to upper It bits

Save offset
Select page

Set both segments to video buffer

jlnitialize raster counter
;Get pointer to AND & XOR masks
;Compute scan-to-scan increment

;Fetch cursor width

;Fetch next byte of AND mask
;Fetch next byte of destination
;Combine mask with destination
;Fetch next byte of XOR mask
;Combine with previous result
;Place result into destination

;Point to next scanline
;Point to next scanline
;Check if all scanlines done
;Go do next scanline if not done

; Use _BitBlt procedure to copy build area to screen (and erase old
; cursor with the new cursor block).

MOV AX,E*CUR_HEIGHT
PUSH AX
MOV AX,E*CUR_WIDTH
PUSH AX
PUSH CS:Last_Cursor_y
PUSH CS:Last_Cursor_x
PUSH CS:Save_Area_y
MOV AX,MIX_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,1E

; Push width and height

;Push x and y of destination

;Push x and y of source

; Clean up and return

POP DS
POP ES
POP DI
POP SI

;Restore segment registers

MOV SP,BP ;Restore stack
POP BP
RET

Move_SW_Cursor ENDP

***#*###4c###3lc##3l'*#*:tC]leAe]tC3lC3lC)le3tejt:]l':te

*
*

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* and to restore the screen to its original appearance *

312 Advanced Programmer’s Guide to Super VGAs

Remove_SW_Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP / SP

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; use BitBlt to restore area under the last cursor location

MOV AX,2*CUR HEIGHT ;Push width and height
PUSH AX
MOV AX/2*CUR WIDTH
PUSH AX
PUSH CS:Last_Cursor_y ;Push last position of cursor
PUSH CS:Last_Cursor_x
PUSH CSiSave Area y ;Push x and y of destination
MOV AX/CUR OFFSET
PUSH AX
CALL BitBlt
ADD SP,12

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP / BP ; Restore stack
POP BP
RET

Remove_SW_Cursor ENDP

TEXT ENDS
END

Detection and Identification

The Cirrus BIOS contains a signature code (ASCII ’CL’) at address C000:0006. To test
for the presence of a Cirrus BIOS, code similar to the following can be used:

; Check of Cirrus based BIOS
MOV AX,0CDD0h ;Fetch segment of ROM BIOS
MOV ES ,AX
CMP WORD PTR ES:[b],'CL' ;Is Cirrus signature present?
JNE

Cirrus_BIOS_Found:
Not_Cirrus_BI0S ;...No, quit

An alternate test can be used if the BIOS is not accessible, or if the BIOS does not
conform to Cirrus recommendations. Extended registers addressed at 3C4h must first
be enabled for writing by writing an unlocking password to the Extention Control reg¬
ister (index 6). To disable access to extended registers, a locking password must be
written to the Extension Control register. All other values are ignored by this register.
When the extended register is read back, bits D7 through D1 are returned as 0, and bit
DO returns the lock/unlock status (0 = locked, 1 = unlocked).

The unlock password value can be obtained by first clearing the Start Address regis¬
ter (CRTC index OCh) to zero, then reading the Identification register (CRTC index

Cirrus 510, 520—MaxLogic MaxVGA 313

lFh). This code can be used to detect the presence of a Cirrus VGA chip. For chip set
510/520 this value is ECh, and for chip set 610/620 it is CAh. Video Seven boards that are
based on Cirrus chips use a value of EAh. The lock password can be derived from the
unlock password by reversing the nibbles (or rotating by 4).

To verify the presence of a Cirrus VGA chip, the following code can be used:

Cirrus_Found:

; Fetch
X0R
MOV
MOV
PUSH
; Clear
MOV
OUT
INC
IN
MOV
MOV
PUSH
X0R
OUT
DEC

address of CRT controller
AX,RX
ES, AX
DX,ES:[<L3h]
DX

Start Address register in CRTC (index
AL,OCh
DX, AL
DX
AL,DX
AH, AL
AL,OCh
AX
AL, AL
DX, AL
DX

;Segment of BIOS data area

;Fetch CRTC address
;Save for later

;Index of Start Address register
;Select Start Address register

;Get current value of register
;Save to be restored later

;Value for Start Address reg
;Clear Start Address register

; Fetch Unlock Password
MOV AL,lFh
OUT DX, AL
INC DX
IN AL,DX
MOV AH, AL
; Enable extended registers
MOV DX,3C4h
MOV AL,OLh
OUT DX, AL
INC DX
MOV AL, AH
OUT DX, AL
IN AL,DX
CMP AL, 1
JNE Not_Cirrus
; Disable extended registers
MOV AL, AH
ROR AL, 1
ROR AL, 1
ROR AL, 1
ROR AL, 1
OUT DX, AL
IN AL,DX
OR AL, AL
JNE Not_Cirrus

POP AX
POP DX
OUT DX, AX

;Index of Identification reg
;Select ID registers

;Read Unlock Password
;Save for later

;Address of Sequencer
;Index of Extension Control reg
;Select Extension Control reg

;Fetch Unlock Password
;Enable extended registers
;Read back Extension Reg
;Is it read back as 1?
;...No, canot be cirrus

;Fetch Unlock Password
;Compute Lock Password

;Lock extended registers
;Read Extended Control reg
;Is it zero?
;...No, cannot be cirrus

;Fetch original CRTC value
;Fetch address of CRT
;Restore registerC

13

Chips and Technologies
82C452

Boca 1024VGA

wiir

315

316 Advanced Programmer’s Guide to Super VGAs

Introduction

Boca Research has developed 1024VGA, an enhanced VGA-compatible display
adapter based on the Chips and Technologies 82C452 VGA chip. This chip has a

number of advanced features, including hardware support for a graphics cursor and a
memory paging mechanism that permits dual read-writable memory windows. It also

supports emulation modes for compatibility with EGA, CGA, MDA and Hercules text

and graphics modes. The board will support resolutions as high as 1024x768 with 16
colors or 640x480 with 256 colors.

BOCA 1024VGA includes a 16-bit bus interface and can be used in either 8- or 16-bit
card slots. It includes 512K of onboard display memory. Only analog video output is
supplied (TTL displays are not supported).

New Display Modes

Table 13-1 lists the enhanced display modes that are supported by the 1024VGA. Any
of these modes can be selected by issuing a BIOS Mode Select command.

Table 13-1. Enhanced modes—1024VGA

Mode Type Resolution Colors Display Type
60h Text 132 col x 25 rows 16 VGA
6lh Text 132 col x 50 rows 16 VGA
6Ah Graphics 800 x 600 16 SuperVGA
72h Graphics 1024x768 16 XL
78h (1) Graphics 640 x 400 256 VGA
79h Graphics 640 x 480 256 VGA
7Ah (1) Graphics 720 x 540 256 VGA

Note: These modes are not documented in 1024VGA manual.

Memory Organization

For all extended display modes of the 1024VGA, display memory organization is
closely patterned after the organization used in standard IBM VGA modes.

The 1024VGA includes a powerful display memory paging mechanism that is
needed in some display modes to make the entire display memory accessible to the
processor. Display memory paging is described in detail later in this chapter.

Chips and Technologies 82C452—Boca 1024VGA 317

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line, or lines
per screen, is increased. Display memory is organized as shown in Figure 5-1 (see
Chapter 5).

Modes 6Ah, 72h - 800x600 and 1024x768 (16 Colors)

Display memory organization for modes 6Ah and 72h conforms closely to that of
VGA mode 12h, except that the number of pixels in a scanline and the number of scan¬
lines is increased. In mode 72, memory can either be addressed as one 128K page, or
as two 64K pages. A detailed description and programming examples for this type of
mode, using two 64K pages, are shown in Chapter 7.

Mode 79h - 640x480 (256 Colors)

For this mode, display memory is organized similarly to VGA mode 13h. See Chapter
8 for a detailed description and programming examples.

New Registers
Registers internal to the Chips and Technologies 82C452 VGA chip may be used to

enable enhanced features of the board. Some of the added registers are not often used
by programmers; we have included here a list of those registers which may be interest¬
ing or useful in typical drawing operations. Table 13-2 contains a list of new registers
which are mentioned in this chapter.

Table 13-2. New Registers

Address Index
46E8h

94h

103h
104h
3D4h/3B4h 22h

24h

Description
Setup Control Register for AT based boards
Setup Control Register for Micro Channel boards
Extended Enable Register (in Setup mode only)

Global ID (in Setup mode only)
CPU Data Latch or Color Compare from last read

Attribute controller flip/flop

EXTENDED REGISTER BANK

3D6h 00 Chips Version
01 Dip Switch
02 CPU Interface

318 Advanced Programmer’s Guide to Super VGAs

Table 13-2. New Registers (continued)

Address Index Description
03 ROM Interface
04 Memory Mapping

05 Sequencer Control
06 DRAM Interface
08 General purpose

09 General purpose
OAh Cursor Page

OBh Memory Paging Register
OCh Start Address Top
ODh Auxiliary Offset

OEh Text Mode

lOh Memory Page 1 Base Address

1 lh Memory Page 2 Base Address
20h Sliding Unit Delay
21h Sliding Hold A

22h Sliding Hold B
23h Sliding Hold C

24h Sliding Hold D

27h Force Sync State
28h Video Interface

29h External Sync Control

2Ah Frame Interrupt Count
2Bh Default Video

2Ch Force Horizontal High
2Dh Force Horizontal Low

2Eh Force Vertical High
2Fh Force Vertical Low

30h Graphics Cursor Start Address High
31h Graphics Cursor Start Address Low
32h Graphics Cursor End Address

33h Graphics Cursor X Position High

34h Graphics Cursor X Position Low

35h Graphics Cursor Y Position High
36h Graphics Cursor Y Position Low
37h Graphics Cursor Mode

38h Graphics Cursor Plane Mask
39h Graphics Cursor Color 0
3Ah Graphics Cursor Color 1

All of the new registers can be both written and read by the processor. Register bits
that are marked as reserved must have their previous contents preserved when the reg-

Chips and Technologies 82C452—Boca 1024VGA 319

ister is modified. The Setup Control register (I/O address 46E8h) and Extended Enable
register (I/O address 103h) are used to enable access to the extended register bank
(for details see the programming examples later in this chapter). Once access is ena¬
bled, extended registers are accessed via the standard VGA (index, data) pair mecha¬
nism, like so:

MOV DX,3Dth
MOV AL,Index
OUT DX,AL
INC DX
MOV AL,New_Data
OUT DX,AL

;Fetch I/O address
;Fetch index
; Select register
;Point to data address
;Fetch data value
;Write new data value

Care should be taken not to alter any registers in the extended register bank other
than those that are described here; otherwise the display mode may be corrupted. To
learn more about register access, see the programming examples in this chapter (in
particular Listing 13-1).

Setup Control Register (I/O Address 46E8H on AT, 94h on
Micro Channel)

The Setup Control register serves just two purposes: to enable or disable the VGA
adapter, or to enable access to the Extended Enable register which enables the
enhanced features of the board.

D7-D5 - reserved
D4 - Setup Mode (1 = Setup mode, 0 = Normal mode)
D3 - VGA Enable (1 = VGA enabled, 0 = VGA disabled)
D2-D0 - reserved

Setup Mode enables access to the Extended Enable register. Care must be taken to
disable setup mode immediately after accessing the Extended Enable register. If the
board is left in setup mode, improper operation may result.

Extended Enable Register (I/O Address 103h in Setup Mode)

D7 -Extended Registers Access Enable (1 = enabled)
D6 -Extended Registers Address Select

0 = I/O address 3D6 and 3D7
1 = I/O address 3B6 and 3B7

D5-D0 - reserved

Access Enable allows access to the extended register bank.
Address Select determines what address the extended register bank will be mapped

to.

320 Advanced Programmer’s Guide to Super VGAs

Global ID Register (I/O Address 104h in Setup Mode)

D7 to DO - Always read as A5h

This register is a read-only register which always reads back the value A5h to identify
it as a Chips product.

Extended Register Bank (I/O Address 3D6 or 3B6)

An index is written to this register to select which extended register will be accessed.
After the extended register has been selected it is accessed via I/O address 3D7 or 3B7.
The two most interesting groups of extended registers are the display memory paging
registers and the cursor control registers.

The display memory paging mechanism of the Chips and Technologies 82C452 chip
is one of the most flexible and powerful of any VGA chip. It permits two completely
independent memory pages to be selected, each with read and write capability, with
varying size and granularity. The page size is either 32K or 64K, and the granularity is as
low as 4K (see “Display Memory Paging” in Chapter 5 for more details on granularity
and page size).

Although this powerful paging scheme can be used to improve some drawing algo¬
rithms, the discussion and examples in this book assume 64K pages with 64K granular¬
ity for consistency.

Index OOh - CHIPS Version Register

D7 to D4 -Chip type

0 - 82C451
1 - 82C452
2 - Not used

3 - 82C453
DO to D3 -Silicon version

Index OBh - Memory Paging Register

D7-D3 - Not used
D2 - CPU address divide by 4 (256 color addressing)
D1 - Dual Page Enable (1 = enabled)

DO - 0 = Normal, 1 = Enable extended paging (256 color paging)

Dual Page Enable allows two pages of display memory to be opened simultaneously
at two different host memory addresses. This is extremely usefhl when data must be
moved from one page of display memory to another, which is frequently the case dur-

Chips and Technologies 82C452—Boca 1024VGA 321

ing BITBLT operations. Memory Page Base Address registers, described below, define
what section of display memory will be visible at each page. The Miscellaneous register

of the Graphics Controller defines what host address each page will be mapped at (see
Table 13-3).

Index lOh - Memory Page 1 Base Address

D7-D6 - reserved

D5-D0 - Page Address

This register defines the base address of the first page of display memory; in other

words, it defines what section of display memory will be visible to the host in page 1. In

256-color modes, the Memory Page 1 Base Address register contains address bits A14
through A19, and memory pages start on a 16K boundary. For 16-color modes, mem¬
ory pages start on 4K boundary, and the contents of this register are added to address

bits A12 through A19. This is illustrated in Figure 13-2 on page 317.

Memory page size is determined by the dual page enable bit, and by host window
size as indicated in Table 13-3. To learn more about this register see the programming
examples later in this chapter.

Index Uh - Memory Page 2 Base Address

D7-D6 - reserved

D5-D0 - Page Address

If dual map mode is enabled, this register defines the base address of the second
page of display memory. The contents of this register is similar to that of Memory Page

1 Base Address described in the previous section, but are used for display memory
page 2. To learn more about this register see the programming examples in this
chapter.

Table 13-3. Display memory page addresses

3CEh - Index 6

bits 3&2

00

01

10
00

Host Address Window

A000:0 - BFFF:F

A000:0 - AFFF:F

B000:0 - B7FF:F
B800:0 - BFFF:F

Page Size and Start Address

Page 1

64kB, A000:0

32kB,A000:0

64kB, B000:0
32kB, B800:0

Page 2

64kB, B000:0

32kB,A800:0

disabled
disabled

322 Advanced Programmer’s Guide to Super VGAs

OCh - Start Address Top

With more on board display memory than the standard VGA, the Start Address regis¬
ter of the CRT Controller is no longer sufficient to define a memory start address for
screen refresh. This register defines the topmost address bits for the start address. See
part one of the book for an explanation of the Start Address register.

D7-D2 - Reserved
DI-DO - Bits A17, A16 in the CRTC Start Address register

The Graphics Cursor

A hardware controlled graphics cursor can greatly simplify the task of cursor control
in graphical environments such as Microsoft Windows or GEM, where the cursor is
usually represented by a graphic icon such as an arrow or a crosshair. This cursor
operates as an overlay on the screen. Unlike a software controlled cursor, on-screen
display memory is not altered by the cursor. The 82C452 chip provides 32-bit wide
cursor support for all modes supported by the chip. This includes support for 16-color
and 236-color graphics modes, as well as for all text modes. Even in text modes that use
a 9-pixel wide character cell, cursor position can be controlled to single pixel
resolution.

Twelve registers are required to control the operation of the graphics cursor. They
are logically divided as follows:

• Cursor Mode Control (Index 37h) - Sets the operating mode of the graphics
cursor.

• Cursor Address (Index OAh, 30h, 31h, 32h) - The cursor pattern displayed on the
screen is defined by a data pattern, or bitmap, stored in off-screen display memory.
These registers define the start and end address for that pattern.

• Cursor Position (Index 33h through 36h) - These registers control the position of
the graphics cursor on the screen. X and Y coordinates are used to position the
cursor.

• Cursor Color (Index 38h, 39h and 3Ah) - Cursor shape is defined by a pattern in
two monochrome bit maps stored in off-screen memory. This pattern may be color
expanded to a foreground color and a background color when it is displayed. Cur¬
sor color registers define the foreground and background colors.

• Cursor definition and control is illustrated in Figure 13-1. To learn more about
programming the cursor registers see the programming examples at the end of this
chapter.

Chips and Technologies 82C452—Boca 1024VGA 323

Index 37h - Graphics Cursor Mode

D7-D5 - unused

D4 - Cursor Blink Rate (0 = 8 frames, 1 = 16 frames)
D3 - Cursor Blink Enable (1 = enabled)
D2 - Horizontal Zoom

1 = zoom cursor to 64 pixels wide

(Cursor is normally 32 pixels wide)
D1 - Cursor Status Enable

DO - Cursor Enable (1 = enabled)

Index OAh - Graphics Cursor Page

D7-D2 - Reserved

D1-D0 - Top two bits of the start address in display memory for the graphics cursor
pattern data

This register, together with the Graphics Cursor Start Address High (index 30h),

defines the 20-bit address of the cursor pattern in display memory. This register is used
only on boards containing 1024K of display memory.

Index 30h - Graphics Cursor Start Address High

This register, together with the Graphics Cursor Start Address Low register (index

31h) and the Graphics Cursor Page register (index OAh), defines the start address of

the cursor pattern in display memory. In 256-color modes, this start address has a gran¬
ularity of 16 bytes. In 16-color modes, it has a granularity of 4 bytes.

Index 31h - Graphics Cursor Start Address Low

This register, together with the Graphics Cursor Start Address High register (index
30h) and the Graphics Cursor Page register (index OAh), defines the start address of

the cursor pattern in display memory. In 256-color modes, this start address has a gran¬
ularity of 16 bytes. In 16-color modes, it has a granularity of 4 bytes.

Index 32h - Graphics Cursor End Address

This register, together with the other graphics cursor address registers, defines the
end address of the cursor pattern in display memory. In 256-color modes, this address
has a granularity of 16 bytes. In 16-color modes, it has a granularity of 4 bytes.

324 Advanced Programmer’s Guide to Super VGAs

Index 33h - Graphics Cursor X Position High and Index 34h - Graphics
Cursor X Position Low

These two registers contain the X (horizontal) coordinate that is used to specify the
location of the hardware graphics cursor on the display screen. The X coordinate is a
twelve-bit value.

Index 35h - Graphics Cursor Y Position High and Index 36h - Graphics
Cursor Y Position Low

These two registers contain the Y (vertical) coordinate that is used to specify the
location of the hardware graphics cursor on the display screen. The Y coordinate is a
twelve-bit value.

Cursor Color Registers

The graphics cursor pattern is stored in off-screen memory as two monochrome
bitmaps which are expanded to two colors when the cursor is displayed. COLOR1
defines the color that will be produced by a code of 11 in the two bitmaps. COLORO
defines the color that will be produced by a code of 10 in the two bitmaps. The Plane
Mask can modify these colors by excluding certain color planes.

Index 33h Index 34h Index 35h Index 36h Index 37h

Enable Cursor

Index OAh Index 30h Index 31 h Index OAh Index 30h Index 32h

Mill 256 Color Modes: 64kB Page Number = MSB four bits

I I i 16 Color Modes: 64kByte Page Number = MSB two bits

All addresses at 3D6h

Figure 13-1. Graphics Cursor Controls

Chips and Technologies 82C452—Boca 1024VGA 325

Index 38h - Graphics Cursor Plane Mask

A value of 0 in any bit position in this register disables the graphics cursor from
affecting the corresponding color plane.

Index 39h - Graphics Cursor Color 0

This register defines the value of color 0 (background color) to be used when the
graphics cursor is color expanded.

Index 3Ah - Graphics Cursor Color 1

This register defines the value of color 1 (foreground color) to be used when the
graphics cursor is color expanded.

The BIOS
The VGA1024 does not have any documented BIOS services beyond those provided

by the standard VGA. The Chips and Technologies BIOS supports Extended VGA Con¬
trol via BIOS function 5Fh.

Function 5Fh - Subfunction OOh: Return 82C45x Information

Input:

AH = 5Fh
AL = OOh

Output:

AL = 5Fh
BL = Chip type and revision number

D7-D4 = Chip type

0: 82C451
1: 82C452

3: 82C453
BH = Display memory size

0: 256K
1: 512K
2:1024K

CX = Miscellaneous information
DO = DAC size (0: 6-bit, 1: 8-bit)
D1 = Environment (0: AT, 1: MCA)

326 Advanced Programmer’s Guide to Super VGAs

D2 = Extended text modes supported by BIOS
D3 = Reserved
D4 = Extended graphics mode supported by BIOS
D5 = Reserved
D6 = Graphics cursor supported by BIOS
D7 = Anti-alias font supported by BIOS
D8 = Preprogrammed emulation supported by BIOS
D9 = Auto emulation supported by BIOS
DIO = Variable mode set at cold boot supported by BIOS
Dll = Variable mode set at warm boot supported by BIOS
D12 = Emulation set at cold boot supported by BIOS
D13 = Emulation set at warm boot supported by BIOS

D14-D15 = Reserved

Function 5Fh - Subfunction Olh: Preprogrammed Emulation
Control

Input:

AH = 5Fh
AL = Olh

BL = Emulation control code
2: Enable and lock CGA emulation
3: Enable and lock MDA emulation
4: Enable and lock Hercules emulation
5: Enable and lock EGA emulation
6: Disable emulation (normal VGA operation)

Output:

AL = 5Fh

AH = 1 if successful, 0 if failed

Function 5Fh - Subfunction 02h: Auto-emulation Control

Input:

AH = 5Fh
AL = 02h
BL = Emulation control code

0: Enable emulation
1: Disable auto-emulation

Chips and Technologies 82C452—Boca 1024VGA

Output:

AL = 5Fh

AH = 1 if successful, 0 if failed

Function 5Fh - Subfunction 03h: Set Power-on Video
Conditions

Input:

AH = 5Fh
AL = 03h

BL = OOh

CL = Display mode
CH = Scanlines (0: 200,1: 350, 2: 400)
BL = Olh

CL = Emulation mode (See subfunction 1 above)
CH = Permanence (0: Reset after next boot,

1: Keep until changed)

Output:

AL = 5Fh

AH = 1 if successful, 0 if failed

Function 5Fh - Subfunction 90h: Enhanced Save/Restore
Video State Buffer Size

Input:

AH =5Fh
AL = 90h
CX = Mask of states to save

DO - Hardware
D1 - BIOS data area
D2 - DAC

D15 - Type (0: all, 1: 82C45x specific)

Output:

AL = 5Fh
BX = Number of 64-byte blocks necessary

328 Advanced Programmer’s Guide to Super VGAs

Function 5Fh - Subfunction 91h: Save Video State

Input:

AH = 5Fh
AL = 91h
CX = Mask of states to save

DO - Hardware
D1 - BIOS data area
D2 - DAC
D15 - Type (0: all, 1: 82C45x specific)

ES:BX = Buffer address

Output:

AL = 5Fh

Function 5Fh - Subfunction 92h: Restore Video State

Input:

AH = 5Fh
AL = 92h
CX = Mask of states to save

DO - Hardware
D1 - BIOS data area
D2 - DAC
D15 - Type (0: all, 1: 82C45x specific)

ES:BX = Buffer address

Output:

AL = 5Fh

Programming Examples

Accessing Extended Registers

When writing software to take advantage of the extended features of the 1024VGA, it
is important to note that the extended register bank must first be enabled before it can
be accessed. Enabling and disabling of the extended register bank is performed by
placing the VGA chip in setup mode, then modifying the Extended Enable register,
with code similar to the following (for AT based systems):

Chips and Technologies 82C452—Boca 1024VGA 329

CLI
; Place VGA in SETUP mode
MOV DX,4LEAh
IN AL/DX
OR AL/IDh
OUT DX/AL
; Enable extended register bank
MOV DX,103h
IN AL,DX
OR AL/ADh
OUT DX, AL
; Place VGA in NORMAL mode
MOV DX,4LEAh
IN AL,DX
AND AL,OEFh
OUT DX,AL
STI

To learn more about programming
lowing page.

;address the setup control register

;place it in setup mode

;address the extended enable register

;enable extended register bank

;address the setup control register

jdisable setup mode

the Extended register see Listing 13-1 on the fol-

Display Memory Paging

The 1024VGA contains a display memory paging mechanism that maps selected por¬
tions of the display memory to the processor. The operation of display memory paging
is very similar to the paging mechanism used for expanded memory boards (also
called EMS or LIM memory). A 64K logical page of VGA RAM (a chunk of display mem¬
ory) is mapped into the PC host address space in the normal VGA display memory

330 Advanced Programmer’s Guide to Super VGAs

address space. Extended I/O registers at 3D6 or 3B6, Index OBh (Memory Paging regis¬
ter), Index lOh (Page 1 Base Address), and Index 1 lh (Page 2 Base Address) are used to

select memory pages. Figure 13-2 illustrates the structure of the Memory Paging regis¬
ters. To learn more about paging, see Chapter 3.

Either one or two display memory pages may be enabled. Unlike many other VGA

products, both memory pages are simultaneously readable and writable. This can be
very useful when transferring data from one part of display memory to another
(BITBLT).

Listing 13-1 illustrates how the paging registers are used. The extended register bank

is enabled in the procedure ___Select_Graphics. To easily interface with the common
drawing routines, the paging routines in listing 13-1 do not take full advantage of the
Chips and Technologies chip capabilities. Select_Page assumes that a 64K page has
been requested with a granularity of 64K. Select_Read_Page and Select__Write_Page
assume that a 32K page has been requested with a granularity of 32K, and that the read
page is in page 1, addressed by DS at A000, and the write page is in page 2 addressed by
ES at A800.

It should be noted that with the Boca Research BIOS, display memory beyond 256K
is disabled in standard VGA modes.

Listing 13-1. File: CTI\ SELECT.ASM

* File: SELECT.ASM *
* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points: *
* _Select_Graphics - Select a graphics mode *
* _Select_Text - Set VGA adapter into text mode *
* _Select_Page - Select L4k page *
* _Select_Read_Page - Select 32k page A *
* _Select_Write_Page - Select 32k page B *
* Uses: *
* MODE.INC - Mode dependent constants *
* Following are modes and paths for Boca 1D24 board: *
* i-25L colors-1 i— 1L colors —i A colors 2 colors *
* ^AUxAQU L<0x4AD ADDxLDD ADDxLDD lD2<x7LA 1024X7LA 1D24x7LA *
* Mode: 7Ah 7Hh N/A L Ah 72h N/A N/A *
* Path: 25LC0L 25LC0L N/A 1LC0L 1LC0L N/A N/A *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

Chips and Technologies 82C452—Boca 1024VGA

PUBLIC Graf Seg
PUBLIC Video_Height
PUBLIC Video Width
PUBLIC Video Pitch
PUBLIC Video_Pages
PUBLIC Video Colors
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

PAGE_CTL REG EQU OBh
PAGE1_REG EQU lOh
PAGE2_REG EQU llh
PAGE_MASK EQU OCOh
EXTENDED_PORT EQU 3Dbh
CPU_PAGING_REG EQU □ Bh
EXTEND_ENABLE_PORT EQU 01D3h
SETUP_PORT EQU 4bEflh

;Index for page control register
;Index for page 1 select
;Index for page 5 select
;Page mask
;Address of extended registers

Code segment variables

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW
DW

□ADOOh
□AflOOh

OffScreen_Seg DW □AOOOh
Video_Pitch DW SCREEN_PITCH
Video_Height DW SCREEN_HEIGHT
Video_Width DW SCREEN_WIDTH
Video_Pages DW SCREEN PAGES
Video_Colors DW SCREEN_COLORS
Ras_Buffer DB 1Q24 DUP (D)
R_Page DB OFFh
W_Page DB OFFh
RW_Page DB OFFh
Two_Pages DB CAN_DO_RW

;Graphics segment addresse
;Second page address
;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen
;Number of colors in this mode
;Working buffer
;Most recently selected page

;Indicate separate R & W capability

* *

* _Select_Graphics(HorizPtr/ VertPtr, ColorsPtr) *
* Initialize VGA adapter to graphics *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

**

Arg_HorizPtr EQU
Arg_VertPtr EQU
Arg_ColorsPtr EQU

WORD PTR [BP+4]
WORD PTR [BP+b]
WORD PTR CBP+fl]

;Formal parameters
;Formal parameters
;Formal parameters

332 Advanced Programmer’s Guide to Super VGAs

Select_Graphics PROC NEAR
PUSH BP ; Standard C entry point
MOV BP, SP

PUSH DI ; Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Select graphics mode
INT lOh

;Make sure the extended register bank is enabled

MOV DX,SETUP_PORT
MOV AL,lfih
OUT DX/AL ;Enable setup

MOV DX,EXTEND_ENABLE_PORT
MOV AL/fiOh
OUT DX,AL ;Enable extended registers

MOV DX,SETUP_PORT
MOV AL/fl
OUT DX,AL ;Disable setup

; Enable access to memory beyond E5bk (VGA modes do not do this).
; (This can be usefull when data needs to be stored in offscreen
; display memory.)

MOV DX,EXTENDED_PORT ;Point to extended register bank
MOV AL,CPU_PAGING_REG ;Index of CPU paging
OUT DX , AL ; Select register
INC DX
IN AL , DX ;Read previous value
OR AL,01h ;Set mapping mode bit
OUT DX , AL ;Enable additional memory

; Reset 'last selected page1

MOV AL,DFFh ;Use 'non-existent' page number
MOV CS:R_Page,AL ;Set currently selected page
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI,Arg VertPtr ;Fetch pointer to vertical resolution
MOV WORD PTR [SI],SCREEN. .HEIGHT ;Set vertical resolution
MOV SI,Arg_HorizPtr ;Fetch pointer to horizontal resolution
MOV WORD PTR [SI],SCREEN. .WIDTH ;Set horizontal resolution
MOV SI,Arg_ColorsPtr ;Fetch pointer to number of colors
MOV WORD PTR [SI],SCREEN. .COLORS ;Set number of colors

; Clean up and return to caller

POP ES ; Restore segment registers
POP DS
POP SI
POP DI

MOV SP, BP ;Standard C exit point
POP BP
RET

Select_Graphics ENDP

Chips and Technologies 82C452—Boca 1024VGA 333

; Select_Page *
; Entry: *
; AL - Page number *

Select Page PROC NEAR
CMP AL,CS:RW Page jCheck if already selected
JNE SP_Go
RET

SP_Go:
PUSH AX
PUSH DX
AND AL, 7 ;Force page number into range
MOV CS:RW Page,AL ;Save as most recent RW page
MOV CS:R Page,OFFh ;Invalidate R and W pages
MOV CS:W Page,DFFh

IFE (SCREEN_COLORS - 25L)
SHL AL, 1 ;for 25L color modes,
SHL AL, 1 jconvert L4KB page # to A KB page #

ELSE
SHL AL, 1 ;for 1L color modes,
SHL AL, 1 jconvert L4KB page # to 1L KB page #
SHL AL, 1
SHL AL, 1

ENDIF
MOV AH, AL ;Copy page number into AH
MOV DX,EXTENDED PORT jFetch extended register address
MOV AL,PAGE1 REG jFetch page select index
OUT DX, AL jSelect page select register
INC DX

IN AL, DX jRead current value of page select reg
AND AL,PAGE MASK jClear previous page setting
OR AL, AH jCombine with new page selection
OUT DX, AL jSelect new page
POP DX
POP AX
RET

Select_Page ENDP

; Select_Read _Page *
; Assumes that caller uses 32kByte page at DS for first page. *
; Entry: *
; AL - Page number *

**

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page
JNE SR_Go
RET

SR_Go:
PUSH AX
PUSH DX
AND AL,DFh
MOV CS:R_Page,AL
MOV CS:RW_Page,DFFh

jCheck if already selected

jForce page number into range
;Save as most recent Read page
;Invalidate most recent RW page

IFE (SCREEN_COLORS - 25L)
SHL AL,1

ELSE
SHL AL,1
SHL AL,1
SHL AL/1

;for 25L color modes,
;convert 35KB page # to A KB page #

;for It color modes,
jconvert 32KB page # to 1L KB page #

Advanced Programmer’s Guide to Super VGAs

ENDIF
MOV AH,AL
MOV DX,EXTENDED_PORT
MOV AL,PAGE1_REG
OUT DX,AL
INC DX

IN AL,DX
AND AL,PAGE_MASK
OR AL,AH
OUT DX,AL
POP DX
POP AX
RET

Select_Read_Page ENDP

;Copy page number into AH
;Fetch extended register address
;Fetch page select index
;Select page select register

;Read current value of page select reg
;Clear previous page setting
;Combine with new page selection
;Select new page

i *
; Select_Write_Page *
; Assumes that called uses 32 kByte page at ES for second page. *
; *
; Entry: *
; AL - Page number * •
* ’

Select. Write _Page PROC NEAR
CMP AL,CS:W Page
JNE SW_Go
RET

SW_Go:
PUSH AX
PUSH DX
AND AL,OFh
MOV CS:W Page,AL
MOV CS:RW_Page,DFFh

IFE (SCREENS COLORS - 25b)
SHL AL, 1

ELSE
SHL AL, 1
SHL AL, 1
SHL AL, 1

ENDIF
MOV AH, AL
MOV DX,EXTENDED PORT
MOV AL,PAGE2 REG
OUT DX, AL
INC DX

IN AL, DX
AND AL,PAGE MASK
OR AL, AH
OUT DX, AL
POP DX
POP AX
RET

Select_Write_Page ENDP

;Check if already selected

;Force page number into range
;Save as most recent Write page
jlnvalidate RW page

;for 25b color modes,
;convert 32KB page # to A KB page #

;for lb color modes,
;convert 32KB page # to lb KB page #

;C°py page number into AH
;Fetch extended register address
;Fetch page select index
;Select page select register

;Read current value of page select reg
;Clear previous page setting
;Combine with new page selection
;Select new page

*

_Select_Page(PageNumber) *
_Select_Read_Page(PageNumber) *
_Select_Write_Page(PageNumber) *

Entry points for high level languages *
Entry: *

PageNumber - Page number *
*

Chips and Technologies 82C452—Boca 1024VGA 335

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select Page

_Select_Page ENDP

_Select Read Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ; Restore BP
JMP Select_Read_Page

_Select_Read_ Page ENDP

Select Write Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL, Arg PageNumber ;Fetch argument
POP BP ; Restore BP
JMP Select_Write_Page

_Select_Write _Page ENDP

* *

* _Select_Text *
* Set VGA adapter to text mode *
* *

Select. Text PROC NEAR
MOV AX,TEXT MODE
INT IDh
RET

Select. _Text ENDP

;Select mode 3
;Use BIOS to reset mode

* *

* Enable_Dual_Page *
* Disable_Dual_Page *
* Enable and disable dual page paging. *
* *

Enable_Dual_Page PROC NEAR
MOV DS,CS:GRAF_SEG[□]
MOV ES,CS:Graf_Seg[3]
MOV DX,EXTENDED_PORT
MOV AL,PAGE_CTL_REG
OUT DX/AL
INC DX
IN AL,DX
OR AL/D2h
OUT DX/AL
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
MOV DX/EXTENDED_PORT
MOV AL/PAGE_CTL_REG
OUT DX,AL
INC DX
IN AL/DX
AND AL,NOT DEh
OUT DX/AL
RET

Disable_Dual_Page ENDP

Last_Byte:
_Text ENDS

END

;Set DS to first page
;Set ES to second page
;Address of extended registers
;Index of page control register
;Select page control register

;Read previous value
;Set dual page bit
;Enable dual page paging

;Address of extended registers
;Index of page control register
;Select page control register

;Read previous value
;Clear dual page bit
;Disable dual page paging

336 Advanced Programmer’s Guide to Super VGAs

Graphics Cursors

The 1024VGA includes hardware support for a graphics cursor that can significantly
reduce the processor overhead required for cursor control. The hardware cursor of
the Chips and Technologies 82C452 VGA chip can be used with bit addressability in
any mode, including text modes. Figure 13-1 illustrates the operation of the hardware
graphics cursor. Twelve registers in the extended register bank are involved in the def¬
inition and control of the graphics cursor.

Hardware cursors operate differently than software cursors. Since the cursor is
drawn as an overlay on the screen, there is never any need to save background data in
the cursor area. The cursor is defined by two monochrome bitmaps, similar to the AND
and XOR masks used for software cursors (for more on software cursors, see our previ¬
ous text, Programmer’s Guide to the EGA/VGA). Table 13-3 shows the colors defined by
the cursor masks, and their correspondence to AND and XOR masks.

Table 13-3. Hardware cursor masks

Chips Masks Conventional Masks
Mask A MaskB AND XOR
0 0 1 0
0 1 0 1

1 0 1 1
1 1 0 0

Resulting Cursor Color

Display unmodified background data

Display foreground (color value from color

reg 1)
Display inverted background data
Display background (color value from color

regO)

Note: To convert from XOR & AND to A & B masks, the following formulas can be used:

A = NOT (AND_Mask XOR XOR_Mask)
B = NOT AND_Mask

Cursor pattern data must be loaded into off-screen display memory in a scrambled
format, depending on display mode. Figure 13-3 on page 337 shows cursor pattern
locations for 16-color modes. Each row of cursor, for each mask, is defined by four
bytes of pattern (32 bits for each 32 pixel row of the cursor). Each byte defines 8 pixels,
with the most significant bit corresponding to the left most pixel. Bytes for mask A are
in planes 0 and 1, and mask B is in planes 2 and 3. Each byte is labeled as (column, row)
to indicate which byte in the cursor it controls. Table 13-3 shows how the 2 bits from
masks A and B determine the color of each pixel.

Chips and Technologies 82C452—Boca 1024VGA 337

Figure 13-3. Cursor masks in 16-color modes

Figure 13-4 shows cursor pattern locations for 256-color modes. Each row of cursor
is defined by two words of pattern in each mask (32 bits for 32 pixels of the cursor).
Each word defines 16 pixels, with the most significant bit corresponding to the left
most pixel. Words for mask A are stored at addresses which are multiples of 8, and
words for mask A are followed by words for mask B. Each byte is labeled as (column,
row) to indicate which byte in the cursor it controls. Table 13-3 shows how the 2 bits
from masks A and B determine the color of each pixel.

338 Advanced Programmer’s Guide to Super VGAs

Pattern Masks Stored

Start +0 A(0,0) A(1.0)

+2 : B(2,0) B(1.1)

+4 i_

+6

+8 L_ A(2,0) A(3,0)

+0Ahj B(2,0) B(3,1)

+0Ch

+E0h! ; 1

Mask A

Mask B

Mask A

Mask B

+ 10h*(n-1) | A(0,n-1) AfIVn-'l')—!

1 B(0,n-T) B(1,n-1) !

Pattern Masks Displayed

j_j m i > j < r~~i 251 i
!_i tfT 1_ _j TT 1 ! 1 _i S3 i

fO,n) ! (T7T 1 (2,n) ; (3,nT

Figure 13-4. Cursor masks in 256-color modes

Listing 13-2 illustrates how to define cursor shape and how to move the cursor
around the screen. Three procedures are provided:

Set_Cursor is used to convert standard AND and XOR masks to masks A and B, to
define the color and shape of the cursor. Move_Cursor is used to determine where
the cursor is displayed. Remove_Cursor disables the cursor display.

Listing 13-2. File: CTI\HWCURSOR.ASM

* *

* File: HWCURSOR.ASM *
* Description: This module contains procedures to demonstrate use of a *
* hardware cursor. It defines cursor shape, moves *
* cursor around the screen, and removes cursor. *
* This module does not work in mode 13h. *
* *

* Entry Points: *
* _Set_Cursor *
* _Move_Cursor *
* _Remove_Cursor *
* *
* Uses: *
* _Select_Page *
* _Graf_Seg *
* _Video_Height *
* _Video_Pitch *
* *

INCLUDE VGA.INC
INCLUDE MODE.INC

EXTRN Video_Pitch: WORD
EXTRN Video_Height : WORD
EXTRN Video_Colors : WORD
EXTRN Select_Page: NEAR
EXTRN Graf_Seg:WORD
EXTRN Video_Pages: BYTE

;Mode dependent constants

Chips and Technologies 82C452—Boca 1024VGA 339

PUBLIC _Set_Cursor
PUBLIC _Move_Cursor
PUBLIC _Remove_Cursor

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Common cursor register definitions

EXTENDED_PORT EQU □ 3DLH
CPU PAGING REG EQU □ Bh
GCUR XLO REG EQU 3<h
GCUR _XHI REG EQU 33h
GCUR YLO REG EQU 3Lh
GCUR YHI REG EQU 35h
GCUR MODE EQU 37h
CURS _ADDR_HI_REG EQU □ Ah
CURS ADDR MID REG EQU 3Dh
CURS ADDR LOW REG EQU 31h
CURS ADDR END REG EQU 35h
CURS FG REG EQU 3Rh
CURS BG REG EQU 3 Ah
CURS MASK REG EQU 3 Ah

;extended features of CTI <55

CURS_DX EQU 35
CURS_DY EQU 35

* *

* _Set_Cursor(AND_Mask, XOR_Mask, FG_Color, BG_Color) *
* This procedure will save cursor pattern in the off-screen *
* memory according to the CTI schema. Pattern is stored at last *
* 515 bytes of last page (assumes 515kBytes of display memory) *
* *

* Entry: *
* AND_Mask - <x35 bytes of inverted pattern A *
* XOR_Mask - <x35 bytes of pattern B *
* BG_Color - Foreground color *
* FG_Color - Background color *
* *

***^

Arg AND Mask EQU WORD PTR [BP+<]
Arg_XOR_Mask EQU WORD PTR [BP+L]
Arg_BG_Color EQU BYTE PTR [BP+A]
Arg_FG_Color EQU BYTE PTR [BP+1D]

Set Cursor PROC NEAR
PUSH BP
MOV BP / SP
SUB SP,5

PUSH SI
PUSH DI
PUSH ES
PUSH DS

; Initialize pattern colors

MOV DX,EXTENDED_PORT
MOV AL/CURS_FG_REG
MOV AH/Arg_FG_Color
OUT DX/AX
MOV AL,CURS_BG_REG
MOV AH,Arg_BG_Color
OUT DX,AX
MOV AL,CURS_MASK_REG
MOV AH/DFFh
OUT DX/AX

;Formal parameters

;Standard high-level entry

;Save registers

;Point to extended register bank
;Index of foreground color reg
;Foreground color
;Select foreground pattern color
;Index of background color reg
;Foreground color
;Select background pattern color
;Index of color mask register
;Enable all A bits for color
-.Select pattern color mask

Advanced Programmer’s Guide to Super VGAs

Load_

SC_Do

Copy cursor masks for 25b color modes (take advantage of the fact
that byte 4xN + P corresponds to byte N in plane P, for P=0,l,2 or 3)

CMP CS:Video_Colors,25b ;Is this planar mode?
JNE SC_Do_Planar ;No, go do planar mode

;Initialize Pattern Start Address to DFEDD in last page
; Curs addr regs = DFED + Page SHL 12, Page:Offset=Page:FEOD

MOV AL,CURS_ADDR_MID_REG
MOV AH,CS:Video Pages
DEC AH
ROR AH, 1
ROR AH, 1
ROR AH, 1
ROR AH, 1
ADD AH,OFh
OUT DX, AX
MOV AL,CURS ADDR LOW REG
MOV AH,OEDh
OUT DX, AX

; Initialize Pattern End Address

;Index of cursor address mid
;Fetch number of visible pages
;Convert to page number
;Move page number to bits 4-7

;Select last page

;Index of cursor address low
;Select last page, last 512 bytes

MOV AL,CURS_ADDR_END_REG ;Index of cursor address end
ADD AH,OlFh ;Set end 32 lines after start
OUT DX,AX

Copy masks A and B to display memory for each row ' r' as follows
ArO,Brl,-,-, BrO,Brl,-,-, Ar2,Br3,-,-, Br2,Br3,-,-,
(where Ar2 = Mask ‘A’ row 1r1 byte '2' (columns lb-23))
Converting AND,XOR pair to A,B pair using the following formulas:
A_Mask = NOT (AND_Mask XOR XOR_Mask)
B_Mask = NOT AND_Mask

MOV CX,b<
MOV BX,Arg AND Mask
MOV SI,Arg_XOR_Mask
MOV ES,CS:Graf Seg
MOV DI,OFEOOh
MOV AL,CS:Video Pages
DEC AL
CALL Select_Page

LODSW
XOR AX,[BX]
NOT
STOSW

AX

MOV AX,[BX]
NOT
STOSW

AX

ADD DI, 4
ADD BX, 2
LOOP Load_25b
JMP SC_Enable

; f or 32 rows of cursor data,
;Initialize index into source patterns

;Pointer to destination
; use last 512 bytes of the last page
;Last page

;Select last page

;Fetch next two bytes of XOR mask
;XOR XOR mask with AND mask
;Negate result
;Sav6 the result as mask A
;Fetch AND Mask
;Negate result
;Save the result as mask B
;Skip next four bytes of destination
;Update source index

Copy cursor masks for planar modes

initialize Pattern Start Address to FEOD in last visible page
; Curs addr regs = 3FflO +

Planar:
MOV AL,CURS_ADDR_MID_REG
MOV AH,CS:Video Pages
DEC AH
ROR AH, 1
ROR AH, 1
ADD AH,3Fh

Page:Offset=Page:FEOD

;Index of cursor address mid
;Fetch number of visible pages
;Convert to page number
;Move page number to bits 4-7

; Select last page

Chips and Technologies 82C452—Boca 1024VGA 341

OUT DX,AX
MOV AL,CURS_ADDR_LOW_REG
MOV AH,A0h
OUT DX,AX

; Initialize Pattern End Address

MOV AL,CURS_ADDR_END_REG
ADD AH ,IFh
OUT DX/AX

;Disable set/reset and enable A

MOV DX,GRAPHICS_CTRL_PORT
MOV AX,SR_ENABLE_REG
OUT DX,AX

MOV AX,BIT_MASK_REG+OFFDOh
OUT DX/AX

; Copy the cursor patterns (this
; for each byte, but code is eas
; PlaneO: ArD, -,ArE
; Planel: Arl,-,Ar3,~,...
; PlaneE: BrD,-,BrE
; PlaneB: Brl,-,Br3,.
; (where ArE = Mask 'A' row 'r'
; Converting AND,XOR pair to A,B
; A_Mask = NOT (AND_Mask XOR XOR
; B_Mask = NOT AND_Mask

MOV CX,L4
XOR SI,SI
MOV ES,CS:Graf_Seg
MOV DI,OFEDDh
MOV AL,CS:Video_Pages
DEC AL
CALL Select_Page
MOV DX,SEQUENCER_PORT
MOV AL,PLANE_ENABLE_REG
MOV BX,Arg_AND_Mask
MOV SI,Arg_XOR_Mask

Load_1L:
PUSH CX
MOV AH,1
OUT DX,AX
MOV CX,[BX]
XOR CX,CSI]
NOT CX
MOV ES:[DI],CL

MOV AH,E
OUT DX,AX
MOV ES:C DI],CH

MOV AH,<
OUT DX,AX
MOV CX,C BX 3
NOT CX
MOV ES:[DI3,CL

MOV AH,A
OUT DX,AX
MOV ES:[DI3,CH
ADD SI, E
ADD BX,E
ADD DI, E
POP CX
LOOP Load_lL

;Index of cursor address low
;Select last page, last 51E bytes

;Index of cursor address end
;Set end 3E lines after start

bits for write

;Address of graphics controller
;Index of set/reset enable, data=0
;Disable set/reset

;Index of bit mask register,data=FF
;Enable all A bits for write

is slow because a plane is enabled
ier to understand)

byte 1E' (columns 1L-E3))
pair using the following formulas:

_Mask)

;for 3S rows of cursor data
;Initialize index into source patterns
;Pointer to destination
; use last E5L bytes of the last page
;Last page

;Select last page
;Address of graphics controller
;Index of plane enable register
;Initialize index into source patterns

;Preserve counter
;Plane to enable
;Enable plane □ for write
;Fetch next two bytes of AND mask
;XOR XOR mask with AND mask
;Negate result
;Save next byte of mask A

;Plane to enable
;Enable plane 1

;Save next byte of mask A

;Plane to enable
;Enable plane □
;Fetch next two bytes of AND mask
;Negate the AND mask
;Save next byte of mask B

;Plane to enable
;Enable plane 1
;Save next byte of mask B
;Update pointers

;Restore counter

MOV AH,OFh ;Enable all planes for write

342 Advanced Programmer’s Guide to Super VGAs

OUT DX,AX

; Set cursor position to 'off- -screen' and enable display of cursor

Enable:
MOV AX,CS:Video_Height ;Set Y = Below last scan line
PUSH AX
XOR AX, AX ; Set X = □
PUSH AX
CALL Move Cursor ;Use proc to set cursor position
ADD SP,4

MOV DX,EXTENDED PORT ;Address of extened registers
MOV AL,GCUR MODE ; Index of control register
MOV AH, 1 ; Value for enable cursor
OUT DX, AX ;Turn cursor on

Clean up and return

POP DS
POP ES
POP DI
POP SI
MOV SP, BP
POP BP
RET

Set_Cursor ENDP

;Restore segment registers

;Restore stack

* *

* _Move_Cursor(Curs_X, Curs_Y) *
* This procedure is used to move the cursor from one *
* location to another. *
* *

Arg_Curs_X EQU BYTE PTR [BP+41 ;Formal parameters
Arg_Curs_Y EQU BYTE PTR [BP+L]

Curs X EQU WORD PTR [BP-2]
Curs_Y EQU WORD PTR [BP-A]

Move Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP, SP
SUB SP,4

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Load Cursor X position registers

MOV DX,EXTENDED PORT ;Address of extened registers
MOV AL,GCUR_XHI_REG ;Index of x start high register
MOV AH,ARG _CURS_X [1] ;Fetch high byte
OUT DX, AX ;Write high value
INC AL ; Index of x start low register
MOV AH,ARG _CURS_X [0] ;Fetch low byte
OUT DX, AX ;Write low value
; Load Cursor Y position registers

MOV DX,EXTENDED PORT ; Address of extened registers
MOV AL,GCUR_YHI_REG ;Index of y start high reg
MOV AH,ARG _CURS_Y[1] ;Fetch high byte
OUT DX, AX ;Write high value
INC AL ; Index of y start low reg

Chips and Technologies 82C452—Boca 1024VGA 343

MOV AH/ARG_CURS_Y[□]
OUT DX/AX

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP,BP
POP BP
RET

Move_Cursor ENDP

;Fetch low byte
;Write low value

;Restore segment registers

; Restore stack

* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *

*********************** *

_Remove_Cursor
MOV
MOV
OUT
RET

_Remove_Cursor
_TEXT ENDS

END

PROC NEAR
DX,EXTENDED_PORT
AX,GCUR_MODE+ODODh
DX, AX

ENDP

;Address of extended registers
;AL=Index, AH=Data(turn cursor off)
;Write new value of cursor mode

Detection and Identification

Chips and Technologies recommends that 82C452 VGA chips be detected using the
Global ID register (I/O address 104h) and the Version register (address 3D6h, index
OOh). Global ID should always be A5h for CTI products. Code similar to that below can
be used to identify CTI products:

; Place
CLI
MOV
IN
OR
OUT

VGA in SETUP mode

DX,<LEflh
AL, DX
AL,10h
DX / AL

Enable extended register bank
MOV
IN
OR
OUT

Read Global ID
MOV
IN
MOV

DX,103h
AL / DX
AL,flOh
DX, AL

D
DX,104h
AL / DX
AH / AL

Place VGA in NORMAL mode
MOV
IN
AND
OUT
STI

DX/4 LEfih
AL, DX
AL,DEFh
DX, AL

Read version extended register
MOV
MOV
OUT
INC
IN

DX / 3Dfc>h
AL, ODh
DX , AL
DX
AL, DX

Check if Chips flEC^Sx chip

;Disable interrupts
;Address of setup control register
;Get current value
;Turn setup bit on
;Place chip in setup mode

;Address the extended enable register
;Get current value
;Turn enable bit on
;Enable extended register bank

;Address of Global ID register
;Read the ID
;Save ID for later

;Address the setup control register
;Get current value
;Clear setup bit
;Enable normal mode
;Enable interrupts

;Address of extended register
;Index of version register
;Select version register

;Fetch version value

344 Advanced Programmer’s Guide to Super VGAs

CMP AH,5Ah
JNE Not ChipsVGA
MOV AH, AL
AND AH,OFDh
CMP AL,DDh
JE Chips 451
CMP AL,10h
JE Chips 45E
CMP AL,3Dh
JE Chips 453

Not_ChipsVGA:

Look for product ID (saved earlier)
Quit if not Chips product

Isolate chip id
Check for AEC451 id
...Yes/ found 451
Check for AEC45E id
...Yes, found 45E
Check for 6EC453 id
...Yes, found 453
No, this is not Chips VGA

14

Genoa 6400
Genoa SuperVGA

Genoa
SYSTEMS CORPORATION

345

346 Advanced Programmer’s Guide to Super VGAs

Introduction
For Genoa VGA products, SuperVGA is more than just a nickname; it is the name

under which the product is marketed. Early versions of the SuperVGA were based on
the ET3000 VGA chip made by Tseng Laboratories until Genoa was able to complete
the design of their own VGA chip. The product described here is the one that is based
on Genoa’s own VLSI VGA chip. The Tseng Labs ET3000 VGA chip, which has been
used on many different VGA products, is described in Chapter 17.

The Genoa SuperVGA is sold in two standard memory configurations. The standard
SuperVGA, 6300, comes equipped with 256K of display memory and will support reso¬
lutions up to 800x600 pixels with 16 colors or 640x400 pixels with 256 colors.
SuperVGA models 6400, 6400A, 6600 and 6600A include 512K of display memory and
will support resolutions as high as 1024x768 pixels with 16 colors or 800x600 pixels
with 256 colors. The 6400 series adapters are for the AT bus and 6600 series adapters
are for the IBM Micro Channel (PS/2) bus.

6400A and 6600A adapters support 70Hz vertical refresh rates (instead of 60Hz) for
reduced screen flicker; this higher refresh rate is especially popular in Europe. The
only difference this presents to the programmer is a faster vertical retrace interrupt.
Not all displays will support this faster refresh rate.

Genoa’s SuperVGA includes EGA, CGA, MDA and Hercules emulation modes, and
has the ability to automatically switch to an emulation mode when software is executed
that addresses a register that is specific to one of these other adapters.

To access the full display memory in high resolution modes, a memory paging
mechanism allows for the selection of separate read and write pages in display
memory.

New Display Modes
Table 14-1 lists the enhanced display modes that are supported by the Genoa

SuperVGA. All modes can be selected via BIOS function 0 (Mode Select). Genoa
SuperVGA boards include configuration switches used to indicate the type of display
attached. The BIOS uses the switch settings to determine if a given mode is possible on
the indicated display, and will abort the selection if not. Care must be taken if the
switches are set for IBM 80xx and 81xx displays since for those displays the BIOS will
use the monitor id lines from the display to automatically determine the display model.
Not all VGA-compatible displays include monitor ID lines.

Genoa 6400—Genoa SuperVGA 347

Table 14-1. Enhanced display modes—Genoa SuperVGA

Memory Display
Mode Type Resolution Colors Required Type
43h Text 80 col x 20 rows mono 256 KB VGA
44h Text 80 col x 32 rows mono 256 KB VGA
45h Text 80 col x 44 rows mono 256 KB VGA
46h Text 132 col x 25 rows mono 256 KB VGA
47h Text 132 col x 29 rows mono 256 KB VGA
48h Text 132 col x 32 rows mono 256 KB VGA
49h Text 132 col x 44 rows mono 256 KB VGA
58h Text 80 col x 32 rows 16 256 KB VGA
60h Text 132 col x 25 rows 16 256 KB VGA
6lh Text 132 col x 29 rows 16 256 KB VGA
62h Text 132 col x 32 rows 16 256 KB VGA
63h Text 132 col x 44 rows 16 256 KB VGA
64h Text 132 col x 60 rows 16 256 KB VGA
72h Text 80 col x 60 rows 16 256 KB VGA
74h Text 80 col x 66 rows 16 256 KB VGA
78h Text 100 col x 75 rows 16 256 KB VGA
5Ch Graphics 640x480 256 512 KB VGA

5Eh Graphics 800x600 256 512 KB Super VGA
5Fh Graphics 1024x768 16 512 KB 8514 or XL
73h Graphics 640x480 16 256 KB VGA
79h Graphics 800x600 16 256 KB Super VGA
7Dh Graphics 512x512 256 256 KB Super VGA

7Eh Graphics 640x400 256 256 KB VGA
7Fh Graphics 1024x768 4 256 KB 8514 or XL

Memory Organization
For all extended display modes of the SuperVGA, display memory organization is

closely patterned after standard IBM VGA display modes. Genoa SuperVGA includes a

display memory paging mechanism that is needed in some display modes to make the
entire display memory accessible to the processor. Display memory paging is
described in detail later in this chapter.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line and/or

348 Advanced Programmer’s Guide to Super VGAs

number of lines per screen is increased. Display memory is organized as shown in Fig¬
ure 5-1 (see Chapter 5).

256-Color Graphics Modes

Memory organization for these modes resembles VGA mode 13h (320x200 256-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased. Display memory organization is shown in Figure 8-1. See
Chapter 8 for programming examples.

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

4-Color Graphics Modes

Memory organization for mode 7F, the 1024x768 four-color mode, is similar to that
of VGA mode 12h (640x480 16-color graphics) except that only planes 0 and 1 are
used. See the section "Two Consecutive Planes" in Chapter 9 for programming
examples.

New Registers
Genoa has added extended registers to the CRT Controller, Sequencer and Graphics

Controller to implement the extended functions of the SuperVGA. Table 14-2 lists
these new registers.

Table 14-2. SuperVGA extended registers

Address Index Description
3B4h/3D4h 2Fh Interlace Control Register
3B4h/3D4h 2Eh Herchi Register
3C4h 05h Configuration Register
3C4h 06h Memory Page Select Register
3C4h 07h Enhanced Control 2
3C4h 08h Enhanced Control 3
3C4h lOh Enhanced Control 4
3CEh OAh Program Status Register 1
3CEh OBh Program Status Register 2

Genoa 6400—Genoa SuperVGA 349

Interlace Control Register (I/O Address 3B4h/3D4h Index 2Fh)

D3 to D7 - Reserved
D2 - Select character clock as memory addressing counter clock
D1 - Enable quadword addressing mode
DO - Enable Interlacing (1 = interlace)

Herchi Register (I/O Address 3B4/3D4 Index 2Eh)

D2 to D7 - Reserved
D1 - Enable Chinese application under Hercules mode
DO - Enable maximum scan line register under CGA mode

Configuration Register (I/O Address 3C4h Index 5)

D7 - Enable 8 simultaneous fonts (1 = enabled)
D5,D6 - BIOS size (00 = 24k, 01 = 30k, 10 = 32k. 11 = 0k)
D4 - Enable 3XX addressing (instead of 2XX). Read-only bit
D3 - Reserved
D2 - Enable 8-bit BIOS (instead of 16-bit). Read-only bit
D1 - Enable 8-bit bus (instead of 16-bit). Read-only bit
DO - Enable XT/AT operation (instead of Micro Channel). Read-only bit

Memory Page Select Register (I/O Address 3C4h Index 6)

D7 - Reserved
D6 - Memory Paging Configuration
D5-D3 - Write Page Select
D2-D0 - Read Page Select

Write Page Select and Read Page Select select display memory pages for reading and
writing. Pages are either 64K or 128K in length, depending on the host window size
defined in the miscellaneous Register of the Graphics Controller.

Memory Paging Configuration, when set to zero, causes the least significant bit of the
read and write page select fields to be replaced by the Odd/Even Page Select bit (D3 of
the Miscellaneous Output register - I/O address 3C2h).

350 Advanced Programmer’s Guide to Super VGAs

Enhanced Control Register 2 (I/O Address 3C4h Index 7)

D7 - Reserved
D6 - NMI enable
D5 - Enable TTL monitor output
D4 - Reserved
D3 - Motherboard implementation (instead of add-on)
D2 - Enable 16-bit memory R/W
D1 - Allow frequencies above 50MHz
DO - External clock select (bit D2 of 3-bit value)

Enhanced Control Register 3 (I/O Address 3C4h Index 8)

D7 - Enable 1024x768 addressing
D6 - Enable extended memory addressing
D5 - Enable chain 8 addressing
D4 - Disable flicker-free function
D3 - Enable EGA function
D2 - Enable autoswitch through 3D8
D1 - Enable autoswitch through 3B8
DO - Set emulation modes (MDA, CGA, Hercules)

Enhanced Control Register 4 (I/O Address 3C4h Index lOh)

D7 - Select memory bank 1
D6 - Enable fast write
D5 - Reserved
D4 - Reserved
D3 - Enable pre_wait function
D2 - Enable two bank memory access
D1 - Enable fast access function
DO - Enable fast scroll function

Program Status Registers 1 and 2 (I/O Address 3CEh Index
OAh and OBh)

These are general purpose 8-bit read/writable registers for temporary data storage.

Genoa 6400—Genoa SuperVGA 351

Programming Examples

Display Memory Paging

The display memory paging mechanism of the SuperVGA maps selected portions of
the display memory to the processor. Operation of display memory paging is very simi¬
lar to the paging mechanism used for expanded memory boards (also called EMS or
LIM memory). A 64K or 128K logical page of VGA RAM (a chunk of display memory) is
mapped into the PC host address space in the normal VGA display memory address
space. An I/O register (the Memory Page Select register), located in the Sequencer at
index 6, is used to define which pages of display memory are selected. This is illus¬
trated in Figure 14-1. For programming examples showing how to select pages see the
routines Select_Page, Select__Read__Page, and Select_Write_Page in Listing 14-1.

Listing 14-1.

File: GENOAXSELECT.ASM

* File: SELECT.ASM *
* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points: *
* _Select_Graphics - Select a graphics mode *
* _Select_Text - Set VGA adapter into text mode *
* _Select_Page - Set read and write page *
* _Select_Read_Page - Select read page only *
* _Select_Write_Page - Select write page only *
* Uses: *

MODE.INC - Mode dependent constants *
Following are modes and paths for Genoa L40D boards: *

i-E5L colors-1 i— It colors —i 4 colors E colors *
* L40X4DD L40x4fl0 ADDxbDD ADDxtDD 1DE4x7LA 10E4 x7 fc>A 1DE4 x7 LA *
* Mode: 7Eh 5Ch 5Eh LAh(7^h) 5Fh 7Fh N/A *
* Path: E5LC0L E5LC0L E5LC0L 1LC0L 1LC0L 4COL01 N/A *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

352 Advanced Programmer’s Guide to Super VGAs

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

; Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

PAGE_SEL_PORT EQU 3C4h ;10 Address for page select register
PAGE_SEL_INDEX EQU L ;Index for page select register

Code segment variables

TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW □ ADDDh ;Graphics segment addresses
DW □ AOQOh

Offscreen Seg DW □ADDDh ;First byte beyond visible screen
Video_Pitch DW SCREEN PITCH ;Number of bytes in one raster
Video Height DW SCREEN HEIGHT ;Number of rasters
Video_Width DW SCREEN WIDTH ;Number of pixels in a raster
Video_Pages DW SCREEN PAGES ;Number of pages in the screen
Ras_Buffer DB 1D24 DUP (0) ;Working buffer
R_Page DB □ FFh ;Most recently selected page
W_Page DB □ FFh
RW_Page DB □ FFh
Two_Pages DB CAN DO RW ;Indicate separate R & W capability

* *

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to 0x4□□ mode with *
* E5L colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

**

Arg_HorizPtr EQU WORD PTR CBP+4] ; Formal parameters
Arg_VertPtr EQU WORD PTR [BP+L] ;Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+fl] ;Formal parameters

_Select_Graphics PROC : NEAR
PUSH BP ;Standard C entry point

Genoa 6400—Genoa SuperVGA 353

MOV BP/SP

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Select graphics mode
INT IDh

; Reset 'last selected page'

MOV AL,DFFh
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI, Arg_VertPtr ;Fetch
MOV WORD PTR [SI],SCREEN_HEIGHT
MOV SI, Arg_HorizPtr ;Fetch
MOV WORD PTR ESI],SCREEN_WIDTH
MOV SI,Arg_ColorsPtr ;Fetch
MOV WORD PTR ESI],SCREEN_COLORS

; Clean up and return to caller

pointer to vertical resolution
;Set vertical resolution
pointer to horizontal resolution
;Set horizontal resolution
pointer to number of colors
;Set number of colors

;Use 'non-existent' page number
;Set currently selected page

POP ES
POP DS
POP SI
POP DI

MOV SP, BP
POP
RET

BP

_Select_Graphics ENDP

;Restore segment registers

;Standard C exit point

*

Select_Page *
Entry: *

AL - Page number *
*

Select, Page PROC NEAR
CMP AL,CS:RW Page

SP_Go:

JNE
RET

SP_Go

PUSH AX
PUSH DX

AND AL,7
MOV CS:RW_Page,AL
MOV CS:R_Page,DFFh
MOV CS:W Page,DFFh
MOV AH, AL
SHL AL, 1
SHL AL,1
SHL AL, 1
OR AH, AL

MOV DX,PAGE SEL PORT
MOV AL,PAGE SEL INDEX
OUT DX, AL
INC DX
IN AL, DX

;Check if already selected

;Map into range
;Save as latest selection
;Invalidate read and write pages

;Copy into bits D-5 and 3-5

;Select the register

;Read in current data value

354 Advanced Programmer’s Guide to Super VGAs

AND AL,AOh
OR AL/4 Oh
OR AL, AH ;Combine with page numbers
OUT DX, AL ;Select new page number

POP DX
POP AX
RET

Select_Page ENDP

*********************************** **************************************

; Select_Read_Page *

; Entry: *

; AL - Page number *
*

:**

Select Read Page PROC NEAR
CMP AL,CS:R Page ;Check if already selected
JNE SRP Go
RET

SRP Go:
PUSH AX
PUSH DX
AND AL, 7 ;Force page number into 0-7
MOV AH, AL ;Copy page number into AH
MOV CS:R Page,AH ;Save most recently selected page
MOV CS:RW_Page,DFFh

MOV DX,PAGE SEL PORT ;Select the page select register
MOV AL,PAGE SEL INDEX
OUT DX, AL
INC DX
IN AL, DX ;Get current value of page select reg
JMP $ + 5
JMP $ + 2
AND AL,3Ah ;Preserve bits 3-5
OR AL,40h ;Force bits L and 7
OR AL, AH ;Move page number into 'write' bits
OUT DX, AL ;Write out the new page select
; Clean up and return
POP DX
POP AX
RET

Select_Read_ Page ENDP

; Select_Write_Page *

; Entry: *

; AL - Page number *

:**

Select Write Page PROC NEAR
CMP AL,CS:W Page ;Check if already selected
JNE SWP Go
RET

SWP Go:
PUSH AX ;Preserve page number (AX gets trashed)
PUSH DX
AND AL, 7 ;Force page number into 0-7
MOV AH, AL ;Copy page number into AH
SHL AH, 1 ;Move page number into bits 3-5
SHL AH, 1
SHL AH, 1
MOV CS:W Page,AL ;Save most recently selected page
MOV CS:RW Page,DFFh
MOV DX,PAGE_SEL_PORT ;Select page select register

Genoa 6400—Genoa SuperVGA 355

MOV AL/PAGE_SEL_INDEX
OUT DX,AL
INC DX
IN AL,DX
JMP $+5
JMP $+2
AND AL,□? h
OR AL,4 Oh
OR AL,AH
OUT DX,AL
; Clean up and return
POP DX
POP AX
RET

Select_Write_Page ENDP

;Get current value of page sel register

;Preserve bits D-2
;Force bits L & 7
;Move page number into 'write' bits
;Write out the new page select

* *******************

* Enable_Dual_Page *
* Disable_Dual_Page *
* Not supported by Genoa based boards *

*********** *

Enable_Dual_Page
RET

Enable_Dual_Page

Disable_Dual_Page
RET

Disable_Dual_Page

PROC NEAR

ENDP

PROC NEAR

ENDP

*

_Select_Page(PageNumber) *
_Select_Read_Page(PageNumber) *
_Select_Write_Page(PageNumber) *
Entry: *

PageNumber - Page number *
*

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select Page

_Select_Page ENDP

_Select Read Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_ Page ENDP

_Select Write Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ; Restore BP
JMP Select_Write_Page

_Select_Write _Page ENDP

356 Advanced Programmer’s Guide to Super VGAs

**
* *

* _Select_Text *
* Set VGA adapter to text mode *
* *

PROC NEAR
AX/TEXT_MODE ;Select mode 3
IDh ;Use BIOS to reset mode

ENDP

Last_Byte:
_Text ENDS

END

Select_Text
MOV
INT
RET

.Select_Text

Detection and Identification

Genoa recommends that their boards be detected using signature bytes in the BIOS
ROM. ROM address C000:0037 contains a double word pointer that points to the loca¬
tion of the signature bytes (normally C000:00B4h). The signature bytes are illustrated
in Table 14-3.

Table 14-3- Genoa ID bytes

Address Size Content
C000:0037h DWORD Address of ID bytes (normally C000:00B4)
Id Address 4 BYTES 77h, 1 lh, 99h, 66h

Headland HT-208
(V7VGA)

Headland Video Seven
VGA1024I

Headland

VIDEC^^SEVEN

357

358 Advanced Programmer’s Guide to Super VGAs

Introduction
In the past, Video Seven has purchased both EGA and VGA chips from several differ¬

ent sources for use on their products, though these chips were sometimes designed
and built to Video Seven’s specifications. Video Seven purchased video chips from
Chips and Technologies and later from Cirrus Logic before merging with G2 to form
Headland Technology. Headland Technology now manufactures the HT-208 chip, ini¬
tially introduced as V7VGA, for their VGA boards. The name Video Seven has been
retained only as a product name for Headland Technology’s video products.

This chapter describes the Video Seven VGA1024i, a VGA adapter that is based on the
HT-208 (V7VGA) chip; unless noted otherwise, all information also applies to the Video
Seven FastWrite VGA (now discontinued), and the Video Seven VRAM VGA.

In addition to VGA compatibility, Video Seven products include EGA, CGA, MDA and
Hercules emulation modes, high resolution graphics display modes, and a hardware
graphics cursor for planar modes. Video output is analog only (TTL displays are not
supported).

Headland also supplies application software drivers for programs such as MS-Win¬
dows, GEM and Ventura Publisher.

New Display Modes
Table 15-1 on page 359 lists the enhanced display modes that are supported by the

HT-208 (V7VGA). Any of the standard modes can be selected by issuing a BIOS mode
select command. Enhanced modes are selected with a new BIOS service 6Fh (see sec¬
tion on BIOS later in this chapter).

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 359

Table 15-1. Enhanced display modes—Video Seven boards

Memory Display
Mode Type Resolution Colors Required Type
40h Text 80 col x 43 rows 16 256K VGA
4lh Text 132 col x 25 rows 16 256K VGA
42h Text 132 col x 43 rows 16 256K VGA
43h Text 80 col x 60 rows 16 256K VGA
44h Text 100 col x 60 rows 16 256K VGA
45h Text 132 col x 28 rows 16 256K VGA
60h Graphics 752x410 16 256K VGA
6lh Graphics 720x540 16 256K Super VGA
62h Graphics 800x600 16 256K Super VGA
63h Graphics 1024x768 2 256K 8514
64h Graphics 1024x768 4 256K 8514
65h Graphics 1024x768 16 512K 8514
66h Graphics 640x400 256 256K VGA
67h Graphics 640x480 256 512K VGA
68h (1) Graphics 720x540 256 512K Super VGA
69h(l) Graphics 800x600 256 512K XL

NOTE: Modes 68h and 69h are supported on V-RAM VGA only, they are not supported on
1024i VGA.

Memory Organization
For all extended display modes of the VGA1024i, display memory organization is

closely patterned after standard IBM VGA display modes.
VGA1024i includes a display memory paging mechanism that is needed in some dis¬

play modes to make the entire display memory accessible to the processor. Display
memory paging is described in detail later in this chapter.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line, or number
of lines per screen, is increased. Display memory is organized as shown in Figure 5-1
(see Chapter 5).

360 Advanced Programmer’s Guide to Super VGAs

2-Color Graphics Mode

Memory organization for mode 63h resembles VGA mode llh, except that both

number of pixels per scan line and number of scan lines is increased. Two 64K pages
are needed in this mode.

4-Color Graphics Mode

Memory organization for mode 64h resembles VGA mode 12h, except that both
number of pixels per scan line and number of scan lines is increased, and only two
planes are used for each pixel. Two 64K pages are needed in this mode. Display mem¬
ory organization is shown in Figure 9-1. See the section “Four Planes” in Chapter 9 for

programming examples.

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color

graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

256-Color Graphics Modes

Memory organization for these modes resembles VGA mode 13h (320x200 256-
color graphics), except that both the number of pixels per scan line and the number of

scan lines are increased. Display memory organization is shown in Figure 8-1. See
Chapter 8 for programming examples.

New Registers
A bank of extended registers internal to the HT-208 (V7VGA) is used to access the

advanced features of the adapter. The extended register bank is located mapped at the

same I/O address as the Sequencer (using register indexes 6 through 7, and indexes

80h through FFh). Most of the registers in the extended bank have read and write capa¬
bility. Table 15-2 shows the extended register set of the HT-208 (V7VGA). When access¬
ing extended register bank, Headland Technology recommends that the following
rules be observed:

• Before first access to extended registers, enable the access by writing value EAh to
index 6 in the sequencer (3C4h).

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 361

• Disable access to extended registers whenever possible, e.g. when access is not
needed, by writing value AEh to index 6 in the sequencer (3C4).

• Always restore extended registers when done, or at least set them to a ‘non-disrup-
tive value (generally zero). BIOS mode select does not always reset extended
registers.

• Avoid modifying extended registers other than the following: 94h, 9C through A3h,
A5h, Flh through F6, F9h through FC, and FEh.

Table 13-2. Extended registers—VGA1024i

I/O Address Index Register
3C3 6 Extension Control Register
3C3 7 Reset Horizontal Character Coun
3C5 80h-82h Test
3C5 83h Attribute Controller Index
3C5 84h-8Dh Reserved
3C5 8Eh& 8Fh VGA Chip Revision Level
3C5 90h-93h Reserved
3C5 94h Pointer Pattern Address
3C5 95h-9Bh Reserved
3C5 9Ch Pointer Horizontal Position High
3C5 9Dh Pointer Horizontal Position Low
3C5 9Eh Pointer Vertical Position High
3C5 9Fh Pointer Vertical Position Low
3C5 AOh GC Memory Latch 0
3C5 Alh GC Memory Latch 1
3C5 A2h GC Memory Latch 2

3C5 A3h GC Memory Latch 3
3C5 A4h Clock Select

3C5 A5h Cursor Attributes
3C5 A6h-AFh Reserved
3C5 BOh-BFh Scratch Registers
3C5 C0h-E9h Reserved
3C5 EAh Switch Strobe

3C5 EBh Emulation Control
3C5 ECh Foreground Latch 0
3C5 EDh Foreground Latch 1
3C5 EEh Foreground Latch 2
3C5 EFh Foreground Latch 3
3C5 FO Fast Foreground Latch Load
3C5 FI Fast Latch Load State
3C5 F2 Fast Background Latch Load
3C5 F3 Masked Write Control
3C5 F4 Masked Write Mask

362 Advanced Programmer’s Guide to Super VGAs

Table 13-2. Extended registers—VGA1024i (continued)

I/O Address Index Register

3C3 F5 Foreground/Background Pattern

3C3 F 6 1 MB RAM Bank Select

3C5 F7 Switch Readback

3C5 F8 Extended Clock Control

3C5 F9 Extended Page Select

3C5 FA Extended Foreground Color

3C5 FB Extended Background Color

3C5 FC Compatibility Control

3C5 FD Extended Timing Select

3C5 FE Foreground/Background Control

3C5 FF 16-bit Interface Control

Index 6 - Extension Control Register

D7-D1 - unused

DO - Extensions Access Enable

Extensions Access Enable must be set before the extended register bank (indexes

80h - FFh) can be written to or read from. This bit is normally set in extended modes by
the BIOS mode select function.

Index lFh - Identification Register

This read-only register will read back the current value of the CRT Controller Start

Address High register (I/O address 3B5/3D5, index C), exclusive-ored with the con¬
stant value EAh. This register can be used to detect the presence of the V7VGA chip (see
the programming examples for more details).

Index 8Eh and Index 8Fh - VGA Chip Revision Register

This is an 8-bit register which is redundantly mapped at index 8Eh and 8Fh. Head¬
land Technology has defined the following values for this register:

70h V7VGA chip revisions 1,2, or 3
71 h V7VGA chip revision 4
72h-7Fh Reserved for future versions of V7VGA
80h-FFh VEGA VGA chip

0-6Fh Reserved for future Video Seven products

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 363

Hardware Graphics Cursor

Graphics cursors are used extensively in graphical interfaces where a pointing
device such as a mouse or trackball is used to position an icon (usually an arrow) on
the screen. For most VGA adapters, graphics cursors must be implemented in software.
Hardware cursor support can reduce the burden on the processor and improve
performance.

VGA1024i provides hardware cursor support for all planar graphics modes (modes
OFh through 12h, and modes 60h through 65h). The graphics cursor is a 32 pixel x 32
pixel programmable pattern that is superimposed on the screen. It is defined, con¬
trolled and positioned using registers 94h, 9Ch through 9Fh, and FFh, in the extended
register bank.

Two 128-byte blocks form a 256-byte pattern in display memory which defines the
shape of the graphics cursor. Cursor pattern data, which consists of a 128-byte AND
mask followed by a 128-byte XOR mask, is stored in off-screen display memory any¬
where from memory address offset COOOh through FFCOh, and may reside in any one
of up to four possible banks of display memory (in planar modes). The Pointer Pattern
Address register (index 94h) is used to define the starting address for cursor pattern
data as shown in Figure 15-3. In addition, the 16-bit Interface Control register (index
FFh) can be used to select which 64K page of display memory graphics cursor data will
be read from. Registers 9Ch through 9Fh can be used to define the position of the cur¬
sor on the screen.

Index 94h - Pointer Pattern Address Register

D7 - A13
D6-A12
D5-A11
D4-A10

D3-A9
D2-A8
D1 -A7
D0-A6

This register together with bits D5 and D6 of the 16-bit Interface Control register
determine the address of the cursor pattern in display memory (see Figure 15-3 on
page 380).

Index 9Ch - Pointer Horizontal Position High

D7-D3 - Unused
D2 - Horizontal position bit 10

364 Advanced Programmer’s Guide to Super VGAs

D1 - Horizontal position bit 9
DO - Horizontal position bit 8

Index 9Dh - Pointer Horizontal Position Low

D7 - Horizontal position bit 7
D6 - Horizontal position bit 6
D5 - Horizontal position bit 3
D4 - Horizontal position bit 4
D3 - Horizontal position bit 3
D2 - Horizontal position bit 2
D1 - Horizontal position bit 1
DO - Horizontal position bit 0

This register together with Pointer Horizontal Position High determine the X coordi¬
nate of the cursor.

Index 9Eh - Pointer Vertical Position High

D7-D2 - Unused
D1 - Vertical position bit 9
DO - Vertical position bit 8

Index 9Fh - Pointer Vertical Position Low

D7 - Vertical position bit 7
D6 - Vertical position bit 6
D5 - Vertical position bit 5
D4 - Vertical position bit 4
D3 - Vertical position bit 3
D2 - Vertical position bit 2
D1 - Vertical position bit 1
DO - Vertical position bit 0

This register together with Pointer Horizontal Position High determine the X coordi¬
nate of the cursor.

Index A5 - Cursor Attributes Register

This register controls attributes of both the standard text cursor and the 32x32
graphics cursor.

D7 Graphics Cursor Enable (1 = enabled)
D6-D4 Unused

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 365

D3 Text Cursor Mode (0 = replace, 1 = XOR)
D2,D1 unused

DO Cursor blink disable (1 = disabled)

Index FFh - 16-bit Interface Control Enable

D7 Reserved
D5-D6 Cursor pattern page select
D0-D4 Reserved

This register together with Pointer Pattern Address register determine the location
of cursor pattern in the display memory.

Index AOh through A3h - Graphics Controller Data Latches

All EGA and VGA products include data latches internal to the Graphics Controller
that can be used to perform logical functions on display data. These latches are not
directly accessible by the processor on either EGA or VGA VGA1024i, however, has
made these latches available for both reading and writing through the extended regis¬
ter bank at these indexes:

Plane 0 Memory Latch - I/O Address 3C5 Index AO
Plane 1 Memory Latch - I/O Address 3C5 Index A1
Plane 2 Memory Latch - I/O Address 3C5 Index A2
Plane 3 Memory Latch - I/O Address 3C5 Index A3

These registers can be used, when different data bytes need to be loaded into each
of the four planes, to avoid excessive plane enable/disable. The same registers can also
be accessed by four successive writes to extended register FOh. The SetCursor routine
shown in listing 13-2 uses this capability.

Foreground/Background Operations

VGA1024i has two new Graphics Controller modes to speed drawing operations.
One of the new modes performs color expansion of a monochrome bitmap in hard¬
ware and the other provides hardware support for dithering. The two operations are
illustrated in Figure 15-1 on page 366.

Figure 15-1. Color Expand and Dither registers

Index ECh through EFh - Foreground Latch

These four registers are used to define the foreground latch.

Index FOh - Fast Foreground Latch

Write operations to the Fast Foreground Pattern register (Index FO) can be used to
sequentially load all four foreground pattern registers (ECh through EFh). Four
processor writes to this address will cause all four registers to be loaded. Read from
FOh will reset to first register.

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 367

Index Flh - Fast Latch Load State Register

D7,D6 - Unused

D5,D4 - Foreground Latch Load State
D3,D2 - Unused

D1,D0 - Background Latch Load State

Foreground Latch Load State defines which foreground latch (index ECh-EFh) will

be written by the next write to index FOh. This value is automatically reset to zero by a
read operation at index FOh.

Background Latch Load State defines which background latch will be written by the
next write to index F2h. This value is automatically reset to zero by a read operation at
index F2h.

Index F2h - Fast Background Pattern

Write operations to the Fast Background Pattern Register (Index F2) can be used to
sequentially load all four of the normal VGA Processor Read Latches. Four processor
writes to this address will cause all four registers to be loaded. A read from this address
will reset to the first register.

Index FAh - Foreground Color and Index FBh - Background Color

These registers determine foreground and background colors in the color expan¬
sion mode.

Index FEh - Foreground/Background Control Register

D7-D4 unused

D2-D3 foreground/background mode select:
00 - Standard VGA Mode

01 - Color Expansion Mode

10 - Dithered Foreground Mode
11 - invalid

D1 foreground/background source select
DO unused

Color Expansion Mode. In color expansion mode, data is written to all four color
planes simultaneously. For each bit of write data from the processor, a zero bit causes

the four-bit background color stored in the Background Color register (Index FBh) to
be written into the four color planes at that pixel position. A one bit causes the four-bit
foreground color stored in the Foreground Color register (Index FAh) to be written

368 Advanced Programmer’s Guide to Super VGAs

into the four color planes at that pixel position. This permits eight pixels of a mono¬
chrome display pattern to be color expanded into two colors in a single memory cycle.

Dithered Foreground Mode. In dithered foreground mode, four Foreground Pat¬
tern registers (Index EC-EF), one for each plane, are used in place of processor write
data to the Graphics Controller. These registers can be loaded with a dithering pattern.
The normal VGA Processor Read Latches function as usual, and may be used to logically
combine screen data with the dithering pattern.

Foreground/Background Source Select. This selects the source of the pattern for
color expansion to either be processor write data if D1 equals 1 or data from the Fore¬
ground/Background Pattern register (Index F5h) if D1 equals 0.

Display Memory Paging

V7VGA uses a 4-bit page number for memory page selection. These bits are in three
separate registers, and page number read back is done by a different method than is
used to select page numbers (see Figure 15-2 on page 373). Headland Technology rec¬
ommends that paging first be enabled by setting bit D2 in the Paging Control register
(index FCh), even though this is normally done by the BIOS mode select function.

Index FCh - 256-Color Paging Control Register

D7 - Enable 3C3
D6 - Reserved
D5 - Reserved
D4 - Reserved
D3 - Reserved
D2 - 256-Color Paging Enable
D1 - 256-Color 64KB/128KB Paging Select
DO - Reserved

When Enable 3C3 is set to one, I/O port 3C3h can be used to enable and disable all
I/O and memory operations to the VGA. When Enable 3C3 is zero, I/O port 3C3h has no
effect on the VGA.

If 256-Color Paging Enable is set to one, then one of two display memory paging
modes will be in effect, as explained below.

If 256-Color 64KB/128KB Paging Select is set to zero, and 256-Color Paging Enable is
set to one, then 64K paging is selected. Display memory can be accessed as four 64K
pages, with page selection performed by bit D5 of the Miscellaneous Output register
(I/O Address 3C2) and bit DO of the 256-Color Paging register (see below).

If 256-Color 64 KB/128 KB Paging Select is set to one, and 256-Color Paging Enable is
set to one, then 128K paging is selected. Display memory can be accessed as two 128K

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 369

pages, with page selection performed by bit D5 of the Miscellaneous Output register
(I/O Address 3C2).

In extended graphics modes this register is normally initialized by the BIOS to 64K
pages, with paging enabled.

Index F9h - 256-Color Paging Register

D7-D1 - Unused

DO - 256 Color Extended Page Select

If 236-Color 64K paging is selected (see register FCh above), then this bit is used as
one of three page select bits for display memory.

Index F6h - Bank Select Register

D7 - Line Compare Bank Reset
D6 - Counter Bank Enable

D5 - CRTC Read Bank Select 1
D4 - CRTC Read Bank Select 0
D3 - CPU Read Bank Select 1
D2 - CPU Read Bank Select 0

D1 - CPU Write Bank Select 1
DO - CPU Write Bank Select 0

Of interest for page selection are bits D2-D3 and bits D0-D1. To select a page, bits
D2-D3 determine bits D2-D3 of the page number. To determine which page is
selected, bits D0-D1 determine bits D2-D3 of currently selected page number. This is
illustrated in Figure 15-2 on page 373.

Index FFh - The 16 Bit Interface Control Register

This register actually contains a miscellaneous group of control bits:

D7 - 16-bit Bus Status (read only) - indicates if the VGA is installed in a 16-bit slot
D6,D5 - Pointer Bank Select - which bank of memory the graphics cursor pattern is

stored in
D4 - Enable access to display beyond 256K
D3 -16-bit ROM interface enable
D2 - Fast Write Enable

D1 - 16-bit I/O Enable - enables the VGA for 16-bit wide processor I/O operations.
DO - 16-bit Memory Enable - enables the VGA for 16-bit wide processor memory

operations.

370 Advanced Programmer’s Guide to Super VGAs

A board that is enabled for 16-bit I/O or memory operations will still properly han¬
dle all 8-bit wide processor operations and will still operate correctly if installed in an
8-bit wide slot.

The BIOS

Interrupt Vectors Used by the BIOS

INT 2, the system NMI vector, is used by the BIOS while in CGA or Hercules emula¬
tion mode to interrupt the processor after certain types of I/O operations so that the
emulation firmware can properly maintain the state of the VGA display circuitry. INT
lOh is the normal vector used to access video BIOS functions. INT 42h is used to retain
the motherboard BIOS video services vector so that it can be used to service a second¬
ary video adapter if necessary. INT 43h points to a secondary character generator in
CGA graphics modes. INT lDh is used in emulation modes to point to a table of param¬
eters for the CRT Controller. INT lFh points to a secondary character generator in dis¬
play modes 4, 5 and 6.

Added BIOS Functions

The extended modes cannot be selected using Mode Select service of BIOS (func¬
tion 0). Instead a new extended function must be used.

Included in the VGA1024i BIOS are a number of new functions that are specific to
Video Seven boards. These new functions are collectively grouped as BIOS function
6Fh:

Sub function 0 - Inquire
Sub function 1 - Get Info
Sub function 4 - Get Mode and Screen Resolution
Sub function 5 - Extended Set Mode
Sub function 6 - Select Autoswitch Mode
Sub function 7 - Get Video Memory Configuration

Inquire (Sub function 0)

Input Parameters:

AH = 6Fh
AL = 0

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 371

Return Value:

BX = ASCII V7’ if BIOS extensions are present

Get Info (Sub function 1)

Input Parameters:

AH = 6Fh
AL = 1

Return Value:

AH = status

D7,D6 = Diagnostic bits
D5 = Display type (0 = color, 1 = monochrome)
D4 = Display resolution (0 = >200 lines)
D3 = Vertical sync
D2 = Light pen switch
D1 = Light pen flip-flop
DO = Display enable (0 = enabled)

Get Mode and Screen Resolution (Sub function 4)

Input Parameters:

AH = 6Fh
AL = 4

Return Value:

AL = current display mode
BX = Horizontal text columns or graphics pixels
CX = Vertical text rows or graphics pixels

Extended Set Mode (Sub function 5)

Input Parameters:

AH = 6Fh
AL = 5

Return Value:

None.

372 Advanced Programmer’s Guide to Super VGAs

Select Autoswitch Mode (Sub function 6)

Input Parameters:

AH = 6Fh
AL = 6
BL = Autoswitch mode select

00 = EGA/VGA modes only
01 = VGA/EGA/CGA/MGA modes
02 = ’Boot-up’ CGA/MGA modes

BH = Enable/Disable (0 = enable, 1 = disable)

Get Video Memory Configuration (Sub function 7)

Input Parameters:

AH = 6Fh
AL = 7

Return Value:

AL = 6Fh
AH = Memory size

D7 = 1 if adapter uses VRAM
D6-D0 = Number of 256K blocks of display memory

BX = Chip revision
CX = 0

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 373

Programming Examples

Display Memory Paging

The display memory paging mechanism of the VGA1024i maps selected portions of
the display memory to the processor. Operation of display memory paging is very simi¬
lar to the paging mechanism used for expanded memory boards (also called EMS or
LIM memory). A 64K or 128K logical page of VGA RAM (a chunk of display memory) is
mapped into the PC host address space in the normal VGA display memory address
space. Paging on Video Seven boards is somewhat convoluted compared to many
SuperVGAs. The paging mechanism varies from mode to mode, and often involves
more than one I/O address. Memory paging for VGA1024i is illustrated in Figure 15-2.

Figure 15-2. Memory paging registers

Advanced Programmer’s Guide to Super VGAs

Listing 15-1. File. HEADLAND \ SELECT.ASM

* File: SELECT.ASM
* Description: This module contains procedures to select mode and to
* select pages. It also initializes global variables
* according to the values in the MODE.INC include file.
* Entry Points:
* _Select_Graphics - Select a graphics mode
* _Select_Text - Set VGA adapter into text mode
* _Select_Page - Set read and write page
* Uses:
* MODE.INC - Mode dependent constants *
* Following are modes and paths for Video ? boards: *
* i-asb colors-1 i— 1E» colors —i A colors 5 colors *
* ^AOxAUQ ^AQxA&U ADDxtDD ADOxLOO 1D24X7E.A 1054X7LA 1054x7LA *
* Mode: tth t7h LSh LAh(L2h) t5h E»4h L3h *
* Path: 25LC0L 25LC0L 25LC0L ItCOL 1LC0L 4C0L 5C0L * **

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Video_Colors
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

; Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

; Code segment variables

TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW □ ADDDh
DW □ AODOh

Offscreen Seg DW OAOODh
Video_Pitch DW SCREEN PITCH
Video Height DW SCREEN HEIGHT
Video_Width DW SCREEN WIDTH
Video_Pages DW SCREEN PAGES

;Graphics segment addresses

;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 375

Video_Colors DW SCREEN COLORS
Ras_Buffer DB 10EA DUP (0)
R Page DB OFFh
W Page DB OFFh
RW_Page DB □ FFh
Two_Pages DB □

; Number of colors in this mode
;Working buffer
;Most recently selected page

;Indicate separate R & W capability

* *

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to L40x<DD mode with *
* E5L colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

;Standard C entry point

;Preserve segment registers

; Select graphics mode

;Enable extended register bank access

Arg_HorizPtr EQU WORD PTR [BP+<]
Arg_VertPtr EQU WORD PTR [BP + L]
Arg_ColorsPtr EQU WORD PTR [BP+fl]

_Select_Graphics PROC NEAR
PUSH BP
MOV BP, SP

PUSH DI
PUSH SI
PUSH DS
PUSH ES

; Select graphics mode

MOV AX, LFD5h
MOV BX,GRAPHICS_MODE
INT lOh
MOV DX,3C4h
MOV AX,DEAOLh
OUT DX,AX

IFE

ENDIF

; Enable access to second bank of 35Lk (mode Lbh does not do this)

(GRAPHICS_MODE-LLh)
;Fetch address of extended registers
;Fetch index of control register
;Select control registers
;Point to data
;Read the old value
;Force bit4 to zero

;Use 'non-existent' page number
;Set currently selected page

;Fetch pointer to vertical resolution
[GHT ;Set vertical resolution
;Fetch pointer to horizontal resolution

)TH ;Set horizontal resolution
;Fetch pointer to number of colors

MOV DX,3C4h
MOV AL,DFFh
OUT DX, AL
INC DX •
IN AL, DX
OR AL,IDh
OUT DX, AL

; Reset 'last selected page'

MOV AL,DFFh
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV CS:RW Page,AL

; Set return parameters

MOV SI,Arg_VertPtr
MOV WORD PTR [SI],SCREEN
MOV SI,Arg HorizPtr
MOV WORD PTR [SI],SCREEN
MOV SI,Arg_ColorsPtr

376 Advanced Programmer’s Guide to Super VGAs

MOV WORD PTR [SI], , SCREEN_COLORS ;Set number of colors

; Clean up and return to caller

POP ES ; Restore segment registers
POP DS
POP SI
POP DI

MOV SP, -BP ;Standard C exit point
POP BP
RET

Select_Graphics ENDP

*

Select_Page *
Entry: *

AL - Page number *
*

Select. Page PROC NEAR
CMP AL,CS:RW Page ;Check if ; already selected
JNE SP_Go
RET

SP_Go:
PUSH AX
PUSH BX
PUSH DX

MOV CS:RW Page,AL ; Save most recently selected page
MOV CS:R Page,DFFh
MOV CS:W Page,DFFh
MOV AH , AL ; Copy page number for later

Page select for E5L color modes
0 3C4.FL.D
1 3CE. .5
E 3C4.Ft.O&E
3 3C<.Ft.1&3

^5(c5)c***>*c*5(c3(e>)e5*c*5)e3tc*>)e****>tc******=f:*****3((5)e3(c*>)c3)ej|c**>)c3)o)t**5)c3(c3)e**3(e3io*c**

IFE (SCREEN COLORS - E5L)
MOV DX,3CCh ;Fetch value of Misc Input Reg
IN AL, DX
AND AL,NOT EOh ;Move bitl from PageNo into bits Of

AND AH , E ; Misc Output Register
SHL AH ,1
SHL AH, 1
SHL AH, 1
SHL AH, 1
OR AL, AH
MOV DX/3CEh
OUT DX / AL

MOV DX/ 3C^ih ;Move bitD from PageNo into bitD of
MOV AL,0F3h ;Sequencer extension reg FS
MOV AH,CS:RW Page
AND AH, 1
OUT DX, AX

MOV AL,DFLh ;Move bits from PageNo into bitD & bitE
OUT DX, AL ;and bit3 into bitl & bit3
INC DX ;of Sequencer extension reg FL
IN AL, DX
AND AL,DFOh

MOV BL,CS:RW Page ;...isolate bits & 3
AND BL,OCh

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 377

ENDIF

MOV BH,BL
SHR BL,1
SHR BL,1
OR AL,BH
OR AL,BL
OUT DX, AL

; . . .copy bit3&E into bitl&O

;...add into AL

Page select for It color modes
□ 3C4.FL.D&E
1 3C4.FL.1&3

IFE (SCREEN .COLORS - It)
MOV DX,3C<h ;Address of extended bank
MOV AL,OFLh ;Move bitD from PageNo into bitD & bits
OUT DX / AL ;and bitl into bitl & bit3
INC DX ;of Sequencer extension reg Ft
IN AL, DX
AND AL,OFDh

MOV BL/CS:RW Page isolate bitD & 31
AND BL,03h
MOV BH, BL
SHL BL, 1 ;...copy bitD&l into bitE&3
SHL BL, 1
OR AL, BH ;...add into AL
OR AL , BL
OUT DX / AL

ENDIF

Page select for 4 and E color modes
□ 3CC.5

IF SCREEN_COLORS LT It
MOV DX,3CCh
IN AL, DX
AND AL/NOT EDh
NOT AH
AND AH, 1
SHL AH, 1
SHL AH, 1
SHL AH, 1
SHL AH, 1
SHL AH, 1
OR AL, AH
MOV DX,3CEh
OUT DX, AL

ENDIF
POP DX
POP BX
POP AX
RET

Select. _Page ENDP

;Fetch value of Misc Input Reg

;Move ~bitD from PageNo into bits of
; Misc Output Register

J***********:***^^^^^^^^^^^^^^^^^^
» *

; Select_Read_Page *
; There is no separate Read/Write Page capability *
; Entry: *
; AL - Page number *
» * j***^,^^^^^*^^

Select_Read_Page PROC NEAR
RET

Select_Read_Page ENDP

378 Advanced Programmer’s Guide to Super VGAs

**
*

Select_Write_Page *
There is no separate Read/Write Page capability *

Entry: *
AL - Page number *

*

**

Select_Write_Page PROC NEAR
RET

Select_Write_Page ENDP

**
*

_Select_Page(PageNumber) *
Entry: *

PageNumber - Page number *
*

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Page

_Select_Page ENDP

*

; _Select_Read_Page(PageNumber) *
; Entry: *
; PageNumber- Page number for read *
• *

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP •.Restore BP
JMP Select_Read_Page

Select_Read_Page ENDP

**
*

_Select_Write_Page(PageNumber) *
Entry: *

PageNumber - Page number for write *
*

**

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Write_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

Select_Write_Page ENDP

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i

;* _Select_Text *
;* Set VGA adapter to text mode *
; * *

_Select_Text PROC NEAR
MOV AX,TEXT_MODE ;Select mode 3
INT IDh ;Use BIOS to reset mode
RET

_Select_Text ENDP

*

Enable_Dual_Page *
Disable_Dual_Page *

*

Entry: *
AL - Page number *

* • ********** *1£"* ***^^^3^^^^^

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

Last_Byte:
_Text ENDS

END

380 Advanced Programmer’s Guide to Super VGAs

Graphics Cursor Control

The VGA1024i includes hardware support for a graphics cursor that can significantly
reduce the processor overhead required for cursor control. Its usefulness is limited,
however, since the hardware cursor cannot be used in 256-color modes. Figure 15-3
illustrates the operation of the hardware graphics cursor. Seven registers in the
extended register bank are involved in the definition and control of the graphics
cursor.

Index 9Ch Index 9Dh Index 9Eh Index 9Fh

mm him rrm
Index A5h

Enable Cursor

Pattern Masks

Start Address

Black (when masks = 00)
Tranparent (when masks = 10)
Inverted (when masks =11)
White (when masks = 01)

rm rnoioTQTW^
//

Index FFh Index 94 h
Plane 0

Start +0

+1

+2

+31

+32

+33

+34

+63

w "TO' W W|

(0,1) (i,i) (2,1) (3,1)

(0,31) 1 (1,31) 1 (2,31) 1 (3,31)

Cursor Masks Stored

Plane 1 Plane 2 Plane 3

AND(O.O) AND(1,0) AND(2,0) AND(3,0)

AND(0,1) AND(1,1) AND(2,1) AND(3,1)

AND (0,2) AND(1,2) AND(2,2) AND(3,2)

AND(0,31) AND(1,31) AND(2,31) AND(3,31)

XOR(0,0) XOR(1,0) XOR (2,0) XOR(3,0)

XOR(O.I) XOR(1,1) XOR(2,1) XOR(3,1)

XOR(0,2) XOR(1,2) XOR(2,2) XOR (3,2)

XOR(0,31) XOR(1,31) XOR(2,31) XOR(3,31)

Figure 15-3. Hardware cursor registers

Hardware cursors operate differently than software cursors. Since the cursor is
drawn as an overlay on the screen, there is never any need to save background data in
the cursor area. The cursor is defined by two monochrome bitmaps, or masks, which
correspond to the conventional AND and XOR masks used for software cursors (for
more on software cursors see our previous text, Programmer's Guide to the EGA/VGA).

Headland HT-208 (V7VGA)—Headland Video Seven VGA10241 381

Cursor pattern data must be loaded into off-screen display memory in a scrambled
format. Figure 15-3 shows cursor pattern locations. Each row of cursor, for each mask,
is defined by four bytes of pattern (32 bits for each 32-pixel row of the cursor), each
byte in a separate plane. Each byte defines 8 pixels, with the most significant bit corre¬
sponding to left-most pixel. Bytes for AND mask are in the first 32 bytes (of each plane),

and for XOR mask in next 32 bytes (of each plane). Each byte in Figure 15-3 is labeled
as (column, row) to indicate which byte in the cursor it controls.

The programming example in Listing 15-2 illustrates how to define cursor shape and
how to move the cursor around the screen. Three procedures are provided.
Set_Cursor is used to store AND and XOR masks into off-screen display memory, and

how to enable the cursor display. Move_Cursor is used to determine where the cursor
is displayed. Remove_Cursor disables the cursor display.

Listing 15-2. File: HEADLAND \HWCURSOR.ASM

*******3(cj)t*3)t5)t*>*c****3)c>)t3|c3)o|c^***>)e5(c*s(c*3(c******3)c>*c>*c*3(c****j)c>t(*>)c*j)c5(e*3»c*=t:*J(c******3*c****

*
*
*
*
*

*

*
File: HWCURSOR.ASM *
Description: This module contains procedures to demonstrate use of a *

hardware cursor. It defines cursor shape, moves *
cursor around the screen, and removes cursor. *

*

* Entry Points: *
* *
*

*

*
*

Set_Cursor
Move_Cursor
Remove_Cursor

*
*
*
*

* Uses:
*
*
*

*
*

Select_Page
Graf_Seg
Video_Height
Video_Pitch

*
*
*
*
*

*

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

EXTRN Graf_Seg:WORD
EXTRN Video_Pitch:WORD
EXTRN Video_Height:WORD
EXTRN Video_Colors:WORD
EXTRN _BitBlt:NEAR
EXTRN Select_Page:NEAR

PUBLIC _Set_Cursor
PUBLIC _Move_Cursor
PUBLIC _Remove_Cursor

TEXT SEGMENT BYTE PUBLIC 'CODE'

Common cursor definitions

382 Advanced Programmer’s Guide to Super VGAs

* _Set_Cursor(AND_Mask, XOR_Mask, FG_Color, BG_Color) *
* This procedure saves the two masks in the offscreen memory *
* according to Video 7 schema. Colors are ignored. *
* *

* Entry: *
* AND_Mask - 4x32 bytes with AND mask *
* XOR_Mask - 4x32 bytes with XOR mask *
* BG_Color - Foreground color *
* FG_Color - Background color *

Arg_AND_Mask EQU WORD PTR
Arg_XOR_Mask EQU WORD PTR
Arg_BG_Color EQU BYTE PTR
Arg_FG_Color EQU BYTE PTR

_Set_Cursor PROC NEAR
; Jump to software cursor

CMP WORD PTR CS:Video_(
JNE Set_HW_Cursor
JMP

Set_HW_Cursor:
Set_SW_Cursor

; Save registers

PUSH BP
MOV BP, SP

PUSH SI
PUSH DI
PUSH ES
PUSH DS

[BP+fc]
;Formal parameters

;Standard high-level entry

;Save registers

Enable planar write to display memory
This needs to be done so that cursor masks can be loaded
one plane at a time, one row of mask per addressable byte.

MOV DX,GRAPHICS CTRL PORT
MOV AL,MISC REG
OUT DX, AL
INC DX
IN AL, DX
PUSH AX
AND AL,Dlh
OR AL, CKh
OUT DX, AL
DEC DX

MOV AL,MODE REG
OUT DX, AL
INC DX
IN AL, DX
PUSH AX
MOV AL,Dlh
OUT DX, AL

MOV DX,SEQUENCER PORT
MOV AL,4
OUT DX, AL
INC DX
IN AL, DX
PUSH AX
MOV AL, L
OUT DX, AL
DEC DX

;Address of graphics controller

;Select misc register

;Read misc reg value
;Save to be restored when done
;Set no chain, memory at A000

;Select mode registers

;Read mode reg value
;Save for later
;Disable odd/even, select latch write

;Address of Sequencer
;Select memory mode reg

;Read memory mode reg
;Save value for later
;Disable odd/even and double odd/even

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 383

MOV AL,5 ;Select plane enable
OUT DX, AL
INC DX
IN AL , DX ;Read plane enable register
PUSH AX ;Save for later
MOV AL,0Fh ;Enable all planes for write
OUT DX, AL

; Select page where the masks will be stored
; (last b< bytes of each plane in last on-screen page)

MOV AX,CS:Video_Height ;Compute page number of last line
MUL CS:Video Pitch
MOV AL, DL ;Select the page
CALL Select_Page

; Set page number and offset for cursor mask location

ROR AL,1 ;Copy page number into bits 5&b
ROR AL,1
ROR AL, 1
MOV AH, AL
MOV DX, 3C<h ;Address of extended register bank
MOV AL, DFFh ;Address if misc reg
OUT DX, AL ;Select misc reg
INC DX
IN AL, DX ;Read current value of misc reg
AND AL,NOT bOh ;Clear bits 5&b
OR AL, AH ;Move page number into bits 5&b
OUT DX, AL ;Set page number for cursor
DEC DX

MOV DX, 3C4h ;Address of extended bank
MOV AL,q^h ; Index of pointer pattern address reg
MOV AH,DFFh ;Indicate last pointer
OUT DX, AX ;Set the new address

; Copy masks to off-screen memory

MOV ES,CS:Graf Seg ;Segment of display memory
MOV DI,-b< ;Offset is b4 bytes before end of pa’ge
MOV SI,Arg AND Mask ;Address of AND mask
MOV AL,DF5h ;Reset latch index
OUT DX, AL
INC DX
IN AL, DX

MOV n

X

U
J ru

;Initialize counter
Copy AND Loop:

LODSB ;Fetch next value of AND mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of AND mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of AND mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of AND mask
OUT DX, AL ;Load next latch
STOSB ;Write latches into display memory
LOOP Copy_AND_Loop

MOV CX,3E ;Initialize counter
MOV SI,Arg_XOR_Mask ;Fetch pointer to XOR mask

Copy XOR Loop:
LODSB ;Fetch next value of mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of mask
OUT DX, AL ;Load next latch
LODSB ;Fetch next value of mask
OUT DX, AL ;Load next latch

384 Advanced Programmer’s Guide to Super VGAs

STOSB
LOOP Copy_XOR_Loop

; Set cursor postion at x=D

MOV DX,3C4h
MOV AL,SCh
XOR AH,AH
OUT DX,AX
INC AL
OUT DX,AX
INC AL
MOV BX,CS:Video_Height
MOV AH,BH
OUT DX,AX
INC AL
MOV AH,BL
OUT DX,AX

; Enable the cursor (will be

MOV DX,3C4h
MOV AL,DA5h
OUT DX,AL
INC DX
IN AL,DX
OR AL,flDh
OUT DX,AL

; Restore to original mode

MOV DX,SEQUENCER_PORT
MOV AL,E
OUT DX,AL
INC DX
POP AX
OUT DX,AL
DEC DX

MOV AL,4
OUT DX,AL
INC DX
POP AX
OUT DX,AL

MOV DX,GRAPHICS_CTRL_PORT
MOV AL,MODE_REG
OUT DX,AL
INC DX
POP AX
OUT DX,AL
DEC DX

MOV AL,MISC_REG
OUT DX,AL
INC DX
POP AX
OUT DX,AL

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP,BP
POP BP
RET

Set_Cursor

;Write latches into display memory

nd y=last_line+l

;Address of extended registers
;Index of cursor x
;Value
;Set hi-x to □

;Set lo-x to 0

;Fetch number of last_line+l

;Set hi-y

;Set lo-y

below last on-screen line)

;Address of extended registers
;Index of cursor attr reg
;Select cursor attr reg

;Fetch current value
;Turn cursor on

;Sequencer address
;Select plane select reg

;Restore original value

;Select mode reg

;Restore original value

;Address of Graphics Controller
;Select mode reg

;Restore original value

;Select misc reg

;Restore original value

;Restore segment registers

;Restore stack

ENDP

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 385

* *

* _Move_Cursor(Curs_X, Curs_Y) *
* This procedure is used to move the cursor from one *
* location to another, by setting new cursor position registers. *
* *

Arg_Curs_X
Arg_Curs_Y

EQU WORD PTR [BP+4] ;Formal parameters
EQU WORD PTR [BP+t]

_Move_Cursor
; Jump

PROC NEAR
to software cursor routines if 35L-color mode

CMP WORD PTR CS:Video_Colors,55fc.
JNE Move_HW_Cursor
JMP Move_SW_Cursor

Move_HW_Cursor:

; Save registers

PUSH BP
MOV BP,SP
SUB SP,4

PUSH SI
PUSH DI
PUSH ES
PUSH DS

; Set cursor position

MOV DX,3C4h
MOV AL,SCh
MOV BX,Arg_Curs_x

MOV AH,BH
OUT DX,AX
INC AL

MOV AH,BL
OUT DX,AX
INC AL

MOV BX,Arg_Curs_y
MOV AH,BH
OUT DX,AX
INC AL

MOV AH,BL
OUT DX,AX

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP, BP
POP BP
RET

_Move_Cursor ENDP

;Standard high-level entry

;Save registers

;Address of extended registers
;Index of first cursor pos reg
;Fetch cursor x

;Set hi-x

;Set lo-x

;Fetch cursor y
;Set hi-y

;Set lo-y

;Restore segment registers

;Restore stack

* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* by disabling cursor display. *
* *

386 Advanced Programmer’s Guide to Super VGAs

Remove_Cursor PROC NEAR
; Jump to software cursor routines if E5L-color mode

CMP WORD PTR CS:Video_Colors,E5b
JNE Remove_HW_Cursor
JMP Remove_SW_Cursor

Remove_HW_Cursor:

; Save registers

PUSH BP ;Standard high-level entry
MOV BP / SP

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Disable the cursor

MOV DX,3C4h ;Address of extended registers
MOV AL,0A5h ;Index of cursor attr reg
OUT DX, AL ; Select cursor attr reg
INC DX
IN AL, DX ;Fetch current value
AND AL/NOT fiOh ;Turn cursor off
OUT DX / AL

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI

MOV SP, BP ;Restore stack
POP BP
RET

Remove_Cursor ENDP

Software Cursor Routines

Common cursor definitions

CUR WIDTH EQU 3E
CUR_HEIGHT EQU 3E

AND OFFSET EQU 0
XOR OFFSET EQU CUR WIDTH
CUR OFFSET EQU E*CUR WIDTH
MIX_OFFSET EQU A*CUR_WIDTH

Last_Cursor_x DW 0
Last_Cursor_y DW 0
Save_Area_y DW □
Save_Offset DW □

;Save area offsets in off-screen area

;Code segment variables

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i 387

* _Set_Cursor(AND_Mask, XOR_Mask, FG_Color, BG_Color) *
* This procedure will expand the two cursor masks into *
* color. Normally the masks should be stored after the *
* last visible scan line (global parameter 'Video_Height', *
* however in this demo, the cursor masks and the 'save buffer' *
* will be stored immediately above the last line. This is done *
* so that the reader can clearly see the AND mask, the XOR mask, *
* and the area under the cursor in 'save buffer'. *
* *

* Entry: *
* AND_Mask - Ax3E bytes with AND mask *
* XOR_Mask - Ax3E bytes with XOR mask *
* BG_Color - Foreground color *
* FG_Color - Background color *

Arg_AND Mask EQU WORD PTR
Arg_XOR_Mask EQU WORD PTR
Arg_BG_Color EQU BYTE PTR
Arg_FG_Color EQU BYTE PTR

Set_SW Cursor PROC NEAR
PUSH BP
MOV BP, SP
SUB SP, E

PUSH SI
PUSH DI
PUSH ES
PUSH DS

[BP+4] ;Formal parameters
CBP+t]
[BP + fi]
[BP+1D]

;Standard high-level entry

;Save registers

; Fill with background

MOV CX,D ;Set x to start of save area
MOV AX,CS:Video_Height ;Set y to below last line on the screen
;!!!!!!!!!!!! The next line should be removed !!!!!!!!!!!!!!!!!!!
;!!!!!!!!!££! if you do not want to see the save !!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!! regions on the screen !!!!!!!!!!!!!!!!!!!
I'iUV ha , L)

MOV CS:Save_Area_y,AX
MUL CS:Video_Pitch
ADD AX,CX
ADC DX,□

MOV DI,AX
MOV CS:Save_Offset,AX
MOV ES,CS:Graf_Seg
MOV AL,DL
CALL Select_Page

MOV DX,CUR_HEIGHT
MOV BX,CS:Video_Pitch
SUB BX,CUR_WIDTH*E

MOV AL,Arg_BG_Color
MOV AH,AL

Fill_Background:
MOV CX,CUR_WIDTH
REP STOSW
ADD DI,BX

DEC DX
JG Fill_Background

; Change foreground bits for

;Make visible for demo !!!!!!!!!!!!!
;Save y for other cursor procs
; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper 1L bits

;Set DI to save area offset
;Save offset for later
;Set segment to graphics segment
;C°py page number into AL
;Select page for save area

;Number of scanlines to do
;Calculate scan-to-scan increment

;Fetch background color
;Copy color into AH

;Number of words of AND & XOR mask
;Fill next row of AND and XOR masks
;Point to next scanline (assumes in
;one page!!!).
;Check if all scanlines done
;Go do next scanline if not done

AND mask save area

DL,CUR_HEIGHT
DH,Arg_FG_Color

MOV
MOV

;Initialize raster counter
;Fetch foreground color

388 Advanced Programmer’s Guide to Super VGAs

MOV DI,CS:Save_Offset ;Get pointer to save area
MOV SI/Arg_AND_Mask ;Fetch pointer to AND-mask section
ADD BX,CUR_WIDTH ; Adjust scan-to-scan increment

Set_ .AND. _FG:
LODSW ;Fetch next Ifc bits from the mask
XCHG AL , AH ;Swap byte to compensate for flOxx mem
MOV CX,lb ;Number of bits to do

AND. .Bit. .Loop:
SHL AX,1 ;Move next bit into carry
JNC AND Done ;Do not change if bit not set
MOV ES : [DI],DH ;Set pixel to fg color if bit set

AND. .Done:
INC DI ; Update pointer
LOOP AND_Bit_Loop ;If not all It bits done do next bit

XOR BX,flD0Dh ;Toggle high bit of BX to check if
JS Set_AND_FG ; both words have been done

ADD DI / BX ;Point to next scanline
DEC DL ;Check if all scanlines done
JG Set_AND_FG ;Go do next scanline if not done

; Change foreground bits for the XOR mask save area

MOV DL/CUR_HEIGHT ;Initialize raster counter
MOV DH,Arg_FG_Color ;Fetch foreground color
MOV DI,CS:Save_Offset ;Get pointer to save area
ADD DI,XOR OFFSET ;Advance pointer to XOR-mask section
MOV SI/Arg_XOR_Mask ;Fetch pointer to XOR-mask

Set. _XOR_ _FG:
LODSW ;Fetch next It bits from the mask
XCHG AL, AH ;Swap byte to compensate for flOxx mem
MOV CX, It ;Number of bits to do

XOR. .Bit .Loop:
SHL AX, 1 ;Move next bit into carry
JNC XOR_Done ;Do not change if bit not set
MOV ES:[DI],DH ;Set pixel to fg color if bit set

XOR. .Done:
INC DI ; Update pointer
LOOP XOR_Bit_Loop ;If not all It bits done do next bit
XOR BX,flODOh ;Toggle high bit of BX to check if
JS Set_XOR_FG ; both words have been done

ADD DI, BX ;Point to next scanline
DEC DL ;Check if all scanlines done
JG Set_XOR_FG ;Go do next scanline if not done

; Set ' last cursor' to save area (this is needed for first
; call to Move_Cursor procedure, since first thing done in there
; is restore area under 'last cursor' position)

MOV AX,CS:Save_Area_y ;Fetch save area y
MOV CS:Last_Cursor_y,AX ;Set last cursor y
MOV CS:Last_Cursor_x,COR ..OFFSET ;Set last cursor x

; Clean up and return

POP DS ;Restore segment registers
POP ES
POP DI
POP SI
MOV SP, BP ;Restore stack
POP BP
RET

Set_SW_Cursor ENDP

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i

* *
*
*
*
*

*

*

*

*

*
*
*
*
*
*
*
*
*
*

_Move_Cursor(Curs_X, Curs_Y) *
This procedure is used to move the cursor from one *
location to another. The cursor move is performed using the *
following steps: *

1 - Check if new cursor is outside 'cursor block' *
2 - If outside 'cursor block' restore area under *

previous block. *
Save area under new block. *

3 - Copy saved are into cursor build area (both save and*
build areas are normally off-screen). *

4 - Combine AND and XOR masks with build area. *
5 - Copy build area to where new cursor should be (this *

in most cases overwrites the old cursor). *
The 'build area' is a rectangle twice the size of the cursor. *
It is used to eliminate flicker for small movement of the *
cursor, since cursor may not need to be erased if it moves *
only by a few pixels. *

*
* Entry: *
* Curs_X - Position of the new cursor *
* Curs_Y *
* *

Arg_Curs_X EQU WORD PTR [BP+<] ;Formal parameters
Arg_Curs_Y EQU WORD PTR [BP+L]

Curs X EQU WORD PTR [BP-2]
Curs_Y EQU WORD PTR [BP-41

Move SW Cursor PROC NEAR
PUSH BP ;Standard high-level entry
MOV BP, SP
SUB SP,4

PUSH SI ;Save registers
PUSH DI
PUSH ES
PUSH DS

; Check if new area needs to be saved

MOV AX,Arg Curs x ; Fetch new x
AND AX,NOT(CUR_WIDTH-1) ; Round to nearest buffer block
MOV BX,Arg Curs y ;Fetch new y
AND BX,NOT(CUR_HEIGHT-1) ;Round to nearest buffer block

CMP AX,CS:Last_Cursor_x ; Check if x moved into next block
JNE Cursor_New_Block
CMP BX,CS:Last_Cursor_y ;Check if y moved into next block
JNE Cursor_New_Block
JMP Build_Cursor

; For new block call to remove old cursor, then use _BitBlt
; to save block under next cursor location into the save area

Cursor_New_Block:
CALL
MOV
AND
MOV
MOV
AND
MOV

MOV
PUSH
MOV
PUSH

_Remove_Cursor
AX, Arg_Curs_x
AX,NOT(CUR_WIDTH-1)
CS:Last_Cursor_x,AX
AX,Arg_Curs_y
AX,NOT(CUR_HEIGHT-1)
CS:Last_Cursor_y,AX

; Restore last location
;Fetch new x
;Round to nearest buffer block
;Save as 'last x'
;Fetch new y
;Round to nearest buffer block
;Save as 'last y'

AX,2*CUR_HEIGHT
AX
AX f2*CUR_WIDTH
AX

;Push width and height

389

390 Advanced Programmer’s Guide to Super VGAs

PUSH CS:Save_Area_y ;Push x and y of destination
MOV AX,CUR_OFFSET
PUSH AX
PUSH CS:Last_Cursor_y ;Push x and y of source
PUSH CS:Last_Cursor_x
CALL _BitBlt
ADD SP,15

; Use _BitBlt to copy save area into build area

Build_Cursor:
MOV AX,5*CUR_HEIGHT ;Push width and height
PUSH AX
MOV AX,5*CUR_WIDTH
PUSH AX
PUSH CS:Save_Area_y ;Push x and y of destination
MOV AX,MIX_OFFSET
PUSH AX
PUSH CS:Save_Area_y ;Push x and y of source
MOV AX,CUR_OFFSET
PUSH AX
CALL _BitBlt
ADD SP,1S

; Mix AND & XOR masks into build area (this will work only if all of
; the save area is in the same

MOV CX,Arg_Curs_x
AND CX,CUR_WIDTH-1
ADD CX/MIX_OFFSET
MOV AX/Arg_Curs_y
AND AX,CUR_HEIGHT-1
ADD AX, CS:Save_Area_y
MUL CS:Video_Pitch
ADD AX/CX
ADC DX, □

MOV DI,AX
MOV AL,DL
CALL Select_Page
MOV ES,CS:Graf_Seg
MOV DS/CS:Graf_Seg

MOV DL,CUR_HEIGHT
MOV SI,CS:Save_0ffset
MOV BX,CS:Video_Pitch
SUB BX,CUR_WIDTH

Mix_Lines:
MOV CX,CUR_WIDTH

MixBytes:
LODSB
MOV AH/[DI]
AND AL/AH
MOV AH/[SI+CUR_WIDTH-1]
XOR AL,AH
STOSB
LOOP Mix_Bytes

ADD DI, BX
ADD SI/BX
DEC DL
JG Mix_Lines

segment!!!)

;Fetch x
;Keep 'odd' bits
;Add 'base x' of save area
;Fetch y
;Keep 'odd' bits
;Add 'base y' of save area
; multiply y by width in bytes
; add x coordinate to compute offset
; add overflow to upper It bits

;Save offset
;Select page

;Set both segments to video buffer

;Initialize raster counter
;Get pointer to AND & XOR masks
;Compute scan-to-scan increment

;Fetch cursor width

;Fetch next byte of AND mask
;Fetch next byte of destination
;Combine mask with destination
;Fetch next byte of XOR mask
;Combine with previous result
;Place result into destination

;Point to next scanline
;Point to next scanline
;Check if all scanlines done
;Go do next scanline if not done

; Use _BitBlt procedure to copy build area to screen (and erase old
; cursor with the new cursor block).

MOV AX,5*CUR_HEIGHT
PUSH AX
MOV AX,5*CUR_WIDTH
PUSH AX

;Push width and height

Headland HT-208 (V7VGA)—Headland Video Seven VGA1024i

PUSH
PUSH
PUSH
MOV
PUSH
CALL
ADD

; Clean

POP
POP
POP
POP

MOV
POP
RET

Move_SW_Cursor

CS:Last_Cursor_y
CS:Last_Cursor_x
CS:Save_Area_y
AX,MIX_OFFSET
AX
_BitBlt
SP /12

up and return

DS
ES
DI
SI

SP / BP
BP

ENDP

;Push x and y of destination

;Push x and y of source

;Restore segment registers

;Restore stack

**
* *

* _Remove_Cursor *
* This procedure is used to remove the cursor from the screen *
* and to restore the screen to its original appearance *
* * **

Remove_SW_Cursor PROC NEAR
PUSH BP
MOV BP , SP

PUSH SI
PUSH DI
PUSH ES
PUSH DS

; use BitBlt to restore

MOV AX,2*CUR HEIGHT
PUSH AX
MOV AX,2*CUR WIDTH
PUSH AX
PUSH CS:Last_Cursor_y
PUSH CS:Last_Cursor_x
PUSH CS:Save_Area y
MOV AX,CUR OFFSET
PUSH AX
CALL _BitBlt
ADD SP, 12

; Clean up and return

POP DS
POP ES
POP DI
POP SI

MOV SP, BP
POP BP
RET

Remove_SW_Cursor ENDP

•.Standard high-level entry

;Save registers

area under the last cursor location

;Push width and height

;Push last position of cursor

;Push x and y of destination

;Restore segment registers

; Restore stack

TEXT ENDS
END

392 Advanced Programmer’s Guide to Super VGAs

Detection and Identification

Headland Technology recommends that the presence of their BIOS be detected
using extended BIOS function 0 (Inquire). The presence of the V7VGA chip can then
be detected using extended BIOS function 7 (Get Video Configuration). Code similar
to the following can be used to detect the V7VGA chip:

; Check for Video Seven product
MOV AX,LFOOh
INT lOh
CMP BX,'V7'
JNE Not Video?
; Check for V7VGA chip
MOV AX,LFOVh
INT lOh
CMP BL,70h
JB Not V7VGA
CMP BL,?Fh
JA

V7VGA Found:
Not V?VGA

using BIOS
;Load BIOS function code
;Invoke BIOS service
;Check for Video Seven board
;Quit if not Video Seven board

;Load BIOS function code
-.Invoke BIOS service
;Check chip version
;Quit if version below 70h

;Quit if version above 7Fh

Headland Technology included a presence detection mechanism in their VGA chips
that is simple, reliable, and places no requirements on the BIOS ROM. Two new regis¬
ters in the extended register bank are used to detect V7VGA presence and revision
level.

The following programming example shows how to use the Identification register to
implement a presence test that should have no adverse side effects when executed on
other types of EGA or VGA display adapters. In the HT-208 (V7VGA) chip, the value
written to CRTC register OCh is XORed by hardware with EAh and the result is placed in
CRTC register lFh. Code similar to the following can be used to verify this function,
and if verified, confirm presence of V7VGA chip.

; Preserve CRTC register DCh
MOV DX,CRTC_ADDRESS ;Fetch CRTC address (3B4h or 3DC
MOV AL,DCh ;Index of Start Address
OUT DX, AL ;Select register
INC DX ;Address of data
IN AL, DX ;Read current value
MOV AH, AL ;Save the value for later
; Set CRTC register DCh to □ (will be XORed with EAh and placed in reg lFh)
MOV AL, □ ; Value to write
OUT DX, AL ;Write to register
DEC DX
; Verify that CRTC register lFh contains EAh (EAh was XORed with reg OCh)
MOV AL,lFh ;Index of Identification registe:
OUT DX, AL ;Select ID register
INC DX
IN AL, DX ;Read the ID register
CMP AL,OE Ah ;Is it EAh?
JNE Not V? Board ;...No, not a V7 board
DEC DX

; Set CRTC register DC to FFh (will be XORed with EAh and placed in reg lFh)
MOV AL,DCh ;Index of Start Address High
OUT DX, AL ;Select register
INC DX
MOV AL,OFFh ;Value to write
OUT DX, AL ;Set Start Address to FFh
DEC DX

Headland HT-208 (V7VGA)—Headland Video Seven VGA 1024i 393

Verify that CRTC register IFh contains

V7.

MOV
DX, AL
INC
IN
CMP
JNE
DEC
; Restore CRTC
MOV
OUT

.Found:

AL/IFh

DX
AL,DX
AL,15h
Not_V7_Board
DX
register
AL/DCh
DX, AX

15h (EAh was XORed with reg
;Index of ID register
;Select ID register

□ Ch)

□ Ch

;Read the ID register
;Is it 15h?
;No, not a V7 board
jdecrement to index register

to its original value
;Index of Start Address
;Restore the initial value

; Read version to distinguish V7VGA and VEGA chips
; (assumes that extended registers are enabled)

DX,3C<h :Address of extended bank
MOV AL,AEh
OUT DX, AL
INC DX
IN AL, DX
CMP AL,70h
JB Not V7
CMP AL,ADh
JB V7VGA Chip Found

VEGA_Chip_Found:

;Index of version register
;Select version register

;Read chip version
;Check version range
;Out of range
;Is it in 7Dh or 7Fh?
;...Yes, found V7VGA chip
;...No, (ADh to FFh) VEGA chip found

V7VGA_Chip_Found:

16

Trident 7VGA 8800CS
Everex Viewpoint VGA

Microsystems, incorporated

395

396 Advanced Programmer’s Guide to Super VGAs

Introduction
As with most SuperVGAs, the Everex Viewpoint and all Trident 880CS based adapters

are fully IBM VGA-compatible, and also include register level compatibility with EGA,
CGA, MDA and Hercules display adapters.

Viewpoint also includes extended high resolution text and graphics modes. High
resolution applications software drivers are available for AutoCAD, Autoshade, GEM,
Lotus 1-2-3, Symphony, Ventura Publisher, MS-Windows, WordPerfect, and OS/2 Pres¬
entation Manager. Additional drivers for Everex products are continually added and
are available through the Everex BBS system.

Everex also offers Everex EVGA (EV673), Everex Ultragraphics II VGA (EV236) and
Vision Technologies Vision VGA (EV620).

Chip Versions
Trident VGA chips contain a version number that can be read from a register at I/O

address 3C5, index OBh. There are currently two versions of the TVGA 8800 chip:
8800BR is version 1, and 8800CS is version 2. The major difference between these two
chips is the method used for display memory paging. Version 1 supports only 128K
pages; version 2 supports both 128K pages as well as 64K pages.

For the Everex Viewpoint VGA, the version number should always be 2. Unless
stated otherwise, all information in this chapter applies to the version 2 chip.

Trident has announced a newer chip, the TVGA 8900, which is capable of operating
at a resolution of 1024x768 with 256 colors (using 1 megabyte of RAM). At the time of
this writing there are no boards available using this new chip.

New Display Modes
Table 16-1 lists the enhanced display modes that are supported by the Everex View¬

point VGA. Enhanced modes are selected via a modified call to the BIOS mode select
function (using AX = 0070h and BX = Extended Mode Number). For details, see the
section “The BIOS” later in this chapter. Exception is mode 6Ah, which is selected
using normal BIOS function 0.

Trident 8800CS—Everex Viewpoint 397

Table 16-1. Enhanced display modes—Everex Viewpoint VGA

Memory Display
Mode Type Resolution Colors Required Type
03h(l) Text 80 col x 34 rows 16 256 KB VGA
04h (1) Text 80 col x 60 rows 16 256 KB VGA
07h (1) Text 100 col x 43 rows 16 256 KB SuperVGA
08h (1) Text 100 col x 73 rows 16 256 KB SuperVGA
OAh(l) Text 132 col x 25 rows 16 256 KB EGA
OBh (1) Text 132 col x 44 rows 16 256 KB EGA
OCh (1) Text 132 col x 25 rows 16 256 KB CGA

OEh (1) Text 132 col x 25 rows Mono 256 KB MDA
OFh (1) Text 132 col x 44 rows Mono 256 KB MDA
I6h (1) Text 80 col x 30 rows 16 256 KB VGA
18h (1) Text 100 col x 37 rows 16 256 KB SuperVGA
40h (1) Text 132 col x 30 rows 16 256 KB VGA
50h (1) Text 132 col x 30 rows Mono 256 KB VGA
02h (1) Graphics 800x600 16 256 KB SuperVGA
14h (1) Graphics 640x400 256 256 KB SuperVGA
15h(l) Graphics 512x480 256 256 KB VGA
20h (1) Graphics 1024x768 16 512 KB 8514
30h (1) Graphics 640x480 256 512 KB SuperVGA

31h (1) Graphics 800x600 256 512 KB SuperVGA
60h(l)(2) Graphics 1024x768 4 256 KB 8514
6A Graphics 800x600 16 256K SuperVGA

Note (1): These are extended mode numbers, which cannot be selected using the
standard BIOS function call. For information on how to select extended modes, see the
section “The BIOS” later in this chapter.

Note (2): This mode is not available on some versions of BIOS.

Trident recommends that all manufacturers using 8800CS chip support extended
modes and mode numbers as listed in Table 16-2 on page 398. Most boards based on
Trident 8800CS chips support these modes.

398 Advanced Programmer’s Guide to Super VGAs

Table 16-2. Enhanced display modes—Trident

Memory Display

Mode Type Resolution Colors Required Type

50h Text 80 col x 30 rows 16 256 KB VGA

51h Text 80 col x 43 rows 16 256 KB VGA

52h Text 80 col x 60 rows 16 256 KB VGA

53h Text 132 col x 25 rows 16 256 KB VGA (8x14 characters)

54h Text 132 col x 30 rows 16 256 KB VGA

55h Text 132 col x 43 rows 16 256 KB VGA

56h Text 132 col x 60 rows 16 256 KB VGA (8x8 characters)

57h Text 132 col x 25 rows 16 256 KB VGA (9x14 characters)
58h Text 132 col x 30 rows Mono 256 KB VGA

59h Text 132 col x 43 rows Mono 256 KB VGA
5Ah Text 132 col x 60 rows 16 256 KB VGA (9x8 characters)

5Bh Graphics 800x600 16 256 KB SuperVGA

5Ch Graphics 640x400 256 256 KB SuperVGA
5Dh Graphics 640x480 256 512 KB SuperVGA
5Fh Graphics 1024x768 16 512 KB 8514

Memory Organization
For all Viewpoint extended modes, display memory organization is patterned after

the organization used in one of the standard IBM VGA modes.
Viewpoint includes a display memory paging mechanism that is needed in some dis¬

play modes to make the entire display memory accessible to the processor. Display
memory paging is described in detail later in this chapter.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per row, and
number of rows is increased. This increases the number of bytes used per screen of
text. Display memory is organized as shown in Figure 5-1 (see Chapter 5).

High Resolution Graphics Modes

4-color Graphics Mode 60h - 1024x768

This mode resembles VGA mode 12h, except that only two planes are used. Memory
planes 0 and 2 are used to store bytes that have even host memory addresses; planes 1

Trident 8800CS—Everex Viewpoint 399

and 3 store bytes for odd memory addresses. To learn more about this memory organi¬
zation see the section “Four Planes” in Chapter 9.

16-color Graphics Mode 02h - 800x600

Memory organization for this mode resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

Only 256K of display memory are required to support this mode; display memory
paging is not required.

16-color Graphics Mode 20h - 1024x768

Memory organization for this mode resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

512K of display memory are required to support this mode; display memory paging
is required. Default colors are the same as for mode 12h (16-color graphics).

256-color Graphics Modes, 14h, 15h, 30h, 31h

These modes, because of their higher resolutions, require larger amounts of display
memory which exceed the 64K page size of display memory. The Memory Page Select
register in the extended register bank is used to select which memory page can be
accessed by the processor.

Display memory organization for these modes resembles VGA mode 13h (320x200
256-color graphics), except that both the number of pixels per scan line and the
number of scan lines are increased. The memory map for these modes can be seen in
Figure 8-1 (see Chapter 8).

Default colors are the same as for mode 13h.

New Registers
To support enhanced display modes and emulations, the Trident chips contain addi¬

tional registers not found on the standard VGA. These are listed in Table 16-3 on the
following page.

400 Advanced Programmer’s Guide to Super VGAs

Table 16-3. Extended Registers—Trident 8800CS

Register Name Address Index

CRTC Module Testing register 3B41V3D4 lEh

Scratch Pad 3B4h/3D4h lFh

Power Up Mode register 1 3C4 OCh

Power Up Mode register 2 3C4 OFh

Hardware Version register 3C4h OBh

Mode Control register 1 3C4h OEh

Mode Control register 2 3C4h OD

CPU Latch Read Back 3B4h/3D4h 22h

Attribute State Read Back 3B4h/3D4h 24h

Attribute Index Read Back 3B4h/3D4h 26h

Video Enable 3C3h -

Display Adapter Enable 46E8h -

Registers used in the programming examples are described in detail below.

Hardware Version Register (I/O Address 3C5h Index OBh)

D7-D4 - Reserved
D3-D0 - Hardware version

Reading this register causes the chip to enter version 2 paging mode. Writing this
register causes the chip to enter version 1 paging mode. Programming examples in this
chapter assume version 2 paging. For more details on paging see the programming
examples.

Mode Control Register 1 (I/O Address 3C5h Index OEh)

D7-D4 - Reserved
D3-D0 - 64K page select

This register is used to select page number in version 2 paging mode. In this mode,
bit 1 must be written inverted, but will read back the correct (uninverted) value. For
example, page 7 would be selected by writing a value of 5; when read back, a value of 7
would be read.

Scratch Pad Register (I/O Address 3B4h/3D4h Index lFh)

This scratch register is used on Everex Viewpoint boards as a 4-bit scratch as follows:

D3 - 44.9MHz oscillator present

Trident 8800CS—Everex Viewpoint 401

D2 - Analog monitor attached
D1 - Memory size (0: 256K, 1: 512K)
DO - Paged memory mode in effect

Processor Latch Read Back Register (I/O Address 3B4h/3D4h
Index 22h)

This register can be used to read back the current value of the processor data latch in
the Graphics Controller for the color plane that is currently enabled for reading.

Attribute Controller State Register (I/O Address 3B4h/3D4h
Index 24h)

D7 - Attribute Controller State (read-only)
D6-D0 - Reserved

Attribute Controller State

indicates whether the next write operation to the Attribute Controller (I/O address
3C0) will be used as a register index or as register data (0 = index, 1 = data).

Attribute Controller Index Read Back (I/O Address 3B4h/3D4h
Index 26h)

This read-only port can be used to read the current value of the index register inter¬
nal to the Attribute Controller.

The BIOS

Extended Mode Select - Function 0

Extended display modes of the Viewpoint VGA are selected by a modified version of
the BIOS mode select function.

Input Parameters:

AH = OOh
AL = 70h
BL = Extended mode number

402 Advanced Programmer’s Guide to Super VGAs

Return Value:

None

Return Emulation Status - Function 70H Sub function 0

Input Parameters:

AX = 7000h
BX = 0

Return Value:

AL = 70h (if supported)
CL = Display type

0 = MDA
1 = CGA
2 = EGA
3 = Digital multi-frequency
4 = VGA
5 = 8514
6 = SuperVGA (e.g. NEC 2A)
7 = Analog multi-frequency

CH - Status

D6,D7 - Display memory size (256/512/1024/2048K)
D4 - VGA protect enabled
DO - 6845 emulation enabled

DX - Board ID

D15-D4 - Model number
678h = Viewpoint (EV678)
236h = Ultragraphics II (EV236)
62Oh = Vision VGA (EV620)
673h = EVGA (EV673)

D3-D0 - Revision

DI - BIOS version (e.g., OlOOh for version V1.00)

Trident 8800CS—Everex Viewpoint 403

Set Operating Mode - Function 70H Sub function 1

Input Parameters:

AX = 7000h
BX = 1

CH = 0: Disable 6845 emulation, 1: Enable 6845 emulation

Return Value:

AL = 70h (if supported)

VGA Register Protect - Function 70H Sub function 2

Input Parameters:

AX = 7000h
BX = 2

CH = 0: Disable protect of CRTC 00 to 07, lOh to 17h, Misc output
1: Enable protect

Return Value:

AL = 70h (if supported)

Enable/Disable Fast Mode - Function 70H Sub function 3

Input Parameters:

AX = 7000h
BX = 3
CH = 0: Disable fast mode

1: Enable fast mode (default)

Return Value:

AL = 70h (if supported)

Get Paging Function Pointer - Function 70H Subfunction 4

This function returns a far pointer to a subroutine that can be called to select display
memory pages. This function can be used to guarantee compatibility with future
Everex products.

404 Advanced Programmer’s Guide to Super VGAs

Input Parameters:

AX = 7000h
BX = 4

Return Value:

ES:DI = far pointer to page select routine, which can be called with a
page number in DL

Everex recommends that paging be implemented using this function, to ensure
compatibility with future Everex VGA products.

Get Mode Supported Info - Function 70H Sub function 5

Input Parameters:

AX = 7000h
BX = 5
CL = Maximum number of modes to get info for
DL = Monitor type to get mode info for
ES:DI = Buffer address
CH = Mode type to get info for

0: to get all modes
1: to get mono text modes
2: to get color text modes
3: to get 4-color (CGA) graphics modes
4: to get 1-color (CGA) graphics modes
5: to get 16-color (planar) graphics modes
6: to get 236-color graphics modes

Return Value:

AL = 70h (if supported)
CL = Total number of modes fitting criteria
CH = Size of each record
ES:DI = Info records

BYTE Mode number (Bit 7 set if extended mode)
BYTE Mode format (same as input parameter CH)
BYTE Info bits

D5 - Monochrome
D4 - Interlaced
D3 - Requires 44.9 MHz oscillator
D2 to D1 - Memory required (256K, 512K, 1024K, 2048K)

Trident 8800CS—Everex Viewpoint 405

DO - Paged mode
BYTE Font height (bits 0-4), 9 dot (bit 8)
BYTE Text columns
BYTE Text rows
WORD Number of scan lines
BYTE Color info

D7 to D4 - Reserved
D3 to DO - Bits per pixel

Program Mode Parameters - Function 70H Sub function 6

Input Parameters:

AX = 7000h
BX = 6

ES.DI = Standard 64-byte parameter table
DS:DX = Extra register table

Return Value:

AL = 70h (if supported)

Everex Set Mode - Function 70H Sub function 9

Input Parameters:

AX = 7000h
BX = 9
CH = Setmode AL
CL = Setmode BL

Return Value:

AL = 70h (if supported)

406 Advanced Programmer’s Guide to Super VGAs

Programming Examples

Display Memory Paging - Version 1 Mode

This is the only memory paging mode available on the version 1 Trident VGA chip
(Everex Viewpoint uses version 2 and later devices, which include an additional paging
mode). In this mode, display memory is divided into four 128K pages. A full 128K of
host address space is used, which means that other display adapters cannot co-reside in
the system when this mode is used.

Only one memory page may be selected at a time. Two register bits are used to
select pages; these two bits are located in different registers. Table 16-4 shows how
memory pages are selected.

Table 16-4. Memory paging version 1 mode—Everex Viewpoint

I/O Addr 3C5h I/OAddr3C2h

Index OEh

Bit D1

0

0

1

1

(read from 3CCh)

Bit D5
1

0
1
0

Page Number

Page 0
Page 1
Page 2

Page 3

Display Memory Paging - Version 2 Mode

For version 2 Trident VGA chips, an additional paging mode is supported that
divides display memory into eight 64K pages. This paging mode is selected by a read
from Hardware Version register (I/O address 3C5h index OBh). VGA host memory
space should be set to 64K via the Miscellaneous register of the Graphics Controller

(Address 3CF, index 6, bits D2 and D3).
Page selection is easier in this mode; the desired page number can simply be output

to Mode Control register 1 (I/O address 3C5h, index OEh). Note, however, that bit D1
of the register must be complemented before the page number is written, but will read
back uncomplemented. This is illustrated in Figure 16-1. Table 16-5 contains value
read and written for each of the valid page numbers.

Trident 8800CS—Everex Viewpoint 407

Access to Mode Control register 1 is enabled by a read operation from the Hardware
Version register (I/O address 3C5h, index OBh) and is disabled by a write operation to
the Hardware Version register. Access to the page select bits in the Mode Control regis¬
ter 1 should always be prefaced by a read from the Hardware Version register to assure
that it is enabled.

Table 16-5. Memory paging mode 2—Everex Viewpoint

Page Number
0
1
2

3
4
5
6
7

I/O Address
Write Value
D3 D2 D1 DO
0010
00 1 1
0000
0001
0110
0111

0100
0101

Index OEh

Read Value
D3 D2D1 DO
0000
000 1
0010
001 1
0100
0101

0110
0111

3C5,

The programming example in Listing 16-1 contains mode select procedures,
Select_Graphics and Select_Text, and a paging procedure Select_Page.
Select_Graphics contains an example on how to invoke extended modes. Note that in
the procedure Select_Graphics, after the mode select, the 64K page is selected using
the Miscellaneous register of the Graphics Controller. Version 2 paging is forced by a
read from the Hardware Version register. Select__Page contains an example showing
how to select a display memory page for version 2 paging mode.

408 Advanced Programmer’s Guide to Super VGAs

Listing 16-1. File: TRIDENT\ SELECT.ASM

* File: SELECT.ASM
* Description: This module contains procedures to select mode and to
* select pages. It also initializes global variables
* according to the values in the MODE.INC include file.
* Entry Points:
* _Select_Graphics - Select a graphics mode
* _Select_Text - Set VGA adapter into text mode
* _Select_Page - Select page for read and write
* Uses:

*

*

*

*

*

*
*
*

*
* MODE.INC - Mode dependent constants *
* Following are EXTENDED modes and paths for Everex boards:*
* l-E5L colors-l
* L4Dx4D0 L40x4A0 AODxLDO
* Mode: 14h 3Dh 31h
* Path: E5LC0L E5LC0L E5LC0L

i— 1L colors —i A colors E colors *
AOOxLOO 1054x7LA 10E4x?Lfi 10E4x7LA *

E EOh LOh N/A *
1LC0L 1LC0L 4C0L N/A * **************************************

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

; Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

EXTEND_REG_ADDR EQU 3C4h
VERSION_REG EQU OOBh
PAGE_REG EQU OOEh

;I0 Address for extended bank registers
;Index for enable/version register
;Index for page register

Code segment variables

TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW OAOOOh
DW □BOODh

OffScreen_Seg DW □ ADODh
Video_Pitch DW SCREEN PITCH

-.Graphics segment addresses

;First byte beyond visible screen
;Number of bytes in one raster

Trident 8800CS—Everex Viewpoint 409

Video Height DW SCREEN HEIGHT
Video_Width DW SCREEN WIDTH
Video_Pages DW SCREEN PAGES
Ras_Buffer DB 1QEA DUP (□)
R_Page DB □ FFh
W_Page DB □ FFh
RW_Page DB □ FFh
Two_Pages DB CAN DO _RW

;Number of rasters
-.Number of pixels in a raster
;Number of pages in the screen
;Working buffer
;Most recently selected page

jlndicate separate R & W capability

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to LAOxAUn mode with *
* 25L colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *

****** *

Arg_HorizPtr EQU WORD PTR
Arg_VertPtr EQU WORD PTR
Arg_ColorsPtr EQU WORD PTR

_Select_Graphics PROC NEAR
PUSH BP
MOV BP, SP

PUSH DI
PUSH SI
PUSH DS
PUSH ES

[BP+4] ;Formal parameters
[BP + L] ;Formal parameters
[BP+fl] ;Formal parameters

;Standard C entry point

;Preserve segment registers

; Select graphics mode

MOV AX,70h
MOV BX,GRAPHICS_MODE
INT IDh

Fn=Select Mode, Mode=Everex Extended
Set extended mode number
Use BIOS to select mode

; Reset 'last selected page

MOV AL,DFFh
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

;Use 'non-existent' page number
;Set currently selected page

MOV
MOV
MOV
MOV
MOV
MOV

SI,Arg_VertPtr ;Fetch
WORD PTR [SI],SCREEN_HEIGHT
SI,Arg_HorizPtr ;Fetch
WORD PTR [SI],SCREEN_WIDTH
SI,Arg_ColorsPtr ;Fetch
WORD PTR [SI],SCREEN_C0L0RS

pointer to vertical resolution
;Set vertical resolution

pointer to horizontal resolution
;Set horizontal resolution

pointer to number of colors
;Set number of colors

; Enable extended register access for version 2
;Address of extended reg bank
;Index of version (and enable) reg
;Select register
;Advance to data port
;Read version to enable version 2 mode

;Address of graphics controller
;Index of miscellaneous register
;Select misc register
;Advance to data port

MOV DX,EXTEND REG ADDR
MOV AL,VERSION REG
OUT DX, AL
INC DX
IN AL, DX

MOV DX,GRAPHICS CTRL PORT
MOV AL,MISC REG
OUT DX, AL
INC DX

410 Advanced Programmer’s Guide to Super VGAs

IN AL,DX ;Read misc register
AND AL,DF3h ;Clear addressing bits
OR AL,04h ;Enable AODOO-AFFFF addressing
OUT DX, AL ;Output value

; Clean up and return to caller

POP ES ;Restore segment registers
POP DS
POP SI
POP DI

MOV SP / BP ;Standard C exit point
POP BP
RET

Select_Graphics ENDP

*

; Select_Page *

; Entry: *

; AL - Page number *
*

:**^

Select_Page PROC NEAR
CMP AL/CS:RW_Page ;Check if already selected
JNE SP Go
RET

SP Go:
PUSH AX
PUSH DX

AND AL, 7 ;Force page number into range
MOV CS:RW Page,AL ;Save as most recent RW page
MOV CS:R_Page,OFFh invalidate R and W pages
MOV CS:W_Page,DFFh
MOV AH, AL ;Copy page number
XOR AH,DEh ;Invert bit 1
MOV DX,EXTEND REG ADDR ;Address of extended register bank
MOV AL,PAGE_REG index of select page register
OUT DX, AL ; Select the page register
INC DX ;Advance address to data
IN AL, DX ;Read previous value
AND AL,DFDh ;Preserve upper nibble
OR AL, AH ;Combine preserved bits with page number
OUT DX, AL ;Select new page

POP DX
POP AX
RET

Select_Page ENDP

*

Select_Read_Page *
Entry: *

AL - Page number *
*

3»C3»C3(t3|CJtC****3(C****J*C***3»C*3)C**3(tj(t*5tt3»C*3(C>»C***********3)c*>)c***>»C****5(c5(c*3f:*5)C*****3»C*******

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page ;Check if already selected
JNE SRP_Go
RET

SRP_Go:
RET

Select_Read_Page ENDP

Trident 8800CS—Everex Viewpoint 411

*
Select_Write_Page *
Entry: *

AL - Page number *
*

Select_Write_Page PROC NEAR
CMP AL,CS:W_Page ;Check if already selected
JNE SWP_Go
RET

SWP_Go:
RET

Select_Write_Page ENDP

» *
; Enable_Dual_Page *
; Disable_Dual_Page *
» *
; Entry: *
; AL - Page number *
» *
J**

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

J% + ^ + + ^ + ^^^ + + ^^^5|C5^^^^^^3(c^^^3(c^^^5(<^^^^^^3|C3^3(c^C3(ca(C3(c^C^C5|C5fC5tC3tC3|C5(C3^3(c3^3^5(C3|<3|C3jC3^^E:3(c^C34c3(C3^3(c5|c3(C^C^C

9 *

; _Select_Page(PageNumber) «
; Entry: *
; PageNumber - Page number *
» *
J^***^*^^^,^.^^

Arg_PageNumber EQU BYTE PTR [BP+4]

.Select_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg PageNumber ;Fetch argument
POP BP ; Restore BP
JMP Select Page

.Select_Page ENDP

* ^
; _Select_Read_Page(PageNumber) *
; Entry: *
; PageNumber- Page number for read *
» * j**^^

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_Page ENDP

412 Advanced Programmer’s Guide to Super VGAs

*

_Select_Write_Page(PageNumber) *
Entry: *

PageNumber - Page number for write *
*

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Write_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP, BP
MOV AL,Arg_PageNumber ; Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

.Select_Write_Page ENDP

**
* *

* _Select_Text *
* Set VGA adapter to text mode *
* *

Text PROC NEAR
MOV AX,TEXT_M0DE ; Select mode 3
INT IDh ;Use BIOS to reset
RET
Text ENDP

Last_Byte:
_Text ENDS

END

Detection and Identification

Everex recommends that their VGA boards be detected using the extended BIOS
function call Return Emulation Status; a value of 70h should be returned in register AL.
Code similar to that below can be used to detect Everex Viewpoint boards:

MOV AX/7DDDh
MOV BX,D
INT IDh
CMP AL,7Dh
JNE Not_Everex
AND DX,DFFFOh
CMP DX,DL7flDh
JNE Not_Veiwpoint

Everex_Viewpoint_Found:

Function = 70, Sub-Function = D
Extended fn = Get emulation status
Call BIOS
Check if AL set to proper code
...No, it is not Everex
Isolate board model number
Check for Everex Viewpoint
...No, not Viewpoint

Note that this extended BIOS call will also return information about the type of mon¬
itor attached and the amount of display memory available. For more information about
BIOS service 7000h see the “The BIOS,” earlier in this chapter.

Trident recommends reading the Hardware Version register, and checking for a
value of 1 or 2 in the lower nibble, to detect 8800BR and 8800CS chips. Code similar to
that below can be used to read the Hardware Version register:

Trident 8800CS—Everex Viewpoint

MOV DX, 3C<h
MOV AL/DBh
OUT DX, AL
INC DX
IN AL, DX
AND AL/OFh
CMP AL/1
JE Trident VI Found
CMP AL/ E
JNE Not_Trident

Trident_VP_Found:

;Address of extended reg bank
;Index of version register
;Select version register

;Read version
;Keep only lower nibble
;Check for version 1

;Check for version 5

17

Tseng £73000
STB VGA EM-16

TSENG LABS INC

415

416 Advanced Programmer’s Guide to Super VGAs

Introduction

VGA Extra/EM and VGA Extra/EM-16 from STB are based on the ET3000 VGA chip
made by Tseng Labs. Tseng Labs is a major supplier of VGA chips to board manufactur¬

ers, and the ET3000 can be found on boards from many different vendors.

VGA Extra is sold with either 256K or 512K of display memory. It can drive a VGA-
compatible analog display, or it can drive a TTL color or monochrome display of the

type used with MDA, CGA, or EGA adapters. This means a user can add a VGA adapter
to his system without necessarily replacing his display. Not all VGA display modes can

be supported with TTL displays, however. In addition the VGA compatibility, ET3000
also includes full hardware emulation for EGA, CGA, MDA and Hercules.

STB VGA EM/16 is supplemented with a full range of drivers for popular products
such as MS-Windows, GEM and AutoCAD.

New Display Modes

Table 17-1 lists the enhanced display modes that are supported by the VGA Extra EM.
All modes listed can be selected using the BIOS mode select function.

Table 17-1. Enhanced display modes—STB VGA Extra

Mode Type Resolution Colors

Memory

Required
08h Text 132 col x 25 rows mono 256 KB
OAh Text 132 col x 44 rows mono 256 KB
22h Text 132 col x 44 rows 16 256 KB
23h Text 132 col x 25 rows 16 256 KB
24h Text 132 col x 28 rows 16 256 KB
29h Graphics 800x600 16 256 KB
2Dh Graphics 640x350 256 256 KB
2Eh Graphics 640x480 256 512 KB
30h Graphics 800x600 256 512 KB
36h Graphics 960x720 16 512 KB
37h Graphics 1024x768 16 512 KB

Tseng Labs recommends that all manufacturers using the Tseng ET3000 chip sup¬
port extended modes and mode numbers as listed in Table 17-2. Many boards based
on Tseng VGA chips support these modes.

Tseng ET3000—STB VGA EM-16 417

Table 17-2. Enhanced display modes—recommended by Tseng

Mode Type Resolution
18h (1) Text 132 col x 44 rows
19h(l) Text 132 col x 25 rows
lAh(l) Text 132 col x 28 rows
22h Text 132 col x 44 rows
23h Text 132 col x 25 rows
24h Text 132 col x 28 rows
26h (1) Text 80 col x 60 rows
25h Graphics 640x480
27h Graphics 720x512
29h Graphics 800x600
2Dh Graphics 640x350
2Eh Graphics 640x480
2Fh (1) Graphics 720x512
30h Graphics 800x600
37h Graphics 1024x768

Memory Display
Colors Required Type
mono 256 KB SuperVGA

mono 256 KB SuperVGA

mono 256 KB SuperVGA
16 256 KB SuperVGA
16 256 KB SuperVGA
16 256 KB SuperVGA

16 256 KB VGA

16 256 KB VGA
16 256 KB SuperVGA
16 256 KB SuperVGA
256 512 KB VGA

256 512 KB VGA

256 512 KB SuperVGA
256 512 KB SuperVGA

16 512 KB 8514 or XL

Note: These modes are not documented on STB EM-16 (STB has additional modes 8,
OAh and 36h).

Memory Organization
For all extended display modes of the ET3000, display memory organization is

closely patterned after standard IBM VGA display modes.

VGA Wonder includes a display memory paging mechanism that is needed in some

display modes to make the entire display memory accessible to the processor. Display
memory paging is described in detail later in this chapter.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line, or number

of lines per screen, is increased. Display memory is organized as shown in Figure 5-1
(see Chapter 5).

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan

418 Advanced Programmer’s Guide to Super VGAs

lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

For 1024x768 16-color graphics, display memory is mapped to the host as one 128K
window at host memory address A000:0 to B000:FFFF. This configuration allows for
efficient graphics programming, but limits the ability of the VGA Extra to co-reside with
any other type of display adapter while this mode is being used. The number of mem¬
ory pages that can be selected via the Segment Select register (I/O address 3CDh) is
64K

256-Color Graphics Modes

Memory organization for these modes resembles VGA mode 13h (320x200 256-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased. Display memory organization is shown in Figure 8-1. See
Chapter 8 for programming examples.

New Registers
Internal to the Tseng Labs ET3000 VGA chip is a bank of new registers that give the

programmer access to added features in the device. These features include hardware
zooming and display memory paging. The new registers are summarized in Table 17-3.

Hardware Zoom Registers

“Zooming in” on the display magnifies a portion of the display screen. The reverse
procedure, “zooming out”, restores the full picture to the screen. These two functions
are used extensively in applications such as desktop publishing and CAD/CAM, where
the user must alternate between viewing an entire document or drawing and examin¬
ing a portion of it in close detail.

With the VGA, display zooming is usually performed in software. VGA Extra includes
hardware zooming which is very fast, but is too limited to satisfy the requirements of
most applications. Many zooming functions must still be implemented in software.

Zooming is supported only in graphics modes, it is not fully supported in text
modes. To learn more about zooming see “Hardware Zooming” later in this chapter.

Tseng ET3000—STB VGA EM-16 419

Table 17-3. VGA EM-16 extended registers

I/O Addr(Index) Register

3C5 (6) Zoom Control

3C5 (7) TS Aux Mode

3B5/3D5 (lBh) X Zoom Start

3B5/3D5 (ICh) X Zoom End

3B5/3D5 (lDh) Y Zoom Start

3B5/3D5 (lEh) Y Zoom End

3B5/3D5 (lFh) Y Start/End Fligh

3B5/3D5 (20h) Zoom Start Low

3B5/3D5 (21h) Zoom Start High

3B5/3D5 (23h) Extended Start

Address

3B5/3D5 (24h) Compatibility Control

3B5/3D5 (25h) Overflow High

3C0 (I6h) Miscellaneous

3CD Page Select
3DE AT&T Mode Control

Function

Zoom Enable, Zoom factor

Select between EGA and VGA operation

Enable 8 simultaneous fonts

Sets X coordinate of zoom

window

Sets Y coordinate of zoom

window

Sets start address of

data in zoom window

Enable CGA/MDA emulation

Enable high resolution modes

Select page, and page size

Zoom Control Register (I/O Address 3C5, Index 6)

D7 - Zoom Enable (1 = zoom enabled)
D6-D4 - X Zoom Factor

D3 - Reserved
D2-D0 - Y Zoom Factor

X Zoom Factor sets the amount of magnification in the X direction.

Y Zoom Factor sets the amount of magnification in the Y direction.
Zoom Enable turns zooming on and off.

X Zoom Start and End Registers (I/O Addr 3B5/3D5, Index lBh and ICh)

These registers define the corners of the on screen zoom window in the X direction
(in character clock units), where the zoomed area will be displayed. X coordinates are
selectable in increments of one character clock, which in all graphics modes corre¬
sponds to 8 pixels. These registers, which are 8 bits wide, are therefore sufficient to
position the window anywhere on the screen. The value (Zoom End - Zoom___Start)/

420 Advanced Programmer’s Guide to Super VGAs

(Zoom__Factor +1) must be a positive integer. To display N characters zoomed 2x, the

following formula can be used:

Zoom__End = Zoom_Start + (N -1) * 2

V Zoom Start and End Registers (I/O Addr 3B5/3D5, Index lDh and lEh)

These registers define the corners of the on-screen zoom window in the Y direction,
where the zoomed area will be displayed. Y coordinates, which are defined by scan
line numbers, require more than eight bits each to define; a third register (Y Zoom
Start and End Register High) is required. The value (Zoom End - Zoom_Start + 1)/

(Zoom_Factor +1) must be a positive integer. To display N characters zoomed 2x, the

following formula can be used:

Zoom__End = Zoom__Start + N * Character_JTeight * 2 -1

Y Zoom Start & End Register High (I/O Addr 3B5/3D5 Index lFh)

D7-D4 - Y Zoom End High
D3-D0 - Y Zoom Start High

This register, in conjunction with the Y Zoom Start and Y Zoom End registers,
defines the corners of the on-screen zoom window in the Y direction.

Zoom Start Address Low and Mid (I/O Addr 3B5/3D5
Index 20h and 21h)

These registers define the starting address, offset from the zoom window, of data to
be displayed in the zoom window. Setting the Start Address to zero, for example, will
cause the upper left corner of the displayed zoomed window to coincide with the
upper left corner of the character being zoomed.

Note that changing the linear Start Address registers of the CRT Controller (index
OCh, ODh, or 23h) can force adjustments to the values used for the Zoom Start Address.

Start Address Overflow Register (I/O Addr 3B5/3D5,
Index 23h)

D7-D3 - Reserved
D2 - Bit 16 (MSB) of Zoom Address

D1 - Bit 16 (MSB) of Start Address
DO - Bit 16 (MSB) of Cursor Address

Tseng ET3000—STB VGA EM-16 421

In order to support the highest resolution display modes of the VGA Extra, an extra
bit must be added to these VGA registers.

Compatibility Control Register (I/O Address 3B5/3D5,
Index 24h)

D7 - CGA/MDA/Hercules (enable 6845)
D6 - Enable Double Scan and Underline Attribute
D5 - Enable External ROM CRTC Address Translation
D4 - Reserved

D3 - Enable Input to A8 of 1MB DRAMs
D2 - Enable Tristate For all Output Pins
D1 - Additional Master Clock Select
DO - Enable Clock Translate

Auxiliary Overflow Register (I/O Address 3B5/3D5, Index 25h)

D7 - Enable Interlace (1 = enabled)
D6 - Reserved

D5 - Reserved
D4 - Line Compare Register Bit 10
D3 - Vertical Sync Start Register Bit 10

D2 - Vertical Display End Register Bit 10
D1 - Vertical Total Bit 10

DO - Vertical Blank Start Bit 10

In order to support the highest resolution display modes of the VGA Extra, an extra
bit must be added to these VGA registers.

Enable Interlace causes the VGA Extra to generate timing for interlaced displays.

This is normally used to support 1024x768 resolution on 85l4A~compatible interlaced
displays.

Segment Select Register (I/O Address 3CDH)

D7,D6 - Segment Configuration
D5-D3 - Read Segment Select
D2-D0 - Write Segment Select

SuperVGAs that include an increased amount of display memory require a memory
paging mechanism in order to access all of display memory. The VGA Extra supports

422 Advanced Programmer’s Guide to Super VGAs

two windows into display memory; one read only and one write only. Operation of

these windows is controlled by the Segment Select register.
Segment Configuration defines the configuration of the memory paging logic.

These two bits can be thought of as defining page size. By default, the value 00 is used
for 16-color modes, defining a page size of 128K. A value of 01 is used in 256-color

modes, defining a page size of 64K. In all programming examples in this book, page

size is always assumed to be 64K; the value of bits 7 and 6 should always be set to 01.

Table 17-4 shows the memory configurations that are supported.

Table 17-4. VGA Extra Memory Paging Configurations

D7 D 6 Memory Configuration

0 0 8 segments of 128K each

0 1 2 banks of 8 64K segments

1 0 1 Megabyte of linear memory (no segments)

1 1 Invalid

Read Segment Select selects which segment of display memory will be read from
during CPU read operations. Write Segment Select selects which segment of display

memory will be written to during CPU write operations. To learn more about the pag¬

ing registers see the section titled “Display Memory Paging” later in this chapter.

TS Auxiliary Mode (I/O Address 3C4, Index 7)

D7 - VGA Enable
D6 - MCLK/2

D5 - BIOS ROM Address Map 2
D4 - Enable Multiple Soft Font

D3 - BIOS ROM Address Map 1
D2 - Complement Split Screen Mode

D1 - Complement Zoom Window Mode
DO - Complement Normal Window Mode

Enable Multiple Soft Font is used to enable eight simultaneous fonts in text
modes. When this bit is set, bits D3, D4 and D6 in each character attribute byte deter¬
mine which of the eight character generators should be used for that character (bit D5

must be set to the complement of D6). This register is normally locked (as are CRTC
registers 0-7). To unlock this register, bit D7 of CRTC register llh must be 0. To learn
more about multiple fonts see Listing 17-3 in the programming examples at the end of
this chapter.

Tseng ET3000—STB VGA EM-16 423

CRTC Vertical Sync End (Address 3D4h, Index llh)

D7 - Protection bit
D6 - Reserved

D5 - Enable vertical interrupt when low
D4 - Clear vertical interrupt when low

DO to D3 - Scan line at which vertical sync ends mod 16

Protection bit is used to enable access to CRTC registers 0 to 7, and to the TS Auxil¬
iary Mode register. This bit must be set to zero enable access to the Enable Multiple
Soft Font bit of the TS Aux register.

Programming Examples

Display Memory Paging

The display memory paging mechanism of the ET3000 maps selected portions of the
display memory to the processor. Operation of display memory paging is very similar
to the paging mechanism used for expanded memory boards (also called EMS or LIM
memory). A 64K or 128K logical page of VGA RAM (a chunk of display memory) is
mapped into the PC host address space in the normal VGA display memory address
space. An I/O register (the Segment Select register at I/O address 3CDh), is used to
define which pages of display memory are selected. In graphics modes, boards based
on Tseng 3000 chips have two 64K pages mapped at A000:0, one for reading and one
for writing. To learn more about dual pages see Chapter 5. The paging register for
ET3000 based boards is illustrated in Figure 17-1.

Port 3CDh Hiif Read Page # Write Page #
JUIH 1 1 1 1

7 6 5 4 3 2 1 0

Figure 17-1. Page Select register

Listing 17-1 contains examples showing how to select paging registers on the VGA
EM-16 board. Note that the paging routines in Listing 17-1 force a page size of 64K by
setting bit D6 of the Segment Select register to 1. This is needed for proper operation
of our 16-color drawing routines.

424 Advanced Programmer’s Guide to Super VGAs

Listing 17-1. File: TSENG \ SELECT ASM

* File: SELECT.ASM *
* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points: *
* _Select_Graphics - Select a graphics mode *
* _Select_Text - Set VGA adapter into text mode *
* _Select_Page - Select read and write page *
* _Select_Read_Page - Select read page only *
* _Select_Write_Page - Select write page only *
* Uses: *

MODE.INC - Mode dependent constants *
Following are modes and paths for TSENG 3D0D boards: *

* 1- E5L colors -I I— It colors —l 4 colors E colors *
* L40x4D0 L4 Dx4 BD BDDxLDD BOOxLOO 10E4x7Lfl 10E4x7LB 10E4x7Lfl *
* Mode: N/A EEh 3Dh ER 3?h N/A N/A *
* Path: N/A E5LC0L ESLCOL 1LC0L 1LC0L N/A N/A *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

Constant definitions

PAGE_SEL_PORT EQU 3CDh ;I0 Address for page select register

Code segment variables

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg

OffScree

DW OAOOOh
DW DADDDh

Seg DW DADDDh

;Graphics segment addresses

;First byte beyond visible screen

Tseng ET3000—STB VGA EM-16 425

Video_Pitch DW SCREEN_PITCH ;Number of bytes in one raster
Video Height DW SCREEN_HEIGHT ;Number of rasters
Video_Width DW SCREEN WIDTH ;Number of pixels in a raster
Video_Pages DW SCREEN PAGES ;Number of pages in the screen
Ras_Buffer DB IDBA DUP (□) ;Working buffer
R_Page DB □ FFh ;Most recently selected page
W_Page DB □ FFh
RW_Page DB □ FFh
Two_Pages DB CAN DO RW ;Indicate separate R & W capability

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to k<Dx<0D mode with *
* 25k colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

Arg_HorizPtr EQU WORD PTR LBP+4]
Arg_VertPtr EQU WORD PTR [BP+k]
Arg_ColorsPtr EQU WORD PTR [BP+fl]

_Select_Graphics PROC NEAR
PUSH BP
MOV BP, SP

PUSH DI
PUSH SI
PUSH DS
PUSH ES

;Formal parameters
;Formal parameters
;Formal parameters

;Standard C entry point

;Preserve segment registers

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Select graphics mode
INT IDh

; Reset 'last selected page'

MOV AL,OFFh
MOV CS:R_Page,AL
MOV CS:W Page/AL
MOV CS:RW Page,AL

; Set return parameters

MOV SI,Arg VertPtr
MOV WORD PTR [SI] SCREEN, HEIGHT
MOV SI,Arg HorizPtr
MOV WORD PTR [SI],SCREEN, WIDTH
MOV SI,Arg_ColorsPtr
MOV WORD PTR [SI],SCREEN, COLORS

; Clean up and return to caller

POP ES
POP DS
POP SI
POP DI

;Use 'non-existent' page number
;Set currently selected page

;Fetch pointer to vertical resolution
;Set vertical resolution
;Fetch pointer to horizontal resolution
;Set horizontal resolution
;Fetch pointer to number of colors
;Set number of colors

Restore segment registers

MOV SP, BP
POP BP
RET

Select_Graphics ENDP

;Standard C exit point

426 Advanced Programmer’s Guide to Super VGAs

*

Select_Page *
Entry: *

AL - Page number *
*

.Page PROC NEAR
CMP AL/CS:RW_Page ;Check if already selected
JNE SP_Go
RET

PUSH AX
PUSH DX
MOV DX,PAGE_SEL_PORT ;Fetch address of page select
AND AL , 7 ;Force page number into 0-7
MOV CS:RW_Page,AL ;Save most recently selected page
MOV CS:R_Page,DFFh
MOV CS:W_Page,OFFh
MOV AH / AL ;Copy page into AH
SHL AH,1 ;Shift page number
SHL AH,1
SHL AH ,1
OR AL, AH ;Move page number into ""write" bits
OR AL,40h ;Force bit L
OUT DX, AL ;Write out the new page select
POP DX
POP AX
RET

Select_Page ENDP

Select_Read_Page
Entry:

AL - Page number

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page
JNE SRP_Go
RET

SRP_Go:
PUSH AX
PUSH DX
AND AL,7
MOV AH,AL
MOV CS:R_Page,AH
SHL AH ,1
SHL AH,1
SHL AH,1
MOV DX/PAGE_SEL_PORT
IN AL,DX
AND AL,07h
OR AL,40h
OR AL,AH
OUT DX,AL
MOV CS:RW_Page,OFFh
; Clean up and return
POP DX
POP AX
RET

Select_Read_Page ENDP

;Check if already selected

;Force page number into 0-7
;Copy page number into AH
;Save most recently selected page
;Shift page number

;Fetch address of page select
;Get current values
;Preserve bits 0-2
;Force bits L and 7
;Move page number into ""write'' bits
;Write out the new page select

Tseng ET3000—STB VGA EM-16 427

*

Select_Write_Page *
Entry: *

AL - Page number *
*

Select_Write_Page PROC NEAR
CMP AL,CS:W_Page
JNE SWP_Go
RET

SWP_Go:
PUSH AX
PUSH DX
AND AL,?
MOV AH,AL
MOV CS:W_Page,AH
MOV DX,PAGE_SEL_PORT
IN AL,DX
AND AL,3Ah
OR AL,40h
OR AL,AH
OUT DX,AL
MOV CS:RW_Page,QFFh
; Clean up and return
POP DX
POP AX
RET

Select_Write_Page ENDP

;Check if already selected

;Preserve page number (AX gets trashed)

;Force page number into 0-?
;Copy page number into AH
;Save most recently selected page
;Fetch address of page select
;Get current values
;Preserve bits 3-5
;Force bits £> & ?
;Move page number into ""read'1 bits
;Write out the new page select

*

_Select_Page(PageNumber) *
Entry: *

PageNumber - Page number *
*

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ; Setup frame pointer
MOV SP, BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select Page

_Select_Page ENDP

*

_Select_Read_Page(PageNumber) *
Entry: *

PageNumber- Page number for read *
*

**

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_Pa^e ENDP

428 Advanced Programmer’s Guide to Super VGAs

♦ ♦*^***♦♦**♦****♦♦♦*♦**♦*************♦♦******♦#*♦*31C*********************

_Select_Write_Page(PageNumber) *
Entry: *

PageNumber - Page number for write *
*

**

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Write_Page PROC NEAR
POSH BP ;Setup frame pointer
MOV SP,BP
MOV AL/Arg PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

Select_Write_Page ENDP

**
* *

* _Select_Text *
* Set VGA adapter to text mode *
* *
**

SelectJText PROC NEAR
MOV AX,TEXT_MODE ;Select mode 3
INT lOh ;Use BIOS to reset mode
RET

SelectJText ENDP

* *

* Enable_Dual_Page *
* Disable_Dual_Page *
* Not supported by Tseng based boards *
* *

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

Last_Byte:
_Text ENDS

END

Tseng ET3000—STB VGA EM-16 429

Hardware Zooming

ET3000 provides the capability to zoom, in graphics modes, any block on the screen
with dimensions 8xN by M. This block is magnified by a specified factor, and displayed
at a specified position on the screen, by setting the appropriate extended registers as
illustrated in Figure 17-2. To learn more about these registers see “Hardware Zoom
Registers” earlier in this chapter.

Index 1 Bh Index iCh

Index 1 Fh

Index 1 Fh Index 1Eh

Port 3C5h, Index 6

(replicate each raster)

Starting Address

(offset from
XStart, YStart)

Index 23h Index 21 h
TTT

Index 20h

Address of all registers is port 3D4/3B4 unless stated otherwise

(X End - X_Start)/(X_Zoom + 1) must be an integer > 0

(Y_End - Y_Start)/(Y_Zoom + 1) must be an integer > 0

Figure 17-2. Zoom registers

Listing 17-2 demonstrates the hardware zoom feature of the VGA EM-16. It can be
modified to operate in any graphics mode by changing the mode select number at the
beginning of the program. While the program is running, arrow keys on the keypad
can be used to change the origin of the magnified area. An area two characters wide
and two characters high, with the upper left corner at the origin, is magnified and dis¬
played at the same origin. The magnification factor can be increased with the “ + ” key
on the keypad, and decreased with the key on the keypad.

430 Advanced Programmer’s Guide to Super VGAs

Listing 17-2. File: TSENG\ ZOOM.ASM

* * *

;* File: ZOOM.ASM *
;* Description: This module contains a program to demonstrate a use *
;* of enhanced zoom capabilities of the board. Routines *
;* are provided to define and move around flxfl zoom window. *
;* Cursor keys to move window, <+> and <-> keypag keys to *
;* set zoom factor and <ESC> key to restore zoom and quit. *

* *

* Entry Points: *
* *

* Uses: *
* *

***************>*c*3(c*Jtc*3iC3ic3ie5f:**3tc))e***3lc*j)c*>f:>(c*)4c**^^*:^^5*c^**^**>)e^5)c*^^:*5|c5)c*3)c>)c>f:****j)c

INCLUDE VGA.INC

Scan code definition

ESC KEY EQU Olh
LEFT KEY EQU 4Bh
RIGHT KEY EQU 4Dh
UP KEY EQU A Ah
DOWN KEY EQU 5Dh
PLUS KEY EQU 4Eh
MINUS_KEY EQU AAh

CRTC PORT EQU 3D4h
ZOOM CONTROL EQU OLh
ZOOM X REG EQU IBh
ZOOM Y REG EQU IDh
Z00M_L0W_REG EQU 20h

WINDOW WIDTH EQU 2
WINDOW_HEIGHT EQU 2

Zoom window size in characters

Main program

_TEXT SEGMENT BYTE PUBLIC •CODE'
ASSUME CS: TEXT, ES : NOTHING, DS:_ TEXT, SS :_STACK

Zoom PROC FAR
PUSH DS ; Save return address
XOR AX, AX
PUSH AX

MOV AX, CS
MOV DS, AX ; Set Data seg to Code

; Force into graphics mode 12h (any graphics mode will do
; since rest of the progrm should behave properly for any mode)

MOV AX,12h
INT lOh

MOV DX,0E2Dh
MOV BH,D
MOV BL,7
MOV CX,2D0D

Fill_Loop:
MOV AX,DX
INT lOh
INC DL
JNZ Skip
MOV DL,20h

Set for mode 12h, function 0
Use BIOS for force mode 3

Fill screen with data

Tseng ET3000—STB VGA EM-16

Skip:
LOOP Fill_Loop

; Compute dimensions of the screen

XOR AX, AX ; Point segment to BIOS data area
MOV ES/AX
MOV SI/044Ah ; Offset of COLUMNS parameter
MOV AX/ES:[SI] ;Fetch number of text columns
MOV Screen Width,AX ;Save for later
MOV SI,04fl4h ;Offset of ROWS parameter
MOV AL/ES:[SI] ;Fetch number of rows-1
INC AL
MOV Screen Rows,AX ;Save for later
MOV SI,04 A5h ;Number of scanlines per character
MOV AX,ES:[SI]
MOV Char_Height,AX

MUL Screen_Rows ;Compute number of scanlines
MOV Screen_Height,AX

; Set up initial zoom (factor=3, position □, source 0,0)

CALL Set_Factor ;Set the zoom factor
CALL Set_Window ;Set window size and position

; Get next key and jump according to key pressed

Get_Next_Key:
MOV AH,□
INT 1th

CMP AH,ESC_KEY
JNE Not_Esc
JMP Zoom_Disable

Not_Esc:
CMP AH/LEFT_KEY
JNE Not_Left
DEC Zoom_X
CALL Set_Window
JMP Get_Next_Key

Not_Left:
CMP AH,RIGHT_KEY
JNE Not_Right
INC Zoom_X
CALL Set_Window
JMP Get_Next_Key

Not_Right:
CMP AH,UP_KEY
JNE Not_Up
MOV AX,Char_Height
SUB Zoom_Y,AX
CALL Set_Window
JMP Get_Next_Key

Not_Up:
CMP AH/DOWN_KEY
JNE Not_Down
MOV AX,Char_Height
ADD Zoom_Y,AX
CALL Set_Window
JMP Get_Next_Key

Not_Down:
CMP AH/PLUS_KEY
JNE Not_Plus
INC Zoom_Factor
CALL Set_Factor
JMP Get_Next_Key

Not_Plus:
CMP AH,MINUS_KEY
JNE Not_Minus
DEC Zoom_Factor

;Function = read next character
;Use BIOS to get next key

;Check for escape key

;Check for left arrow

;Update x position
;Set window size and position

;Check for rigth arrow

;Update y position
;Set window size and position

;Check for up arrow

;Update y position

;Set window size and position

;Check for down arrow

;Update y position

;Set window size and position

;Check for keypad plus

;Update zoom factor
;Set new zoom factor

;Check for keypad minus

;Update zoom factor

431

Advanced Programmer’s Guide to Super VGAs

CALL Set_Factor
JMP Get_Next_Key

Not_Minus:
JMP Get_Next_Key

; Disable zoom

Zoom_Disable:
MOV DX,SEQUENCER_PORT
MOV AX,ZOOM_CONTROL
OUT DX/AX

; Clean up and exit

Zoom_Done:
RET

Zoom ENDP

;Set new zoom factor

;Address of sequencer
;Index of control register
;Set zoom factor to 1 and disable

; Exit

*

Set_Factor *
Set the x and y zoom factor and enable zoom *

*

Entry: DS:Zoom_Factor - Zoom factor *
*

Set_Factor PROC NEAR
; Force factor into range 0-7

MOV AX,Zoom_Factor
CWD
NOT DX
AND AX/DX
SUB AX,7
CWD
AND AX,DX
ADD AX,7
MOV Zoom_Factor,AX

; Select new factor

MOV AH,AL
SHL AH,1
SHL AH,1
SHL AH,1
SHL AH,1
OR AH,AL
OR AH,flOh
MOV DX,SEQUENCER_PORT
MOV AL,Z00M_C0NTR0L
OUT DX, AX

; Change window size

CALL Set_Window

RET
Set_Factor ENDP

;Fetch factor
;Check if factor negative (DX=FFFF)
;(DX=0D00 if factor was negative)
;and set factor to zero if negative
;Check if factor greater than 7
;(DX=0000 if factor >= 7)
;(AX=0000 if factor >= 7)
;and set factor to 7 if over 7
;Save (adjusted factor)

;Copy factor into bits A-L

;Combine x and y factors
;Combine with 'enable' bit
;Address of sequencer
;Index of control register
;Select zoom factor and enable

;Change window size and position

*

Set_Window *
Set the x and y position of the displayed window *

*
Entry: DS:Zoom_X - Window position *

DS:Zoom_Y *
*

Set_Window PROC NEAR

Tseng ET3000—STB VGA EM-16 433

; Force x position into range □ to maxx,
; where maxx = Screen_Width - WINDOW_WIDTH * (Zoom_Factor+l) - 1

MOV AX,Zoom Factor ;Use zoom factor and width to
INC AX ; compute maxx
MOV BX,WINDOW WIDTH
MUL BX
NEG AX
ADD AX,Screen Width
DEC AX
MOV CX, AX ;Keep maxx in CX

MOV AX,Zoom_X ;Fetch x position
CWD ;Check if negative (DX=FFFF)
NOT DX ;(DX=0000 if negative)
AND AX, DX ;and set to zero if negative
SUB AX, CX ;Check if greater than max
CWD ;(DX=0DDD if >= max)
AND AX , DX ;(AX=0DDD if >= max)
ADD AX / CX ;and set to max if over max
MOV Zoom_X,AX ;Save (adjusted position)

; Force y position into range 0 to maxy,
; where maxy = Screen_Height - WINDOW_HEIGHT * (ZoomFactor+1) •

MOV AX,Zoom Factor ;Use zoom factor and width to
INC AX ; compute max
MOV BX,WINDOW HEIGHT
MUL BX
MUL Char Height
NEG AX
ADD AX,Screen Height
DEC AX
MOV CX, AX ;Keep max in CX

MOV AX,Zoom_Y ;Fetch y position
CWD ;Check if negative (DX=FFFF)
NOT DX ;(DX=D0D0 if negative)
AND AX, DX ;and set to zero if negative
SUB AX, CX ;Check if greater than max
CWD ;(DX=D0D0 if >= max)
AND AX, DX ;(AX=0DDD if >= max)
ADD AX, CX ;and set to max if over max
MOV Zoom Y,AX ;Save (adjusted position)

Set new window x-start and x- end

MOV BX,Zoom X ;Fetch x postion
MOV DX,CRTC PORT ;Address of CRTC
MOV AL,ZOOM X REG ;Index of x-start register
MOV AH, BL
OUT DX, AX ;Select new x start

MOV AX,Zoom Factor ;Compute window width
INC AX
MOV BX,WINDOW WIDTH-1
MUL BX
ADD AX,Zoom X ;Compute window end
MOV AH, AL
MOV DX,CRTC PORT ;Address of CRTC
MOV AL,ZOOM X REG+1 ;Index of x-end register
OUT DX, AX ;Select new x-end

; Set new window y-start and y-end

MOV BX,Zoom Y ;Fetch y position
SHL BH, 1 ;Move high order bits into bits
SHL BH, 1
SHL BH, 1
MOV DX,CRTC PORT ;Address of CRTC
MOV AL,ZOOM Y REG ;Index of y-start register

Advanced Programmer’s Guide to Super VGAs

MOV AH/BL
OUT DX, AX
ADD AL / 2
OUT DX/AL
INC DX
IN AL/DX
AND AL/NOT 3Ah
OR AL/BH
OUT DX,AL

MOV AX,Zoom Factor
INC AX
MOV BX,WINDOW WIDTH
MUL BX
MUL Char_Height
ADD AX/Zoom Y
DEC AX
MOV BL, AH
MOV AH, AL
MOV DX,CRTC PORT
MOV AL,ZOOM Y REG+1
OUT DX, AX
INC AL
OUT DX/AL
INC DX
IN AL/DX
AND AL,NOT 07h
OR AL/BL
OUT DX/AL

; Set new zoom address (always
; upper-left corner to be same

MOV DX/CRTC_PORT
MOV AL/ZOOM_LOW_REG
MOV AH,□
OUT DX,AX
INC AL
OUT DX,AX
ADD AL/2
OUT DX/AL
INC DX
IN AL, DX
AND AL/NOT 0<h
OUT DX/AL

; Clean up and return

RET
Set_Window ENDP

;Select new y start low
;Index of y start hi
;Read previous value

;Clear previous value
;Move in new value
;Set the new y start high

;Compute window height

;Compute window end

;Save y start high
;Save y start low
;Address of CRTC
;Index of y-end register
;Select new y-end low
;Index of y start hi
;Read previous value

;Clear previous value
;Move in new value
;Set the new y start high

set to zero, to force zoom source
upper-left corner of displayed window)

;Address of CRTC
;Index of start low
;Value

;Point to start mid

;Point to start hi
;Select hi

;Read previous value
;Clear previous value
;Write new value

; Data definition *

Zoom_Factor DW 2
Zoom_X DW □
Zoom_Y DW □
Zoom_Address DD 0

Scree_Width DW AO
Screen_Height DW <00
Screen_Rows DW 25
Char_Height DW lb

_TEXT ENDS

STACK SEGMENT PARA STACK
DB lOOh DUP(?)

STACK ENDS
END

;Zoom factor - 1
;Position of displayed window

;Address of area to zoom

;Number of columns on the screen
;Number of scanlines on the screen
;Number of text rows

;Character height

'STACK'

Tseng ET3000—STB VGA EM-16 435

Displaying Eight Simultaneous Fonts

Listing 17-3 demonstrates how to enable eight simultaneous fonts, how to download
fonts, and how display text using all eight fonts. The program starts by creating seven
new fonts from the standard 8x14 and 8x8 fonts, making normal, bold, italicized, and
inverted fonts from each. Each font is copied into plane 2, using procedure Load_CG.
This procedure enables plane 2 for writing, and disables the odd/even addressing used
in text modes, before the font is written into memory. Fonts are loaded as indicated in
Table 17-5. When multiple fonts are enabled, using TS Aux register at address 3C4h,
index 06h, then each attribute byte determines color and font as is illustrated in Figure

17-3.

Figure 17-3. Multiple fonts

Table 17-5. Font locations in Plane 2

Font Number

0
1
2

3
4

5
6
7

Offset in Plane 2

0

16K
32K
48K

8K
24K
40K
56K

436 Advanced Programmer’s Guide to Super VGAs

Show_Text is used to display text in each font. For each font a label is displayed,
followed by 26 upper-and lower case characters, and numbers. Each font is displayed
using BIOS service 13h, Write Text String, with the attribute set for the specified font.

Listing 17-3. File: TSENG\TEXT.ASM

; * *

;* File: TEXT.ASM - Load A simultaneous fonts *
;* Description: A program to load A character generators and to display *
;* eight simultaneous fonts. *
;* It is assumed that color VGA monitor is attached to VGA.*
;* *

INCLUDE VGA.INC

TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT, ES:NOTHING, DS:NOTHING, SS:_STACK

PROC FAR
PUSH DS
XOR AX, AX
PUSH AX

Save return address

MOV AX,CS
MOV DS,AX ;Set Data seg to Code seg

; Force into text mode 3

MOV AX,3
INT IDh

Set for mode 3, function 0
Use BIOS for force mode 3

; Fetch Axl< character generator and load it bold as char gen 1

MOV AX,1130h
MOV BH, E
INT IDh
MOV DL, 14

CALL Make Bold
MOV DI,4DD0h
CALL Load_CG

;Fn=Char Gen, SubFn=Get Info
;Get info on Axl4
;Use BIOS to get pointer to CG
;Character height
;Convert char gen to bold
;Load at Itk

; Fetch Axl< character generator and load it italicized as char gen E

MOV AX,1130h
MOV BH, E
INT IDh
MOV DL,1<
CALL Make Italics
MOV DI,ADODh
CALL Load_CG

;Fn=Char Gen, SubFn=Get Info
;Get info on Axl4
;Use BIOS to get pointer to CG
;Character height
;Italicize the char gen
;Load at 3Ek

; Fetch Axl4 character generator and load it inverted as char gen 3

MOV AX,113Dh
MOV BH, E
INT lOh
MOV DL,1A

CALL Make Inverted
MOV DI,DCDODh
CALL Load_CG

;Fn=Char Gen, SubFn=Get Info
;Get info on Axl<
;Use BIOS to get pointer to CG
;Character height
;Invert the char gen
;Load at <Ak

Fetch AxA character generator and load it as char gen A

MOV AX,113Dh ;Fn=Char Gen, SubFn=Get Info
MOV BH, 3 ;Get info on AxA
INT lOh ;Use BIOS to get pointer to CG

Tseng ET3000—STB VGA EM-16 437

MOV DL,fi
MOV DI,2D0Dh ;Load at flk
CALL Load_CG

; Fetch fixfl character generator and load it bold as char gen 5

MOV AX,1130h
MOV BH, 3
INT 10h
MOV DL, a
CALL Make Bold
MOV DI,DLDDDh
CALL Load_CG

;Fn=Char Gen, SubFn=Get Info
;Get info on flxfl
;Use BIOS to get pointer to CG
;Character height
;Convert char gen to bold
;Load at 24k

; Fetch flxfl character generator and load it italicized as char gen L

MOV AX,1130h
MOV BH, 3
INT lOh
MOV DL, A
CALL Make Italics
MOV DI,OAODDh
CALL Load_CG

Fn=Char Gen, SubFn=Get Info
Get info on flxfl
Dse BIOS to get pointer to CG
Character height
Italicize the char gen
Load at 40k

; Fetch flxfl character generator and load it inverted as char gen 7

MOV AX,113Dh
MOV BH, 3
INT IDh
MOV dl , a
CALL Make Inverted
MOV DI,DEOOOh
CALL Load_CG

Fn=Char Gen, SubFn=Get Info
Get info on flxfl
Use BIOS to get pointer to CG
Character height
Invert the char gen
Load at 5bk

; Enable multiple character fonts

;Unlock CRTC and TS Aux registers
;Address of CRTC
;Index of 'unlock' register
;Select register

;Read current value
;CLEAR protection bit
;Write new value - Enable Access

font' bit in TS Aux
;Address of TS Auxilliary register
;Index of TS Aux
;Select TS Aux

;Read current value
;Set font enable bit
;Enable multiple fonts

ator Select' to 'A .NE. B'
;Index=Char Gen Sel reg, Data=4
;Enable two char generators

;Disable plane 3 from being displayed
;Disable plane 3 from display it
; first reset flip/flop
; get address of Attr Ctrl
; index of Color Plane Enable

MOV DX,3D4h
MOV AL,llh
OUT DX, AL
INC DX
IN AL, DX
AND AL,NOT flOh
OUT DX, AL

; Set 'Enable mult
MOV DX, 3C4h
MOV AL, 7
OUT DX, AL
INC DX
IN AL, DX
OR AL, IDh
OUT DX, AL
DEC DX

; Set 'Character G<
MOV AX,D403h
OUT DX, AX

MOV
IN
MOV
MOV
OUT
MOV
OUT

DX,3DAh
AL, DX
DX,3C0h
AL,32h
DX, AL
AL, 7
DX, AL

enable only 3 planes (0-3)

; Display title line

MOV BX,0007h ;Page=0, attribute=D7h (font=0, color=7)

438 Advanced Programmer’s Guide to Super VGAs

MOV CX/20
MOV DX,OllEh
LEA BP,Title_Msg
MOV AX,CS
MOV ES,AX
MOV AX,1300h
INT lOh

;20 characters
;Row=Dl, column=3D
;Fetch pointer to string

;Fn=String, SubFn=Use BL for attr.
;Display the string

; Loop over fonts, displaying message in seven colors for each font

XOR BX,BX
Font_Loop:

PUSH BX
SHL BX,1
PUSH CS
PUSH WORD PTR CS:MSG_Ptr[BX]
CALL Show_Text
ADD SP,^
POP BX
INC BX
CMP BX , A
JL Font_Loop

; Wait for a key to be pressed

MOV AH,00h
INT 1th

;Set counter of fonts to do

;Preserve counter, & put font # on stack
;Convert counter to index
;Put address of text on the stack

;Draw next set of text
;'Pop' text address
; Restore counter
;Update index
;Check if all fonts done
;Go do next font if needed

;Function return key
;Use BIOS to get the key

; Disable multiple character fonts

MOV DX, 3C4h
MOV AL, 7
OUT DX, AL
INC DX
IN AL, DX
AND AL,NOT lOh
OUT DX, AL

;Address of TS Auxilliary register
;Index of TS Aux
;Select TS Aux

;Read current value
;Clear font enable bit
;Disable multiple fonts

; Clean up and exit

Sho_Done:
RET ;Exit

Text ENDP

*

Show Text (font, text) *
Display 'text' as a label, followed by L2 characters of alphabet *
in row '2*font' with color 'font+1' *

*

Arg_Text EQU DWORD PTR [BP+4]
Arg_Font EQU BYTE PTR CBP+fl]

Font_To_Attr DB DOlODDDDb,ODlDlDDDb,DOllDOODb,□DlllDDDb
DB □lDDDD0Db,DlDDlDDDb,D101DD0Db,D1011DDDb

Alphabet DB
DB

•abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
•0123<5L7fi3'

Show_Text PROC NEAR
PUSH BP
MOV BP,SP

; Convert font number to attribute value

MOV AL,Arg_Font
LEA BX,Font_To_Attr
XLAT CS:Font_To_Attr
MOV BL,AL

Translate font to attr bit3 = bitD
bit A = bitl
bits =~bit2
bitt = bite

Tseng ET3000—STB VGA EM-16 439

MOV BH,Arg_Font ;Use color 1-4
AND BH,3 ; (Font AND 3) + 1
INC BH
ADD BL,BH

; Setup parameters for BIOS

MOV BH, □
MOV CX,1A
MOV DH,Arg_Font
SHL DH,1
ADD DH,3
MOV DL, □
LES BP,Arg_Text
MOV AX,13D0h
INT IDh

; Alphabet

ADD DL,1A
MOV CX, LE
LEA BP,CS:Alphabet
MOV AX,13DDh
INT IDh

; Clean up and exit

POP BP
RET

Show_Text ENDP

service call and call it to show label

;Page □
;lt characters
;Compute starting row
; as 'font*E + 3'

; Starting column
;Fetch pointer to string
;Fn=String, SubFn=Use BL for attr.
;Display the string

;Start in column 1A
;Id4 characters to show
;Pointer to alphabet string
;Fn=String, SubFn=Use BL for attr.
;Display string

*

Make_Bold *
Convert AxN character genertor to bold, by shifting each byte *
to the right and ORing it with the original. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

*

New_CG DB 1L*E5L DUP (0) ;Buffer for new char gen

Make_Bold PROC NEAR

;Setup counters

MOV BX, E5L ; Set counter of characters
XOR CH, CH ; Set counter of bytes
MOV AX, ES ; Set pointer to source
MOV DS, AX
MOV SI,BP
LEA DI,CS:New CG ; Set pointer to destination
MOV AX, CS
MOV ES, AX

; Loop over characters to change

MB_Char_Loop:
MOV CL,DL

; Loop over bytes to change

MB_Byte_Loop:
LODSB
MOV AH,AL
SHR AL,1
OR AL,AH
STOSB

;Set counter of bytes

;Fetch original byte
;Get a copy of the byte
;Shift byte to the right
;Combine bytes to make bold char
;Save new character

440 Advanced Programmer’s Guide to Super VGAs

LOOP MB_Byte_Loop
DEC BX
JG MB_Char_Loop

; Clean up and exit

LEA BP,CS:New_CG
RET

Make_Bold ENDP

;Check if all bytes done

;Check if all chars done

; Set pointer to new character generator

**
*

Make_Italics *
Convert flxN character genertor to italics, by shifting each byte *
to the right for top, and left for bottom two bytes. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

*

**

Make_Italics PROC NEAR

;Setup counters

MOV BL DL
XOR BH BH
MOV DX est
MOV AX ES
MOV DS AX
MOV SI, r BP
LEA DI, rCS:New CG
MOV AX, rCS
MOV ES, r AX

; Loop over characters to change

MI Char : Loop:
MOV CX, BX
REP MOVSB
SUB DI, BX
SHR BYTE PTR ES: [DI],1
SHR BYTE PTR ES: CDI + 1],1
SHR BYTE PTR ES: [DI + 5],1
SHR BYTE PTR ES: [DI + 33,1
SHL BYTE PTR ES:[DI][BX-l] ,1
SHL BYTE PTR ES: [DI][BX-S] ,1
SHL BYTE PTR ES:[DI][BX-3] ,1
SHL BYTE PTR ES:[DI][BX-A],1
ADD DI, BX
DEC DX
JG MI Char Loop
MOV DL, BL

; Clean up and exit

LEA BP,CS:New_CG
RET

Make_Italics ENDP

; Set counter of bytes

; Set counter of characters
; Set pointer to source

; Set pointer to destination

;Set counter of bytes
;Copy next character
;Point at first byte
; Shift top two lines to the right

;Shift last two lines to the left

;Point to next character
;Check if all chars done

; Restore DL

; Set pointer to new character generator

**
*

Make_Inverted *
Convert fixN character genertor to inverse, by inverting each *
byte of the original. *

*

Entry: DL - Number of bytes in each character *
ES:BP - Pointer to the character generator *

* **

Tseng ET3000—STB VGA EM-16 441

Make_Inverted PROC NEAR

;Setup counters

MOV BX,55L ; Set counter of characters
XOR CH / CH ; Set counter of bytes
MOV AX, ES ; Set pointer to source
MOV DS, AX
MOV SI, BP
LEA DI,CS:New CG ; Set pointer to destination
MOV AX, CS
MOV ES, AX

; Loop over characters to change

MV_Char_Loop:
MOV CL,DL ;Set counter of bytes

; Loop over bytes to change

MV_Byte_Loop:
LODSB
NOT AL
STOSB
LOOP MV_Byte_Loop
DEC BX
JG MV_Char_Loop

; Clean up and exit

LEA BP,CS:New_CG
RET

Make_Inverted ENDP

;Fetch original byte
;Invert the byte
;Save new character
;Check if all bytes done

;Check if all chars done

; Set pointer to new character generator

*

Load_CG *
Load character generator into plane E at the given offset. *

Entry: *
DI - Offset of character generator in plane 5 *
ES:BP - Pointer to character generator *
DL - Height of each character *

*

Load_CG PROC NEAR

; Enable plane E for write at

MOV BX, DX
MOV DX,SEQUENCER PORT
MOV AL,PLANE ENABLE REG
OUT DX, AL
INC DX
IN AL, DX
PUSH AX
MOV AL,<
OUT DX, AL

DEC DX
MOV AL,4
OUT DX , AL
INC DX
IN AL, DX
PUSH AX
OR AL/D<h
OUT DX, AL

MOV DX,GRAPHICS CTRL PORT
MOV AL,MISC REG
OUT DX, AL

ADODD

; Save character height
; Address of sequencer
; Plane enable reg index
; Select register

; Fetch current value
; Save to be restored at the end
; Select plane 5

; Memory mode reg index
; Select memory mode registers

; Fetch current value
; Save to be restored later
; Disable odd/even

; Address of graphics controller
; Index of misc reg
; Select misc reg

442 Advanced Programmer’s Guide to Super VGAs

INC DX
IN AL,DX
PUSH AX
AND AL/DFlh
OR AL,0<h
OUT DX/AL

; Copy character generator

MOV AX/ES
MOV DS,AX
MOV SI/BP
MOV AX/0AD00h
MOV ES/AX
MOV DX/BX
XOR DH,DH
MOV BX/25L

Loopl:
MOV CX,DX
REP MOVSB
MOV CX,EDh
SUB CX/DX
REP STOSB
DEC BX
JG Loopl

; Restore previous state

MOV DX/GRAPHICS_CTRL_PORT
POP AX
XCHG AL/AH
MOV AL/MISC_REG
OUT DX/AX

MOV DX,SEQUENCER_PORT
POP AX
XCHG AL,AH
MOV AL,<
OUT DX/AX

POP AX
XCHG AL,AH
MOV AL,PLANE_ENABLE_REG
OUT DX/AX

RET
Load_CG ENDP

Data definition

; Read current value
; Save to be restored later
; Disable odd/even and select A000

; Load DS:SI with source

; Load ES:DI with destination

; Setup counters

; Number of bytes to copy
; Copy bytes for next character
; Number of zero's to fill after char

; Fill trailing zeros
; Check if all characters done
; Go do next char, if not all done

; Restore graphics controller
; Get the original value
; Setup index and data

; Restore register

; Restore graphics controller
; Get the original value
; Setup index and data

; Restore register

; Get the original value
; Setup index and data

; Restore register

*

Title Msg DB
MSG □ DB
MSG 1 DB
MSG a DB
MSG 3 DB
MSG 4 DB
MSG 5 DB
MSG L DB
MSG_? DB

MSG_Ptr DW
DW
DW
DW
DW
DW
DW
DW

•fi SIMULTANEOUS FONTS'
Default Set '

»E: Axl4 Bold '
•<: Axl4 Italics '
'L: Axl4 Inverted '
'1: AxA Normal '
'7: fixA Bold '
'5: AxA Italics '
'3: AxA Inverted '

OFFSET MSG_0
OFFSET MSG_1
OFFSET MSG_5
OFFSET MSG_3
OFFSET MSG_4
OFFSET MSG_5
OFFSET MSG_L
OFFSET MSG_7

Tseng ET3000—STB VGA EM-16 443

TEXT ENDS

STACK SEGMENT PARA STACK 'STACK
DB lOOh DUP(?)

STACK ENDS
END

Detection and Identification

Tseng Labs does not have a recommended way of detecting the presence of their
product in the system. The Segment Select register at I/O address 3CDh, used for page
selection, can be used to detect the ET3000 chip. To verify the presence of the ET3000,
code similar to the following can be used:

MOV DX,3CDh
IN AL, DX
MOV AH, AL
AND AL,DCOh
OR AL,55h
OUT DX, AL
IN AL, DX
CMP AL, 55h
JNE Not Tseng3D00
MOV AL,DAAh
OUT DX, AL
IN AL, DX
CMP AL,AAh
JNE Not_Tseng3D00

Tseng30DD_Found:

Address of page select register
Read current value
Save for later f
Preserve msb bits
Test value one
Write test value
Read value just written out
Same value read back?
...No, cannot be Tseng ET30DD
Test value two
Write second test value
Read back test value
Same value read back?
...No, cannot be Tseng ET3DD0

18

Western Digital
WD90C00

Western Digital
Paradise VGA 1024

PARADISE. °WD90C00

445

446 Advanced Programmer’s Guide to Super VGAs

Introduction

In 1986 Paradise Systems was acquired by Western Digital; Paradise systems is now a
trademark of Western Digital Corporation. Initially, chips were still labeled as manufac¬

tured by Paradise Systems. VGA chips were originally labeled as PVGA1A with the Para¬
dise logo.

Later chips started to appear with the WD90C00 label (corresponding to the PVGA1B
chip) and with the Western Digital Logo. Western Digital now manufactures all their

own VGA chips, preserving the Paradise name only for the marketing of VGA boards.

Western Digital also builds VGA boards for sale to large OEM customers, including
Hewlett-Packard, who resell them under their own brand names. Western Digital

claims that there are more Paradise VGA chips in use than chips from any other manu¬
facturer, including IBM.

Paradise VGA 1024 includes up to 512K of display memory and supports resolutions
up to 1024x768 with 16 colors or 640x480 with 256 colors. It also includes emulation
modes for EGA, CGA, MDA and Hercules compatibility and 132-column text modes.

Video output is analog only (TTL displays are not supported).
Unless stated otherwise the information in this chapter applies both to the Paradise

VGA 1024 and the Paradise VGA Professional. VGA Professional includes 512K of dis¬

play memory and has capabilities similar to VGA 1024, except that 1024x768 modes are

not supported.
Paradise provides application drivers for many popular applications such as MS-Win¬

dows, GEM, AutoDesk products, Ventura Publisher, Cadvance, Framework II, Generic

CADD, Lotus and Symphony, OS/2 PM, VersaCAD, Wordperfect and Wordstar 3-3. New
drivers are continually added and are available on the Western Digital BBS system.

AT and Micro Channel Versions

Western Digital offers two different implementations of their VGA boards, an AT bus

version and a Micro Channel bus version. These two versions differ in several respects:

• Hardware interrupts are not supported on the AT bus versions.
• Micro Channel versions allow switching between color and monochrome display

modes. AT versions will follow the BIOS equipment flag to determine which display
modes are allowed (monochrome or color). This allows Paradise VGAs to coexist
with a secondary adapter (CGA or MDA) in AT systems.

• The board can be disabled on Micro Channel versions via port 3C3h. On AT versions
this port is at address 46E8h (which is also redundantly mapped at 56E8h, 66E8h and
76E8h).

Western Digital WD90C00—Western Digital Paradise VGA 1024 447

• AT versions display a reverse video intensified character as white on white (the char¬
acter disappears). On Micro Channel versions characters with such attributes are
visible. This can be selected via a switch on Paradise VGA boards.

New Display Modes
Table 18-1 lists the enhanced display modes that are supported. Any of these modes

can be selected by issuing a BIOS mode select command.

Table 18-1. Enhanced modes—Paradise VGA 1024

Mode Type Resolution Colors Memory Display

54h
Required Type

Text 132 col x 43 rows 16 256 KB VGA
55h Text 132 col x 25 rows 16 256 KB VGA
56h Text 132 col x 43 rows Mono 256 KB VGA
57h Text 132 col x 25 rows Mono 256 KB VGA
58h Graphics 800x600 16 256 KB Multi
59h (2) Graphics 800x600 2 256 KB Multi
5Ah(l)(2) Graphics 1024x768 2 256 KB 8514
5Bh (1) Graphics 1024x768 4 256 KB 8514
5Dh(l) Graphics 1024x768 16 512 KB 8514
5Ch (3) Graphics 800x600 256 512 KB Multi
5Eh Graphics 640x400 256 256 KB VGA
5Fh Graphics 640x480 256 512 KB VGA
Note (1): Modes 5Ah, 5Bh and 5Dh are not supported on Professional VGA.
Note (2): Modes 56h, 57h, 59h and 5Ah use CRTC address 3B4h, 3B5h.
Note (3): Mode 5C is not supported on boards manufactured before June 1990.

Memory Organization
For all extended display modes of the VGA 1024, display memory organization is

closely patterned after standard IBM VGA display modes.

VGA 1024 includes a display memory paging mechanism that is needed in some dis¬
play modes to make the entire display memory accessible to the processor. Display
memory paging is described in detail later in this chapter.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line, or number

448 Advanced Programmer’s Guide to Super VGAs

of lines per screen, is increased. Display memory is organized as shown in Figure 5-1

(see Chapter 5).

2-Color Graphics Modes 59h and 5Ah

Memory organization for these modes resembles VGA mode llh (640x480 2-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is similar to that shown in Figure 7-1,
except that only one plane is used for each byte (plane 0 for even bytes, plane 1 for odd
bytes). Care must taken to leave both planes 0 and 1 enabled for writing during draw¬

ing operations.

4-Color Graphics Mode 5Bh

Memory organization for mode 5Bh resembles VGA modes 4 and 5 (320x200 2-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased, and no memory interleave is used. Display memory organization is
linear; each byte contains four pixels, with the topmost bits D6 and D7 corresponding
to the left-most pixel. Display memory organization is shown in Figure 18-1. To learn
more about this mode, see “Packed Pixels” in Chapter 9.

Figure 18-1. Display memory—mode 5Bh

Western Digital WD90C00—Western Digital Paradise VGA 1024 449

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See chapter 7
for programming examples.

256-Color Graphics Modes

Memory organization for these modes resembles VGA mode 13h (320x200 256-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased. Display memory organization is shown in Figure 8-1. See
chapter 8 for programming examples.

New Registers
Table 18-2 on page 450 lists the new registers that have been added to the PVGA

chip. Some of these are IBM standard registers for interfacing with Micro Channel;
others control extended functions of the PVGA. Extended registers are mapped at pre¬
viously unused indexes of the Graphics Controller (3CEh and 3CFh). PVGA1B contains
additional extended registers that are mapped at previously unused indexes of the CRT
Controller (3B4h/3D4h and 3B5h/3D5h).

450 Advanced Programmer’s Guide to Super VGAs

Table 18-2. Extended registers—Paradise PVGA1A, PVGA1B (WD90C00)

Address Index

46E8h(1)

94h (2)

3C3h (2)

102h

3CEh,3CFh 09h

3CEh,3CFh OAh

3CEh,3CFh OBh

3CEh,3CFh OCh

3CEh,3CFh ODh

3CEh,3CFh OEh
3CEh,3CFh OFh

WD90C00(PVGA1B) only:

3x4h,3x5h 29h

3x4h,3x5h 2Ah

3x4h,3x5h 2Bh

3x4h,3x5h 2Ch

3x4h,3x5h 2Dh

3x4h,3x5h 2Eh

3x4h,3x5h 2Fh

3x4h,3x5h 30h

Description

Module disable (AT version) - Write only

Setup register (Micro Channel version) - Write only

Module disable (Micro Channel version) - Write only

VGA Sleep register (setup mode only)

PROA: Address Offset A (paging control)

PROB: Address Offset B (paging control)

PR1: Memory Size

PR2: Video Select - do not modify

PR3: CRT Control - do not modify

PR4: Video Control - do not modify

PR5: Extended Register Locking (index 09h to OFh)

PR10: Extended Register Locking (index 2Ah to 30h)

PR11: EGA Switches

PR12: Scratch Pad

PR13: Interlace H/2 Start

PR14: Interlace H/2 End

PR15: Miscellaneous Control 1

PR16: Miscellaneous Control 2

PR17: Miscellaneous Control 3

Note (1): This register is available only on AT versions (instead of 3C3h).
Note (2): This register is available only on Micro Channel versions (instead of 46E8h).

On the VGA Professional, extended registers are locked after a mode change and are left locked by
subsequent BIOS calls; on the VGA 1024 extended registers are unlocked after mode change and are
left unlocked by subsequent BIOS calls.

Module Disable (I/O Address 46E8H, 56E8H, 66E8H, 76E8H)

D7-D5 - Unused
D4 - Setup

D3 - Enable I/O and memory accesses
D2-D0 - BIOS ROM page select (8 pages of 4K each)

This write-only register is redundantly addressable at four different I/O addresses. It

is used to enable or disable the VGA, and also for BIOS ROM page selection.
Paradise followed IBM’s lead by implementing a paging scheme for the VGA BIOS

ROM on PS/2 systems. The implementation is slightly different than IBM’s, however. In
IBM PS/2 systems, the VGA BIOS ROM initializes on reset to page zero. In the Paradise
VGA Plus, VGA Plus 16, VGA Professional, and the VGA 1024, it initializes at page six. In

Western Digital WD90C00—Western Digital Paradise VGA 1024 451

the VGA Plus 16, VGA Professional, and VGA 1024, writing a 0 to this register will select
page six; on the VGA Plus it will select page zero.

Western Digital has stated that future revisions of their product will not employ ROM
paging.

Setup (bit D4) is initialized on reset to 0, which is the normal operating mode for
VGA. When this bit is set to 1, the VGA is placed in setup mode. When in setup mode, all
accesses to the VGA, except for port 102h and 46E8h, are disabled.

POS Sleep Bit Register (I/O Address 102h)

D7-D1 - reserved
DO - VGA sleep

IBM uses this port on both the AT and Micro Channel VGAs. When set to one, the
VGA is enabled for access; when set to 0, VGA is disabled. This register can be accessed
only in setup mode.

Extended Register Bank (I/O Addresses 3CEh and 3CFh,
3B4h/3D4h and 3B5h/3D5h)

Several locking mechanisms are employed for the extended register bank to insure
that emulation modes will operate properly. The extended register bank is initially
write protected; to access these registers, the unlock registers 3CEh index OFh and 3x4
index 29h must be loaded with a code of XXXXX101 binary. Registers 3CEh index 09h
through index OFh cannot be accessed if the EGA emulation bit (Dl) is set in the Video
Control register (3CEh, index OEh). Registers 3B4/3D4 index 2Ah through index 30h
cannot be accessed unless register 3B4/3D4 index 29h is set to a binary value of
1XXX0XXX (X = don’t care).

Address Offset A (I/O Address 3CEH Index 9)

Paradise VGA chips include a flexible and powerful mechanism for display memory
paging. Two completely independent memory pages are supported, each with read
and write capability, with varying size and granularity. The page size is either 32K or
64K and the granularity is 4K (see Display Memory Paging in Chapter 5 for more details
on granularity and page size).

Although the Paradise paging scheme can be used to improve some drawing algo¬
rithms, the examples in this book assume 64K pages with 64K granularity (with the
exception of BITBLT.ASM, which includes an example of a block transfer when two
fully independent 32K pages are available).

452 Advanced Programmer’s Guide to Super VGAs

Address Offset Register defines the base address of the first page of display memory;
in other words, it defines what section of display memory will be accessible to the host
in page A. This register contains a seven-bit value which is added to CPU address bits
A12 through A18 to access display memory. By default (when dual paging is disabled)
page A starts at A000:0 and addresses a 64K window.

Dual paging is enabled by setting bit D3 of the the Memory Size register (index OBh)
to one. Page A then starts at A800:0, addresses a 32K window, and must be set to the
desired page number minus 8. To select page 17 for page A, for example, while dual
paging is enabled, first load a 9 (17 - 8 = 9) into Address Offset register A. This is illus¬
trated in Figures 18-2 and 18-3, and in programming examples given later in this

chapter.
Memory page size is determined by page enable, and by the host window size as

indicated in Table 18-3. To learn more about this register, see the programming exam¬

ples later in this chapter.

Table 18-3. Display memory page addresses

3CEh
Index OBh

Bit 3
0

3CEh
Index 6

bits 3&2
00

0 01

0 1 0

0 00

1 00

1 01

1 1 0

1 00

Host Address Window

A000:0 - BFFF:F

A000:0 - AFFF:F

B000:0 - B7FF:F

B800:0 - BFFF:F

A000:0 - BFFF:F

A000:0 - AFFF:F

B000:0 - B7FF:F

B800:0 - BFFF:F

Page Size and Start Address

Page A Page B

64kB, disabled

A000:0
64kB, disabled

A000:0
64kB, disabled

B000:0
64kB, disabled

B800:0
64kB, 64kB,

B000:0 A000:0

32kB, 32kB,

A800:0 A000:0

32kB, 32kB,

B800:0 B000:0

invalid invalid

Address Offset B (I/O Address 3CEh Index OAh)

D7 - unused
D6-D0 - Address offset

Address Offset Register B is used to select a second display memory page (page B).
This register contains a 7-bit value that is added to memory address bits A12 through

Western Digital WD90C00—Western Digital Paradise VGA 1024 453

A18 during processor reads and writes to display memory. Normally, when dual pag¬
ing is enabled, page B starts at A000:0 and can access 32K. The starting address and
page size can be affected by changing the host address window, as shown in Table 18-3.
To learn more about paging, see the programming examples later in this chapter.

Memory Size (I/O Address 3CEh Index OBh)

D7-D4 - Memory Size - Do not modify
D3 - Enable Alternate Address Offset
D2 - Enable 16-bit interface to display RAM (1 = enabled)
D1 - Enable 16-bit interface to BIOS ROM (1 = enabled)
DO - Disable BIOS ROM (1 = disabled)

Enable Alternate Address Offset (Dual Page Enable) allows two pages of display
memory to be accessed simultaneously at two different host memory addresses. This is
extremely useful when display data must be moved from one page of display memory
to another, which is frequently the case during BITBLT operations. Address Offset reg¬
isters (index 9 and Ah) define what section of display memory will be accessible to the
host at each page. The Miscellaneous register of the Graphics Controller defines what
host addresses each page will be mapped at (see Table 18-3). To learn more about pag¬
ing, see the programming examples later in this chapter.

Video Select (I/O Address 3CEh Index OCh)

D7 - AT&T/M24 Mode Enable, 400 line enable
D6 - 6845 Compatibility (0: VGA or EGA, 1: 6845)
D5 - Character Map Select
D4,D3 - Character Clock Period Control
D2 - Character Map Select/Underline
D1 - Third Clock Select Line VCLK2
DO - Force VCLK (overrides SEQ1 bit 3)

Character Map Select (D5 and D2), with bit D3 of the character attribute, enable
character maps from planes 2 or 3 to be selected as follows:

D5 D2 Attribute Plane Select

0 0 X 2
0 1 X 2
1 0 X 3
1 1 0 2
1 1 1 3

454 Advanced Programmer’s Guide to Super VGAs

Selecting page mode addressing (by setting register 3B4h/3D4h index 2Eh bit D2 to
one) overrides the plane select table shown above.

Character Clock Period Control determines the width of characters in text modes as
follows:

D4,D3 Character Width

00 IBM VGA character clock (8 or 9 dots)
01 7 dots (used for 132 character mode)
10 9 dots
11 10 dots

Selecting 10 dots per character modifies the function of the horizontal PEL Panning
register (Address 3C0h index 13h). The following values should be used for horizontal
panning:

PEL Panning Register Value PELS Shifted Left
09 0
08 1
00 2
01 3
02 4

03 5
04 6
05 7
06 8
07 9

When the Underline and Character Map Select/Underline bit (D2) is set to one, char¬
acter attribute bit DO will cause a character to be underlined. This overrides the back¬
ground color function of attribute bit D3, allowing only eight choices of background
color. With the Character Map Select bit (D5), this bit is also decoded to enable charac¬
ter maps from planes 2 or 3. See Character Map Select, bit D5, for details.

The Third Clock bit is the third clock select line (VCLK2) to the clock generator chip.
Force VCLK forces the horizontal sync timing clock of the CRT Controller to VCLK.

This is for compatibility modes that require locking of the CRTC timing parameters.

CRT Lock Control (I/O Address 3CEH Index ODh)

D7 - Lock VSYNC Polarity
D6 - Lock HSYNC Polarity
D5 - Lock Horizontal Timing

Western Digital WD90C00—Western Digital Paradise VGA 1024 455

D4 - Bit 9 Control
D3 - Bit 8 Control
D2 - CRTC Control
D1 - Lock Prevention
DO - Lock Vertical Timing

Register locking is controlled by 4 bits: DO, D1 and D5 of this register and bit D7 of
the Vertical Retrace End register (3B5/3D5 index 11).

• Lock Horizontal Timing (D5) locks registers associated with horizontal timing.
• Lock Vertical Timing (DO) locks registers associated with vertical timing.
• Lock VSYNC polarity (D7) locks the polarity of vertical sync.
• Lock HSYNC polarity (D6) locks the polarity of horizontal sync.
• Bit 8 Control (D3) locks bit 8 of the Start Memory Address High and Cursor Loca¬

tion High registers of the CRT Controller.

• CRTC Control (D2) multiplies the Cursor Start, Cursor Stop, Preset Row Scan, and
Maximum Scan Line registers by two.

• Lock Prevention (D1) inhibits the locking of registers through the Vertical Retrace
End register.

Video Control (I/O Address 3CEh Index OEh)

D7 - BLNK/Display Enable
D6 - PCLK = VCLK

D5 - Tri-state Video Outputs
D4 - Tri-state Memory Control Outputs
D3 - Override CGA Enable Video bit
D2 - Lock Internal Palette and Overscan registers
D1 - EGA Compatibility

DO - Extended 256 color Shift Register Control

Override CGA Enable Video (D3) overrides the CGA “enable video” bit D3 of
CGA Mode register 3D8 in CGA text mode.

Lock Internal Palette and Overscan (D2) locks the palette and overscan
registers.

EGA Compatibility (Dl) disables reads to all registers which are write-only on the
IBM EGA, and to the extended registers PR0-PR5.

Extended 256-color Shift Register Control (DO) configures the video shift regis¬
ters for extended 256-color mode.

456 Advanced Programmer’s Guide to Super VGAs

General Purpose Status Bits (Address 3CEh, Index OFh)

D7 - Read CNF(7) Status
D6 - Read CNF(6) Status
D5 - Read CNF(5) Status
D4 - Read CNF(4) Status
D3 - Read CNF(8) Status
D2-D0 - PRO-PR4 Unlock

Bits D2-D0, when set to 5, will unlock extended registers 3CEh index 9 through
index OEh. This register also reads back configuration register bits D4 through D8. Set¬
ting bit D4 to 1 read protects registers 3CEh index 9 through index OEh.

Unlock Second Bank (I/O Address 3B4h/3D4h Index 29h)

A second bank of extended registers is available in the PVGA1B (WD90C00). This
register is used to enable and disable access to this bank.

D7 - Read Enable Bit 1
D6-D4 - Scratch Pad
D3 - Read Enable Bit 0
D2-D0 - Write Enable

Write Enable (D2-D0) must be set to 5 (101b) to write enable the register bank.
Read Enable bits D7 and D3 must be set to 1 and 0 respectively to read enable regis¬
ters the register bank. A code of 85h written to this register will read and write enable
the register bank.

EGA Switches (I/O Address 3B4h/3D4h Index 2Ah)

7 EGA Switch 4
6 EGA Switch 3
5 EGA Switch 2
4 EGA Switch 1
3 EGA Emulation on Analog Display
2 Lock Clock Select
1 Lock Graphics and Sequencer Screen Control
0 Lock 8/9 Dot Character Clock

EGA Configuration switches (D7-D4) are both readable and writable and are
latched at reset to the settings of the on-board switches. These bits can be read on bit
D4 of port 3C2h if EGA compatibility mode is enabled.

Western Digital WD90C00—Western Digital Paradise VGA 1024 457

Lock Graphics Controller/Sequencer screen control (Dl) inhibits write
access to the following bits in the Graphics Controller and Sequencer:

Graphics Controller 3CFh index 5 bits D5 and D6
Sequencer 3C5h index 1 bits D2-D5
Sequencer 3C5h index 3 bits D0-D5

Lock 8/9 dots (DO) inhibits write access to Sequencer register 3C5h index 1, bit DO.

Scratch Pad (I/O Address 3B4h/3D4h Index 2Bh)

D7 to DO - Scratch Pad

The data in this register is unaffected by hardware reset and undefined at power up.
This register is used by the BIOS and should not be changed.

Interlace H/2 Start (I/O Address 3B4h/3D4h Index 2Ch)

D7 to DO - Interlaced H/2 Start

The data in this register is unaffected by hardware reset and undefined at power up.
This register defines the starting horizontal character count at which vertical timing is
clocked on alternate fields in interlaced operation. The register value should be deter¬
mined as follows:

Interlaced H/2 start = HORIZ_RETRACE__START - (HORIZ_TOTAL + 5)/2 + HRD
HRD = Horizontal Retrace Delay, D5,D6 of Horizontal Retrace End Register

Interlace H/2 End (I/O Address 3B4h/3D4h Index 2Dh)

D7 - Enable IRQ
D6 - Vertical Double Scan for EGA on PS/2 Display
D5 - Enable Interlaced Mode
D4-D0 - Interlaced H/2 Start

Enable IRQ (D7) enables vertical retrace interrupts on the AT bus. This bit cannot
be used in Micro Channel systems.

Vertical double scan (D6) is used when emulating EGA on a PS/2 display. Setting
this bit causes the Vertical Displayed line counter and row scan counter of the CRT
Controller to be clocked by divide-by-two horizontal timing if the vertical sync polarity
(3C2 Bit 7 = 0) is programmed to be positive. The relationship between the actual
number of lines displayed [N] and the data [n] programmed into the Vertical Display
Enable End register becomes:

458 Advanced Programmer’s Guide to Super VGAs

N = 2(n+1)

And likewise for the actual number of scan lines per character row [N] and the data

[n] programmed in the maximum Scan Line register.
Enable Interlaced Mode (D5) selects interlaced mode. The Maximum Scan Line

register must be set to 0XX00000. Line compare and double scan are not supported in

interlaced mode.
Interlaced H/2 End (D4-D0) adjusts horizontal sync width for interlaced mode.

Miscellaneous Control 1 (I/O Address 3B4h/3D4h Index 2Eh)

D7 - Read 46E8H Enable
D6 - Low VCLK

D5 - VCLK1 ,VCLK2 Latched Outputs
D4 - VCLK = MCLK

D3 - 8514/A Interlaced Compatibility
D2 - Enable Page Mode

D1 - Select Display Enable Timing
DO - Disable Border

Read 46E8H Enable (D7) enables I/O port 46E8H to be read in AT bus systems.

Only bits D0-D4 of port 46E8H are readable.
Low VCLK (D6) adjusts memory timing to allow a video clock (VCLK) frequency

which is much lower than the memory clock (MCLK) frequency. This bit should be set

to 1 if the following expression is satisfied:

(MCLK in MHZ) / (VCLK in MHZ) > 2

Latched VCLK1 and VCLK2 (D5) is used only ifVCLKl and VCLK2 are configured
as outputs. It causes outputs VCLK1 and VCLK2 to equal bits D2 and D3 of the Miscella¬
neous Output register (3C2h).

VCLK=MCLK (D4) causes the MCLK input to be selected for the source of all video

timing. The other three VCLK inputs cannot be selected when this bit is set.

Interlaced Compatibility (D3) should be set to one if exact 8514/A video timing is
required. It causes vertical sync to be generated from the trailing edge horizontal sync

instead of the leading edge. Interlaced mode must be enabled.
Enable Page Mode Addressing (D2) forces screen refresh memory cycles to use

page mode addressing in text modes. Page mode addressing is automatically used in
graphics modes.

This bit will alter the use of the Character Map Select register as shown below.

Western Digital WD90C00—Western Digital Paradise VGA 1024 459

Char Map Select Char. Attr. Plane
D4 D3 D3 Selected
0 0 X 2
1 1 X 3
1 0 0 2
1 0 1 3
0 1 0 3
0 1 1 2

If it is used, this bit must be set before loading the character maps into video RAM,
since the addressing of page mode character maps differs from their addressing in
nonpage mode. This bit is automatically set by the BIOS in standard 132-column text
modes.

Disable Border (DO) forces the video outputs to 0 during the interval when border
(overscan) color would be active.

Miscellaneous Control 3 (I/O Address 3B4h/3D4h Index 30h)

D7 to D1 - Reserved
DO - Map out 2K in BIOS ROM

This bit disables access to the BIOS ROM in the system address range C600:0H -
C67F:FH to allow VGA to coexist with adapters such as the IBM PGC which uses this
space. This bit is set by a hardware reset.

The BIOS

VGA boards based on the PVGA1A chip use a BIOS memory space from C000:0h to
C000:5FFFh, leaving the 2K region from C000:6000h to C000:7FFFh available for com¬
patibility with adapters such as the IBM Professional Graphics Controller (PGC). VGA
1024 boards using the WD90C00 VGA chip consume this additional 2K address space.

BIOS function 0, mode select, can be used to select any of the Paradise extended
display modes. In addition, Paradise has added new subfunctions to BIOS function 0
for BIOS versions -014 and later.

Parametric Mode Set

Input Parameters:

AH = 0
AL = 7Eh

460 Advanced Programmer’s Guide to Super VGAs

BX = Horizontal resolution (in pixels for graphics modes, character columns for text)
CX = Vertical resolution (in pixels for graphics modes, character rows for text)
DX = Number of colors (0 for monochrome)

Return Value: None.

This mode set will only work for standard Paradise display modes.

Enable/Disable Emulation Mode

Input Parameters:

AH = 0
AL = 7Fh
BH = 0 to disable emulation, 1 to enable emulation

Return Value:

BH = 7Fh if successful

If the current display mode is 0,1,2,3,4,5 or 6, this call will enable or disable CGA
emulation. If the current display mode is 7, it will enable or disable MDA/Hercules
emulation.

Inquire Emulation Status

Input Parameters:

AH = 0
AL = 7Fh
BH = 2

Return Value:

BH = 7Fh if successful
BL = 1 if emulation is on, 0 if emulation is off
CH = Size of display memory (in units of 64 kbytes)
CL = Memory required by current mode (in units of 64 kbytes)

Lock Emulation Mode for Reset

Input Parameters:

AH = 0

Western Digital WD90C00—Western Digital Paradise VGA 1024

AL = 7Fh
BH = 3

Return Value:

BH = 7Fh if successful

Enable MDA/Hercules Emulation

Input Parameters:

AH = 0
AL = 7Fh
BH = 4

Return Value:

BH = 7Fh if successful

Enable CGA Emulation

Input Parameters:

AH = 0
AL = 7Fh

BH = 5

Return Value:

BH = 7Fh if successful

Set Monochrome VGA Mode

Input Parameters:

AH = 0
AL = 7Fh
BH = 6

Return Value:

BH = 7Fh if successful

462 Advanced Programmer’s Guide to Super VGAs

Set Color VGA Mode

Input Parameters:

AH = 0
AL = 7Fh
BH = 7

Return Value:

BH = 7Fh if successful

Read Paradise Extended Register

Input Parameters:

AH = 0
AL = 7Fh
BH = lOh + register index (from port 3CFh)

Return Value:

BH = 7Fh if successful
BL = Register value

Write Paradise Extended Register

Input Parameters:

AH = 0
AL = 7Fh
BH = Register index (from port 3CFh)
BL = Data value to write to register

Return Value:

BH = 7Fh if successful

Register index Ofh (Locking register) cannot be modified using this function.

Set Hardware EGA Emulation

Input Parameters:

AH = 0

Western Digital WD90C00—Western Digital Paradise VGA 1024 463

AL = 7Fh
BH = 20h

BL = EGA switch combination (monitor type)

Return Value:

BH = 7Fh if successful

Programming Examples

Accessing Extended Registers

When writing to extended registers, either one 16-bit instruction (OUT DX,AX) or
two 8-bit instructions (OUT DX^AL) can be used.

After mode select, all extended registers are locked on the VGA Professional (except
the Extended Register Locking register, index OFh). To enable access to the extended
registers, a value of 5 must be written to the Extended Register Locking register bits
D0-D2. Code similar to the following can be used to enable access:

M0V DX,3CEh ;Address of extended block
MOV AX/DSDFh ;Index Fh and value 5
OUT DX/AX ;Enable extended register access

Further examples showing access to the extended register bank can be found in the
procedures Select_Page, Select_Read_Page and Select_Write_Page shown below.

Many drawing algorithms (especially for sixteen-color modes) can be implemented
efficiently by using a "moving bit mask’ while drawing partial bytes- In such algo¬
rithms, the BIT MASK register index in the Graphics Controller may be selected at
the start of the algorithm;

HQ? t>X«3CJ5h
Hoy ftL,a
OttT

After the index is set, only the data register need be accessed in the inner drawing
loop;

80L AL„1 ;DQmpute new mask
Dx,ftL ;£ftabl6 Mts far incite asitvg mask

Since Paradise paging registers reside at the same I/O address as the Graphics Con¬
troller, care must be taken to ensure that after a new page is selected the previous
register index is restored so that these drawing algorithms will operate properly.

464 Advanced Programmer’s Guide to Super VGAs

Display Memory Paging

The display memory paging mechanism of the Paradise VGA maps selected portions
of the display memory to the processor. Operation of display memory paging is very
similar to the paging mechanism used for expanded memory boards (also called EMS
or LIM memory). A 64K or 128K logical page of VGA RAM (a chunk of display memory)
is mapped into the PC host address space in the normal VGA display memory address
space.

Either one or two display memory pages may be enabled. Unlike many other VGA
products, both memory pages are readable and writable. This can be very useful when
transferring data from one part of display memory to another (BITBLT). Display mem¬
ory paging is illustrated in Figures 18-2 and 18-3. To learn more about paging on Para¬
dise boards, see the description of Address Offset Registers earlier in this chapter.

Figure 18-2. Memory paging—single page

Western Digital WD90C00—Western Digital Paradise VGA 1024 465

Listing 18-1 illustrates how the paging registers are used. Note that the extended reg¬
ister bank is enabled in procedure _Select__Graphics, and disabled in procedure
_Select_Text. To easily interface with our common drawing routines, the paging rou¬
tines in Listing 18-1 do not take full advantage of the Paradise paging capabilities.
Select__Page assumes that a 64K page has been requested, and the page is converted to
a Paradise page address.

Select_Read_Page and Select_Write_Page assume that a 32K page has been
requested with granularity of 32K. Select_Write__Page and Select_Read__Page assume
that the read page is in page A, addressed by DS at A800, and the write page is in page B,
addressed by ES at AOOOh. Note that in __Select__Read__Page the page number is
adjusted by eight.

All three paging routines preserve the index of the Graphics Controller.

466 Advanced Programmer’s Guide to Super VGAs

Listing 18-1. File: WD\SELECT.ASM

*******3»c>(c3|c**3(c*j(t3(t******^^^** + *****>)(*»e*****j(c*****5*c***3|e***3)c*»e3)c>|c*5(c*»e*3(c3|c*****

* File: SELECT.ASM *
* Description: This module contains procedures to select mode and to *
* select pages. It also initializes global variables *
* according to the values in the MODE.INC include file. *
* Entry Points:
* _Select_Graphics
* _Select_Text
* _Select_Page
* _Select_Read_Page
* _Select_Write_Page
* Uses:
* MODE.INC
* Following are modes
* I-55L colors-I
* L40x40D L<Dx4AD ADDxLDD
* Mode: 5Eh 5Fh N/A
* Path: 55LC0L 55LC0L N/A

*

Select a graphics mode *
Set VGA adapter into text mode *
Select L4k page *
Select 35k page A *
Select 35k page B *

*

Mode dependent constants *
and paths for Paradise 1D5<: *
i— It colors —i 4 colors 5 colors *
AODxLDD lDS4x7fcA 1D54x7£>A 1D5<x7E*A *

5Ah 5Dh 5Bh 5Ah *
1LC0L 1LC0L 4C0LPACK 5C0L * **************************************

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

Constant definitions

EXTEND REG ADDR EQU 3CEh ;I0 Address i for page select register
UNLOCK REG EQU OQFh ; Index for lock/unlock register
PAGEA REG EQU □ DRh ;Index for page A
PAGEB REG EQU □ □Ah ; Index for page B
DUAL ENABLE REG EQU □ OBh ; Index for dual page enable

Code segment variables

_TEXT SEGMENT BYTE PUBLIC 'CODE'
Graf_Seg DW DADODh ;Graphics segment addresses

Western Digital WD90C00—Western Digital Paradise VGA 1024 467

DW □ AflDDh
OffScreen_Seg DW □ ADDOh
Video_Pitch DW SCREEN PITCH
Video Height DW SCREEN HEIGHT
Video_Width DW SCREEN WIDTH
Video_Pages DW SCREEN PAGES
Ras_Buffer DB 1024 DUP (□)
R_Page DB DFFh
W Page DB □ FFh
RW_Page DB □ FFh
Two_Pages DB CAN DO RW

;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen
;Working buffer
;Most recently selected page

;Indicate separate R & W capability

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to hAOxAUO mode with *
* 25k colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* *

Arg_HorizPtr EQU WORD PTR [BP+<] ;Formal parameters
Arg_VertPtr EQU WORD PTR CBP+k] ;Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+fl] ;Formal parameters

_Select_Graphics PROC NEAR
PUSH BP ;Standard C entry point
MOV BP, SP

PUSH
PUSH

DI
SI

;Preserve segment registers

PUSH DS
PUSH ES

; Select graphics mode

MOV AX,GRAPHICS_ MODE ;Select graphics mode
INT lOh

; Reset 'last selected page'

MOV AL,QFFh
MOV CS:R_Page,AL
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI,Arg_VertPtr ;Fetch
MOV WORD PTR [SI],SCREEN_HEIGHT
MOV SI,Arg_HorizPtr ;Fetch
MOV WORD PTR [SI],SCREEN_WIDTH
MOV SI,Arg_ColorsPtr ;Fetch
MOV WORD PTR ESI],SCREEN_C0L0RS

; Enable extended register access

MOV DX,EXTEND_REG_ADDR ;Fetch address of extended reg bank
MOV AX,UNLOCK_REG+0500h ;Unlock extended registers
OUT DX,AX

; Clean up and return to caller

pointer to vertical resolution
;Set vertical resolution

pointer to horizontal resolution
;Set horizontal resolution

pointer to number of colors
:Set number of colors

;Use 'non-existent' page number
;Set currently selected page

POP ES ;Restore segment registers

468 Advanced Programmer’s Guide to Super VGAs

POP DS
POP SI
POP DI

MOV SP, BP
POP BP
RET

Select_Graphics ENDP

Select_Page
Entry:

AL - Page number

Select, Page PROC NEAR
CMP AL,CS:RW Page

SP_Go:

JNE
RET

SP_Go

PUSH AX
PUSH BX
PUSH DX
AND AL, 7
MOV CS:RW Page,AL
MOV CS:R Page,DFFh
MOV CS:W Page,OFFh

;Standard C exit point

*

*

*

*

*

;Check if already selected

;Force into range
;Save as most recent RW page
;Invalidate R and W pages

; Preserve index
; It color drawing routines assume that mask register of gr. ctrlr
; remains select. Since paging uses same I/O address, we must
; preserve the index.

MOV DX,EXTEND_REG_ADDR
IN AL,DX
MOV BL,AL

; Select next page

MOV AH,CS:RW_Page
SHL AH,1
SHL AH,1
SHL AH,1
SHL AH, 1
MOV AL,PAGEA_REG
OUT DX,AX

; Restore index

MOV AL, BL
OUT DX, AL

POP DX
POP BX
POP AX
RET

Select_Page ENDP

;Save graphics controller index

;Fetch page number
;Convert L<k multiple to 4k mult

;Select page

;Restore index

Select_Read_Page
Entry:

AL - Page number

**

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page
JNE SRP_Go

;Check if already selected

Western Digital WD90C00—Western Digital Paradise VGA 1024

SRP_Go:
RET

PUSH AX
PUSH BX
PUSH DX
AND AL,OFh
MOV CS:RW_Page,OFFh
MOV CS:R_Page,AL

; Preserve index

;Force into range
;Invalidate RW page number
;Save as most recently selected

; It. color drawing routines assume that mask register of gr. ctrlr
; remains select. Since paging uses same I/O address, we must
; preserve the index

MOV DX,EXTEND_REG_ADDR
IN AL,DX
MOV BL,AL

;Save graphics controller index

; Select next page

MOV AH,CS:R Page
SHL AH, 1
SHL AH, 1
SHL AH, 1
SUB AH,DAh
MOV AL,PAGEA REG
OUT DX, AX

; Restore index

MOV AL, BL
OUT DX, AL

POP DX
POP BX
POP AX

RET
Select_Read_Page ENDP

;Fetch page number
;Convert 35k multiple to 4k mult

;Adjust for ES=AA0D instead of AODO
;Select page

; Restore index

*

Select_Write_Page *
Entry: *

AL - Page number *

****************** *

Select_Write_Page PROC NEAR
CMP AL,CS:W Page
JNE
RET

SWP_Go

PUSH AX
PUSH BX
PUSH DX
AND AL,OFh
MOV CS:RW Page,OFFh
MOV CS:W_Page,AL

;Check if already selected

;Force into range
invalidate RW page number
;Save as most recently selected

; Preserve index
; It. color drawing routines assume that mask register of gr. ctrlr
; remains select. Since paging uses same I/O address, we must
; preserve the index

MOV DX,EXTEND_REG_ADDR
IN AL,DX
MOV BL,AL

;Save graphics controller index

; Select next page

470 Advanced Programmer’s Guide to Super VGAs

MOV AH/CS:W Page
SHL AH /1
SHL AH, 1
SHL AH /1
MOV AL,PAGEB REG
OUT DX, AX

;Fetch page number
;Convert 32k multiple to 4k mult

;Select page

; Restore index

MOV AL,BL ;Restore index
OUT DX,AL

POP DX
POP BX
POP AX

RET
Select_Write_Page ENDP

Enable_Dual_Page
Disable_Dual_Page *

Entry: *
AL - Page number *

**

Enable_Dual_Page PROC NEAR
PUSH AX
PUSH DX
MOV dx,extend_reg_addr
MOV AL/DUAL_ENABLE_REG
OUT DX/AL
INC DX
IN AL,DX
OR AL/Oflh
OUT DX,AL
POP DX
POP AX
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
PUSH AX
PUSH DX
MOV DX,EXTEND_REG_ADDR
MOV AL,DUAL_ENABLE_REG
OUT DX,AL
INC DX
IN AL/DX
AND AL/NOT Dflh
OUT DX/AL
POP DX
POP AX
RET

Disable_Dual_Page ENDP

;Fetch address of exteneded reg block
;Fetch index of dual enable
;Select register

;Read previous value
;Set enable bit
;Enable dual paging

;Fetch address of exteneded reg block
;Fetch index of dual enable
;Select register

;Read previous value
;Clear enable bit
;Enable dual paging

*

_Select_Page(PageNumber) *
Entry: *

PageNumber - Page number *

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ;Setup frame pointer

Western Digital WD90C00—Western Digital Paradise VGA 1024 471

MOV
MOV
POP
JMP

_Select_Page

SP,BP
AL/Arg_PageNumber
BP
Select_Page
ENDP

;Fetch argument
;Restore BP

_Select_Read_Page(PageNumber)
Entry:

PageNumber- Page number for read

*

*

*

*

* *************
Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Read_Page PROC NEAR
PUSH BP
MOV SP/BP
MOV AL,Arg_PageNumber
POP BP
JMP Select_Read_Page

_Select_Read_Page ENDP

;Setup frame pointer

;Fetch argument
; Restore BP

» *

; _Select_Write_Page(PageNumber) *
; Entry: *
; PageNumber - Page number for write *

• **************** *

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Write_Page PROC NEAR
PUSH BP
MOV SP,BP
MOV AL,Arg_PageNumber
POP BP
JMP Select_Write_Page

_Select_Write_Page ENDP

;Setup frame pointer

;Fetch argument
;Restore BP

* *******************************
* _Select_Text *
* Set VGA adapter to text mode *
*

******************** *

_Select_Text
MOV
INT
RET

_Select_Text

PROC NEAR
AX/TEXT_MODE
IDh

ENDP

;Select mode 3
;Use BIOS to reset mode

Last_Byte:
_Text ENDS

END

BITBLT with Two Pages

Paradise is one of the few VGAs that is capable of supporting two separate read and
write pages. A more efficient method for block copying (BITBLT) can be used. An
example of such an improved algorithm can be found at the end of the file BITBLT. ASM
in Chapter 7.

472 Advanced Programmer’s Guide to Super VGAs

Detection and Identification

Paradise recommends that the presence of a Paradise BIOS is detected by checking
for the ASCII string VGA= ’ at BIOS ROM location C000:007Dh. Code similar to the

following can be used to check for the Paradise BIOS.

Check for Paradise BIOS

NOV AX,C000h ;Fetch segment of BIOS

MOV DS, AX

MOV SI,7Dh ;Fetch offset of signature

CMP WORD PTR [SI],<75fch ;Check for first half of signature

JNE Not Paradise_BIOS

CMP WORD PTR [SI+E],3D<lh ;Check for second half of signature

JNE Not_Paradise_BIOS

.Found: ;We found eternal bliss....

To detect boards based on PVGA1A and WD90C00 chips, the locking mechanism of
the extended registers can be used. Locked and unlocked extended registers can be
written and read to detect which VGA chip version is present. The PVGA1A does not
contain a second bank of extended registers. Code similar to that shown below can be

used.
In this code it is assumed that the board is in a standard VGA mode and that both

unlock registers are initially readable (otherwise they may not be restored properly).
All registers are restored to their original values at the end of the test.

;Save current value of Lock/Unlock register

Look_For_PVGAlA:
MOV

MOV
OUT

INC
IN
MOV

DX,3CEh
AL/OFh

DX, AL
DX
AL,DX

BL, AL

;Unlock extended register bank 1
MOV AL,05h

OUT DX,AL
;Save current content of page register A

MOV AL,OSh

OUT DX,AL

INC DX
IN AL,DX

MOV BH,AL
; Write first pattern to page

MOV AL,05h

OUT DX, AL

XOR AL, AL

IN AL,DX

CMP AL,05h

JNE Not_Paradise

A and read it back

; Write second pattern and read it back

MOV

OUT

XOR
IN
CMP
JNE

AL,0Ah

DX, AL
AL, AL
AL,DX

AL,DAh
Not_Paradise

;Lock paging register
MOV DX,3CEh
MOV AL,0Fh

MOV AH,DDh

;Address of extended register bank 1

;Index of Unlock register
;Select Unlock register

;Read current value
;Save current value for later

;Value to use for unlock function
;Unlock extended register bank 1

;Index of page A register

;Select register

;Read current value
;Save current value for later

;Pattern to write

;Write first pattern

;Read back
;Verify value read back
;Quit if read not same as written

;Pattern to write
;Write first pattern

;Read back
;Verify value read back
;Quit if read not same as written

; Address of extended register bank 1
;Index of Unlock register
;Value to use for lock function

Western Digital WD90C00—Western Digital Paradise VGA 1024 473

OUT DX, AX
; Write first pattern to page
MOV AL/ORh
OUT DX, AL
INC DX
MOV AL,05h
OUT DX, AL
XOR AL, AL
IN AL,DX
CMP AL,05h
JE Not_Paradise
;Restore original values
MOV AL,BH
OUT DX, AL
DEC DX
MOV AL,ORh
MOV AH, BL
OUT DX, AX

Paradise_Found:
;Unlock Scratch Pad register for read and write

Look_For_WDq0C00:
MOV AX, □
MOV ES, AX
MOV SI,4L3h
MOV DX,[SI]
MOV AL,5Rh
OUT DX, AL
INC DX
IN AL,DX
MOV BL, AL
MOV AL,05h
OUT DX, AL
;Save current content of scratch register
MOV AL,EBh
OUT DX, AL
INC DX
IN AL,DX
MOV BH, AL
; Write first pattern and read it back
MOV AL,05h
OUT DX, AL
XOR AL, AL
IN AL,DX
CMP AL,05h
JNE PVGAlA_Found
; Write second pattern and read it back
MOV AL,DAh
OUT DX, AL
XOR AL, AL
IN AL,DX
CMP AL,DAh
JNE PVGA1A Found
;Restore original values
MOV AL,BH
OUT DX, AL
DEC DX
MOV AL,ERh
MOV AH,BL
OUT DX, AX
;Do processing for WDROCOO

WDROCQO_Found:

;Lock extended register bank 1

;Index of page register
;Select page register

;Pattern to write
;Write first pattern

;Read back
;Verify value read back
;Quit if read same as written

;Fetch original value of paging reg
;Restore paging register
;Address
;Index of Unlock reg
;Original value of Unlock reg
;Restore Unlock register
;...and what a bliss...

;Point to BIOS data area
; to fetch address
;... of the CRT controller
;Fetch address of extended bank 2
;Index of Unlock register
;Select Unlock register

;Read current value
;Save current value for later
;Value to use for unlock function
;Unlock extended register bank 2

;Index of scratch pad
;Select register

;Read current value
;Save current value for later

;Pattern to write
;Write first pattern

;Read back
;Verify value read back
;Quit if read not same as written

;Pattern to write
;Write first pattern

;Read back
;Verify value read back
;Quit if read not same as written

;Fetch original value
;Restore scratch pad register
;Address
;Index of Unlock reg
;Original value of Unlock reg
;Restore Unlock register

;Do processing for PVGA1A
PVGAlA.Found:

;Do processing for non-Paradise board
Not_Paradise:

;Restore original values

;Restore original values

19

ZyMOS Poach 51
TrueTech HiRes VGA

ZyMOS

476 Advanced Programmer’s Guide to Super VGAs

Introduction
TrueTech manufactures VGA products that are based on the ZyMOS POACH51 VGA

chip. ZyMOS POACH51 is an equivalent (second-source) part to the Trident 8800CS
VGA chip. As with most SuperVGAs, the POACH51 VGA chip is fully IBM VGA-compati¬
ble, includes register level compatibility for EGA, CGA, MDA and Hercules, and
includes extended high resolution text and graphics modes. High resolution applica¬
tions software drivers are also available for products such as AutoCAD, AutoShade,
Framework II and III, GEM, Lotus 1-2-3 and Symphony, MS-Windows, Ventura Pub¬
lisher, and WordPerfect.

Chip Versions
ZyMOS POACH VGA chips contain a version number that can be read from the least

significant nibble of the Hardware Version register (I/O address 3C5h, index OBh).

New Display Modes
Table 19-1 lists the enhanced display modes that are supported by the HiRes VGA. All

modes are selectable using the standard BIOS Mode Select call, function 0.

Memory Organization
For all extended display modes of the HiRes VGA, display memory organization is

closely patterned after standard IBM VGA display modes.
For some extended modes, a memory paging mechanism is also used. Memory pag¬

ing is described in detail later in the programming examples.

High Resolution Text Modes

These modes utilize memory maps that are similar to those used in standard text
modes (modes 0,1,2,3 and 7), except that the number of characters per line and/or
number of lines per screen is increased. Display memory is organized as shown in Fig¬
ure 5-1 (see Chapter 5).

ZyMOS Poach51—TrueTech HiRes VGA 477

Table 19-1. Enhanced display modes—TrueTech VGA

Mode Type Resolution Colors
Memory

Required
Display

Type
51h Text 80 col x 43 rows 16 256 KB VGA
52h Text 80 col x 60 rows 16 256 KB VGA
53h Text 132 col x 25 rows 16 256 KB Multi
54h Text 100 col x 25 rows 16 256 KB Multi
55h Text 100 col x 60 rows 16 256 KB Multi
56h Text 132 col x 60 rows 16 256 KB Multi
57h Text 132 col x 43 rows 16 256 KB Multi
5Bh Graphics 800x600 16 256 KB Multi
5Ch Graphics 640x400 256 256 KB VGA
5Dh Graphics 640x480 256 512 KB VGA
5Eh Graphics 800x600 256 512 KB Multi
5Fh Graphics 1024x768 16 512 KB 8514

60h Graphics 960x720 16 512 KB
or XL

Multi
6lh Graphics 1280x640 16 512 KB XL
62h Graphics 512x512 256 256 KB Multi
63h Graphics 720x540 16 256 KB Multi
64h Graphics 720x540 256 512 KB Multi
6Ah Graphics 800x600 16 256 KB Multi

16-Color Graphics Modes

Memory organization for these modes resembles VGA mode 12h (640x480 16-color
graphics), except that both the number of pixels per scan line and the number of scan
lines are increased. Display memory organization is shown in Figure 7-1. See Chapter 7
for programming examples.

256-Color Graphics Modes

Memory organization for these modes resembles VGA mode 13h (320x200 236-
color graphics), except that both the number of pixels per scan line and the number of
scan lines are increased. Display memory organization is shown in Figure 8-1. See
Chapter 8 for programming examples.

New Registers
To support the new modes and emulation modes, the ZyMOS chip contains addi¬

tional registers not found on the standard VGA. These are listed in Table 19-2.

478 Advanced Programmer’s Guide to Super VGAs

Table 19-2. Extended Registers—ZyMOS POACH51

Register Name Address Index
CRTC Module Testing register 3B4h/3D4 lEh
Scratch Pad 3B4h/3D4h lFh
Power Up Mode register 1 3C4 OCh
Power Up Mode register 2 3C4 OFh
Hardware Version register 3C4h OBh
Mode Control register 1 3C4h OEh
Mode Control register 2 3C4h OD
CPU Latch Read Back 3B4h/3D4h 22h
Attribute State Read Back 3B4h/3D4h 24h
Attribute Index Read Back 3B4h/3D4h 26h
Video Enable 3C3h -

Display Adapter Enable 46E8h -

Registers used in the programming examples, in this text, are described in detail
below.

Hardware Version Register (I/O Address 3C5h Index OBh)

D7-D4 - Reserved
D3-D0 - Hardware version

Reading this register causes the chip to enter version 2 paging mode. Writing this
register causes the chip to enter version 1 paging mode. Programming examples in this
chapter assume version 2 paging. For more details on paging see the Programming
Examples in this chapter.

Mode Control Register 1 (I/O Address 3C5h Index OEh)

D7-D4 - Reserved
D3-D0 - 64K page select

This register is used to select a page number in version 2 paging mode. In this mode,
bit 1 must be written inverted, but will read back correctly (uninverted). To select page
7, for example, a value of 5 should be written; a value of 7 will be read back.

ZyMOS Poach51—TrueTech HiRes VGA 479

Processor Latch Read Back Register (I/O Address 3B5/3D5
Index 22h)

This register can be used to read back the current value of the processor data latch in
the Graphics Controller for the color plane that is currently enabled for reading.

Attribute Controller State Register (I/O Address 3B5/3D5
Index 24h)

D7 - Attribute Controller State (read-only)
D6-D0 - Reserved

Attribute Controller State indicates whether the next write operation to the Attri¬
bute Controller (I/O address 3C0) will be used as a register index or as register data
(0 = index, 1 = data).

Attribute Controller Index Read Back (I/O Address 3B5/3D5
Index 26h)

This read-only port can be used to read the current value of the index register inter¬
nal to the Attribute Controller.

Programming Examples

Display Memory Paging

Display memory is divided into eight 64K pages. Pages are selected via Mode Control
register 1 (I/O address 3C5h, index OEh). Bit D1 must be complemented before the
page number is written, but will read back uncomplemented. This is illustrated in Fig¬
ure 19-1. Table 19-3 on page 480 contains a list of valid page numbers and correspond¬
ing values.

Note 1: Assumes that Hardware Version register was read to force mode 2 paging

Figure 19-1. ZYMOS Paging register

480 Advanced Programmer’s Guide to Super VGAs

Access to Mode Control register 1 is enabled by a read operation from the Hardware
Version register (I/O address 3C5h, index OBh) and is disabled by a write operation to
the Hardware Version register. Access to the page select bits in Mode Control register 1
should always be prefaced by a read from the Hardware Version register to assure that
it is enabled.

Table 19-3. Memory paging mode 2

I/O Address 3C5, Index OEh
Write Value Read Value

Page Number D3 D2D1D0 D3 D2D1 DO

0 0010 0000

1 00 1 1 000 1

2 0000 0010

3 000 1 001 1

4 0110 0100

3 0111 0101

6 0100 0110

7 0 10 1 0 111

Listing 19-1 contains mode select procedures, Select__Graphics and Select_Text,
and the paging procedure Select__Page.

Select_Graphics shows how to invoke extended modes. Note that in procedure
Select__Graphics, after the mode select, the 64K page is selected using the Miscellane¬
ous register of the Graphics Controller. Version 2 paging is forced by a read operation
from the Hardware Version register. Select__Page shows how to select pages (for ver¬

sion 2 mode).

Listing 19-1. File: ZYMOS\ SELECT.ASM

;* File: SELECT.ASM *
;* Description: This module contains procedures to select mode and to *
;* select pages. It also initializes global variables *
;* according to the values in the MODE.INC include file. *
;* Entry Points: *
;* _Select_Graphics - Select a graphics mode *
;* _Select_Text - Set VGA adapter into text mode *
;* _Select_Page - Select page for read and write *
;* Uses: *
;* MODE.INC - Mode dependent constants *
;* Following are EXTENED modes and paths for TrueTech *
;* i-25b colors-1 i— It colors —i 4 colors E colors *

* L4Dx4DD L4Dx4AD ADOxLDD ADDxLDD 10E4X7LA lD£4x7bA 1DE4X7LA *
* Mode: 5Ch 5Dh 5Eh L Ah 5Fh N/A N/A *

* Path: E5LC0L ESLCOL E5LC0L 1LC0L 1LC0L N/A N/A *

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics

ZyMOS Poach51—TrueTech HiRes VGA 481

PUBLIC Select Text
PUBLIC _Select Page
PUBLIC _Select_Read Page
PUBLIC _Select_Write_Page

PUBLIC Select Page
PUBLIC Select Read Page
PUBLIC Select Write Page
PUBLIC Enable Dual Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

EXTEND_REG_ADDR EQU 3C4h
VERSION_REG EQU DDBh
PAGE_REG EQU DOEh

;I0 Address for extended bank registers
;Index for enable/version register
;Index for page register

Code segment variables

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW □ADDCh
DW □BDODh

Offscreen Seg DW □ADOOh
Video Pitch DW SCREEN PITCH
Video Height DW SCREEN HEIGHT
Video_Width DW SCREEN_WIDTH
Video_Pages DW SCREEN_PAGES
Ras_Buffer DB IDEA DUP (□)
R_Page DB □ FFh
W_Page DB □ FFh
RW_Page DB □ FFh
Two_Pages DB CAN_DO_RW ;In<

;Graphics segment addresses

;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen
;Working buffer
;Most recently selected page

separate R & W capability

* *

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to LAQxAUU mode with *
* 25L colors. *
* *

* Entry: *
* None *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *

*

482 Advanced Programmer’s Guide to Super VGAs

Arg_HorizPtr EQU WORD PTR [BP+<] ; Formal parameters
Arg_VertPtr EQU WORD PTR [BP+L] ;Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+fl] ;Formal parameters

_Select_Graphics PROC NEAR
PUSH BP ;Standard C entry point
MOV BP,SP

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Select graphics mode

MOV AX,GRAPHICS_MODE ;Set extended mode number
INT lOh ;Use BIOS to select mode

; Reset 'last selected page'

MOV AL,DFFh ;Use 'non-existent' page number
MOV CS:R_Page,AL ;Set currently selected page
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI, Arg_VertPtr ;Fetch pointer to vertical resolution
MOV WORD PTR [SI],SCREEN_HEIGHT ;Set vertical resolution
MOV SI,Arg_HorizPtr ;Fetch pointer to horizontal resolution
MOV WORD PTR [SI]/SCREEN_WIDTH ;Set horizontal resolution
MOV SI,Arg_ColorsPtr ;Fetch pointer to number of colors
MOV WORD PTR [SI],SCREEN_COLORS ;Set number of colors

; Enable extended register access for version 5

MOV DX/EXTEND REG ADDR ;Address of extended reg bank
MOV AL/VERSION_REG ;Index of version (and enable) reg
OUT DX, AL -.Select register
INC DX ;Advance to data port
IN AL/DX ;Read version to enable version 2 mode

MOV DX/GRAPHICS CTRL_PORT ;Address of graphics controller
MOV AL/MISC_REG -.Index of miscellaneous register
OUT DX, AL ;Select misc register
INC DX •.Advance to data port
IN AL,DX ;Read misc register
AND AL/DF3h ;Clear addressing bits
OR AL / CKh ;Enable ADODO-AFFFF addressing
OUT DX, AL ;Output value

; Clean up and return to caller

POP ES ;Restore segment registers
POP DS
POP SI
POP DI

MOV SP,BP
POP BP
RET

Select_Graphics ENDP

;Standard C exit point

ZyMOS Poach51—TrueTech HiRes VGA

*

Select_Page *
Entry: *

AL - Page number *
*

Select Page PROC NEAR
CMP AL,CS:RW Page
JNE SP_Go
RET

SP_Go:
POSH AX
PUSH DX

AND AL,?
MOV CS:RW_Page,AL
MOV CS:R_Page,OFFh
MOV CS:W_Page,OFFh
MOV AH,AL
XOR AH,OEh
MOV DX,EXTEND_REG_ADDR
MOV AL,PAGE_REG
OUT DX,AL
INC DX
IN AL,DX
AND AL,OFOh
OR AL,AH
OUT DX,AL

POP DX
POP AX
RET

Select_Page ENDP

;Check if already selected

;Force page number into range
;Save as most recent RW page
;Invalidate R and W pages

;Copy page number
;Invert bit 1
; Address of extended register bank
;Index of select page register
;Select the page register
;Advance address to data
;Read previous value
;Preserve upper nibble
;Combine preserved bits with page number
;Select new page

*

Select_Read_Page *
Entry: *

AL - Page number *
*

Select_Read_Page PROC NEAR
CMP AL,CS:R_Page ;Check if already selected
JNE SRP_Go
RET

SRP_Go:
RET

Select_Read_Page ENDP

*
*

*

*

* ****************
Select_Write_Page PROC NEAR

CMP AL,CS:W_Page ;Check if already selected
JNE SWP_Go
RET

SWP_Go:
RET

Select_Write_Page ENDP

**

Select_Write_Page
Entry:

AL - Page number

484 Advanced Programmer’s Guide to Super VGAs

*

Enable_Dual_Page *
Disable_Dual_Page *

*

Entry: *
AL - Page number *

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

.^Jtc***^**********
! *
; _Select_Page(PageNumber) *
; Entry: *
; PageNumber - Page number * . *

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL/Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Page

_Select_Page ENDP

•

; _Select_Read_Page(PageNumber) *
; Entry: *
; PageNumber- Page number for read *
. *

Arg_PageNumber EQU BYTE PTR CBP+4]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_Page ENDP

.**
• *

; _Select_Write_Page(PageNumber) *
; Entry: *
; PageNumber - Page number for write *
. *
.**

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Write_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

_Select_Write_Page ENDP

ZyMOS Poach51—TrueTech HiRes VGA 485

*

* _Select_Text *
* Set VGA adapter to text mode *

*

Select_Text
MOV
INT
RET

Select_Text

PROC NEAR
AX,TEXT_MODE
IDh

ENDP

Select mode 3
Use BIOS to reset mode

Last_Byte:
_Text ENDS

END

Detection and Identification

TrueTech does not have a recommended way to detect the presence of their boards.
To detect the ZyMOS VGA chip, we recommend reading the Hardware Version register
and checking for a value of 2 in the lower nibble. Code similar to the following can be
used:

MOV
MOV
OUT
INC
IN
AND
CMP
JNE

ZyMOS_Found:

DX,3C<h
AL,OBh
DX, AL
DX
AL / DX
AL,DFh
AL,2
Not_ZyMOS

;Address of extended reg bank
;Index of version register
;Select version register

;Read version
;Keep only lower nibble
;Check for version 3

This method will not distinguish between the Trident 8800CS chip and ZyMOS
POACH51 chip; this should not matter since the devices are register compatible.

The VESA Standard

VESA
Video Electronics Standards Association

487

488 Advanced Programmer’s Guide to Super VGAs

Introduction
A new industry standards organization known as the Video Electronics Standards

Association (VESA) has assumed the task of improving the compatibility of VGA boards
from different vendors. VESA membership includes such major VGA suppliers as ATI,
Chips and Technologies, Cirrus, Everex, Genoa, Video-Seven, Intel, Orchid, Phoenix
Technologies, Sigma Designs, STB, Paradise, and others.

VESA has proposed a set of added BIOS functions that can be used to access the
extended modes and capabilities of SuperVGAs in a standard manner. These new BIOS
functions are collectively grouped under the new BIOS function 4Fh.

Included in the VESA specification is a standard set of mode numbers for high reso¬
lution modes, which is an accomplishment in itself since so many VGA manufacturers
have arbitrarily assigned new mode numbers. In order to create standard mode num¬
bers for all current and future extended modes, without conflicting with vendor-spe¬
cific modes, VESA expanded the size of a mode number from 7 bits to 15 bits. VGA
suppliers can continue to support their current mode numbering system while at the
same time supporting the VESA standard.

To avoid mode number conflicts, VESA standard mode numbers are greater than or
equal to lOOh with the exception of mode 6Ah, which is already a defacto industry

standard.

VESA Display Modes
Table 20-1 lists VESA standard modes.

Table 20-1. VESA standard display modes

Mode number Resolution Colors

lOOh 640x400 256

lOlh 640x480 256

102h 800x600 16

103h 800x600 256

104h 1024x768 16

105h 1024x768 256

106h 1280x1024 16

107h 1280x1024 256

6Ah(l) 800x600 16

Note: Mode 6Ah is the only VESA mode which can be selected using the standard VGA BIOS Mode Select
call (function 0). All other modes are selectable using VESA extended BIOS function 2, Set Super VGA
Video Mode.

The VESA Standard 489

The VESA BIOS
All VESA extended VGA BIOS functions are accessed using int lOh, as used for stan¬

dard VGA BIOS functions. The designated Super VGA extended function number is
4Fh. A standard VGA BIOS performs no action for this function number.

All extended VGA BIOS functions have a similar format:

AH = 4Fh

AL = VESA function code (0 through 5)

Every function returns status information in AX. The format of a status word is as
follows:

AL = 4Fh if function is supported
AH = 0 if function call was successful

1 if function call failed
2 - FFh reserved (should be treated as failure)

Function OOh - Return SuperVGA Information

Input Parameters:

AH = 4Fh
AL = OOh

ES:DI = Address of destination for information block (256-byte buffer)

Return Values:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully

The following information block is returned at the requested address:

VESA Signature db VESA’ ;VESA signature
VESA version db 7 ;VESA minor version number

db 7 ;VESA major version number
OEM StringPtr dd ? pointer to ASCIIZ OEM string
Capabilities dd 7 ;board capabilities
VideoModePtr dd 7 pointer to supported modes

VESA signature will always be VESA’.

VESA version will initially be 1.0 (major = 1, minor = 0)
OEM string pointer is a pointer to an OEM-defined null terminated string that can

be used to identify vendor specific capabilities for hardware specific drivers.

490 Advanced Programmer’s Guide to Super VGAs

The Capabilities field identifies what general features are supported. It is currently

unused and should be set to OOOOOOOOh.
Video mode pointer points to a list of supported SuperVGA modes (both VESA

and vendor-specific modes). Each mode number occupies one word (16 bits). The list

is terminated by OFFFFh. The list may be in ROM or in RAM.

Function Olh - Return SuperVGA Mode Information

Input Parameters:

AH = 4Fh
AL = Olh
CX = Desired mode
ES:DI = Address of destination for information block

Return Values:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully

The following information block is returned at the requested address:

Mode_Attributes dw 7 ;mode attributes

Win_A_Attributes db 7 ;window A attributes

Win_B_Attributes db ? ;window B attributes

Win_Granularity dw 7 ;window granularity

Win_Size dw 7 ;window size

Win__A_Segment dw 7 ;window A segment address

Win_B_Segment dw 7 ;window B segment address

Win_Func_Ptr dd 7 pointer to window

function

Bytes__Per_Scan_Line dw 7 ;bytes per scan line

Optional information:

X_Resolution dw 7 horizontal resolution

Y_Resolution dw 7 vertical resolution

X_Char_Size db 7 character cell width

Y_Char_Size db 7 character cell height

Number_Of_Planes db 7 ;number of memory planes

Bits_Per_Pixel db 7 ;bits per pixel

Number_Of_Banks db 7 ;number of banks

Memory_Model db 7 ;memory model type

Bank_Size db 7 ;bank size in kb

The VESA Standard 491

Optional information fields are not required for standard VESA video modes since
these parameters are predefined for each mode.

Mode_Attributes describes important characteristics of the display mode:

D15 - D5 - Reserved
D4 - Graphics/Text Mode (1 = graphics)
D3 - Color/Monochrome Mode (1 = color)
D2 - BIOS text functions are supported (1 = true)
D1 - Optional information is valid for block (1 = true)
DO - Mode is supported by the current display (1 = true)

Win_A_Attributes and Win_B_Attributes give attributes for display memory
windows. In VESA terminology, a window is a page of display memory mapped at a
particular address. Either one or two windows may be supported:

D7-D3 - reserved
D2 = 1 if the window is writable
D1 = 1 if the window is readable
DO = 1 if the window is supported

Granularity indicates the smallest increment, in kilobytes, that can be used
in selecting the start address for a display memory page.

Win__Size specifies the size of a page of display memory (in kilobytes).
Win_A_Segment and Win_B_Segment specify the host segment address where

each display memory window is located.

Win__Fimc_Addr specifies the address of the display memory windowing func¬
tion. This function can be invoked either through VESA BIOS function 5 or by a direct
call to this address. Since speed is usually important in graphics algorithms, a direct
call to the routine will probably be the most popular method of accessing this function.

Bytes_Per_Scan_Line indicates the logical screen width, which may be equal to
or greater than the physical screen width.

Resolution and Y_Resolution specify the width and height of the screen in
pixels (for graphics modes) or in characters (for text modes).

X_Char_Cell_Size and Y__Char_Cell_Size specify the size of a character cell in
pixels.

Memory_Model indicates the display memory organization used in this mode.
Valid types are:

0 - Text mode
1 - CGA graphics
2 - Hercules graphics
3 - Four-plane graphics (see Figure 8-1 on page 181)
4 - Packed pixel graphics (see Figure 7-1 on page 131)

492 Advanced Programmer’s Guide to Super VGAs

5 - Nonchain 4, 256-color graphics (see Figure 12-1 on page 284)
6-0fh - Reserved by VESA
lOh-ffh - May be defined by manufacturer

Number__Of_Banks and Bank__Size apply only to graphics modes that have non¬

linear memory maps such as CGA graphics modes and Hercules graphics modes.
Number__Of_Banks indicates the number of logical scan line groupings, and

Bank_Size indicates the number of scan lines per group. For more information on

these modes, see Chapter 2.

Function 02h - Set SuperVGA Display Mode

Input Parameters:

AH = 4Fh

AL = 02h
BX = display mode number

The Display mode number parameter should follow VESA numbering

conventions:

D15 - Preserve display memory flag (0: clear memory, 1: preserve memory)

D14 to D9 - Reserved for future expansions (should be 0’s)
D8 - VESA mode flag (0: not VESA-defined mode, 1: VESA mode)

D7 to DO - Mode number (see Table 20-1 for valid VESA defined numbers).

Return Value:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully

Function 03h - Return Current Display Mode

Input Parameters:

AH = 4Fh
AL = 03h

Return Value:

AL = 4Fh if command was completed successfully
AH = 0 of function was completed successfully

BX = Current display mode

The VESA Standard 493

Function 04h - Save/Restore SuperVGA Video State

This function is actually comprised of three separate subfunctions: Return State
Buffer Size, Save SuperVGA Video State, and Restore SuperVGA Video State.

Subfunction 1 - Return State Buffer Size

This function can used to determine the size of the buffer that will be required to
save video state information.

Input Parameters:

AH = 4Fh
AL = 04h
DL = 0

CX = States to be saved

DO - Video hardware state
D1 - Video BIOS data
D2 - Video DAC state
D3 - SuperVGA state

Return Value:

AL = 4Fh if function is supported

AH = OOh if function was completed successfully
BX = Number of 64-byte blocks needed to save state

Subfunction 2 - Save SupeiVGA Video State

Input Parameters:

AH = 4Fh
AL - 04h
DL = 1
CX = States to be saved

DO - Video hardware state
D1 - Video BIOS data
D2 - Video DAC state
D3 - SuperVGA state

ES:BX = Pointer to save buffer

Return Value:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully

494 Advanced Programmer’s Guide to Super VGAs

SubfunctSon 3 - Restore SuperVGA State

Input Parameters:

AH = 4Fh
AL = 04h
DL = 2
CX = States to be saved

DO - Video hardware state
D1 - Video BIOS data
D2 - Video DAC state
D3 - SuperVGA state

ES:BX = pointer to save buffer

Return Value:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully

Function 05h - Display Memory Window Control

This function is needed because of the wide diversity of paging methods used by
different manufacturers. It provides a generalized method for selecting a page of dis¬
play memory, or reading back the current page number.

Select Display Memory Page

Input Parameters:

AH = 4Fh
AL = 05h
BH = 0
BL = Window number (0 = window A, 1 = window B)
DX = Page starting boundary (in granularity units)

Return Value:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully, Olh otherwise

For faster execution, this function can be called directly with a far call to the address
returned by VESA BIOS function 1. Note that the address of the paging function may
vary depending on the display mode, or it may not exist (indicated by returned NULL
address from function 1).

The VESA Standard 495

If the paging function is called directly, registers AL and AH are not needed. No status
will be returned and registers AX and DX are destroyed.

To learn more about this function see the programming examples later in this
chapter.

Return Current Display Memory Page

Input Parameters:

AH = 4Fh
AL = 05h
BH = 1

BL = Window number (0 = window A, 1 = window B)

Return Value:

AL = 4Fh if function is supported
AH = OOh if function was completed successfully
DX = Current page starting boundary (in granularity units)

Programming Examples

Display Memory Paging

The VESA BIOS provides two mechanisms for selecting display memory pages. BIOS
function 5 may be called to select pages, or for optimum speed function 1 can be used
to obtain a far pointer to the paging function, and then the paging function can be
called directly.

Listing 20-1 on page 496 shows how to use the first method to select pages. In the
procedure _Select_Graphics, VESA BIOS function 01 (Return Super VGA Informa¬
tion) is used to determine if a given mode is supported. If so, the returned information
block is examined to determine the type of paging available.

To be consistent with the examples used throughout this book, the VESA program¬
ming examples assume 64K pages at address A000:0h. The example in Listing 20-1 may
not work properly for modes that use two independent pages, since these typically use
two 32K pages placed at different addresses.

This programming example shows how to verify the presence of a VESA BIOS, how
to verify support for this mode, how to invoke the mode, and how to select pages.

Advanced Programmer’s Guide to Super VGAs

Listing 20-1. File: VESA \ SELECT.ASM

* File: SELECT.ASM
* Description: This module contains procedures to selectmode and to
* select pages. It also initializes global variables
* according to the values in the MODE.INC include file.
* Entry Points:
* _Select_Graphics - Select a graphics mode
* _Select_Text - Set VGA adapter into text mode
* _Select_Page - Select read and write page
* _Select_Read_Page - Select read page only
* _Select_Write_Page - Select write page only
* Uses:
* MODE.INC - Mode dependent constants
* Following are modes and paths for VESA BIOS boards:
* i-25b colors-1 i— lb colors —i A colors 2 colors
* b40x<0D b40x4 AD ADDxbDO ADDxbDD 102<x?bA 102<x?bA 1024x?bA
* Mode: 10Dh IDlh lD3h 102h 104h N/A N/A
* Path: 25bCOL 25bC0L 25bCOL IbCOL IbCOL N/A N/A

*

*

*

*

*
*

*
*
*
*
*

*
*
*

*

*
*

INCLUDE VGA.INC
INCLUDE MODE.INC ;Mode dependent constants

PUBLIC _Select_Graphics
PUBLIC _Select_Text
PUBLIC _Select_Page
PUBLIC _Select_Read_Page
PUBLIC _Select_Write_Page

PUBLIC Select_Page
PUBLIC Select_Read_Page
PUBLIC Select_Write_Page
PUBLIC Enable_Dual_Page
PUBLIC Disable_Dual_Page

PUBLIC Graf_Seg
PUBLIC Video_Height
PUBLIC Video_Width
PUBLIC Video_Pitch
PUBLIC Video_Pages
PUBLIC Ras_Buffer
PUBLIC Two_Pages

PUBLIC Last_Byte

; Data segment variables

;_DATA SEGMENT WORD PUBLIC 'DATA'
;_DATA ENDS

; Constant definitions

ModelnfoStruct STRUC

; Mandatory information (allways provided)

ModeAttributes dw ?
WinAAttributes db ?
WinBAttributes db ?
WinGranularity dw ?
WinSize dw ?
WinASegment dw ?
WinBSegment dw ?
WinFuncPtr dd ?

mode attributes
window A attributes
window B attributes
window granularity
window size
window A start segment
window B start segment
pointer to window function

The VESA Standard 497

BytesPerScanLine dw ? ; bytes per scan line

; Optional information (provided if bit D1 of ModeAttributes is set)

XResolution dw 7

YResolution dw 7

XCharSize db 7

YCharSize db 7

NumberOfPlanes db 7

BitsPerPixel db 7

NumberOfBanks db 7

MemoryModel db 7

BankSize db 7

horizontal resolution
vertical resolution
character cell width
character cell height
number of memory planes
bits per pixel
number of banks
memory model type
bank size in kb

ModelnfoStruct ENDS

Code segment variables

_TEXT SEGMENT BYTE PUBLIC 'CODE'

Graf_Seg DW
DW

OffScreen_Seg
Video_Pitch
Video_Height
Video_Width
Video_Pages
Ras_Buffer
R_Page
W_Page
RW_Page
Two_Pages
Msg_No_BIOS
Msg_No_Mode

□ADDOh
OADOOh
DW
DW
DW
DW
DW
DB
DB
DB
DB
DB
DB

;Graphics segment addresses

DB

□AODOh
SCREEN_PITCH
SCREEN_HEIGHT
SCREEN_WIDTH
SCREEN_PAGES

DUP (0)
□FFh
OFFh
OFFh
CAN_DO_RW ;Indicate separate R & W capability
'...Error: Cannot locate VESA BIOS',ODh,QAh,'$'
'...Error: Requested mode not supported',DDh,DAh,'$'

;First byte beyond visible screen
;Number of bytes in one raster
;Number of rasters
;Number of pixels in a raster
;Number of pages in the screen
;Working buffer
;Most recently selected page

Mode_Info ModelnfoStruct <> ;Buffer for mode dependent info

* *

* _Select_Graphics(HorizPtr, VertPtr, ColorsPtr) *
* Initialize VGA adapter to L4Qx<0D mode with *
* E5L colors. *
* *

* Entry: *
* None *
* *

* Returns: *
* VertPtr - Vertical resolution *
* HorizPtr - Horizontal resolution *
* ColorsPtr - Number of supported colors *
* * *********************************t**************************************

Arg_HorizPtr EQU WORD PTR [BP+41 ;Formal parameters
Arg_VertPtr EQU WORD PTR [BP+L] ;Formal parameters
Arg_ColorsPtr EQU WORD PTR [BP+fl] ;Formal parameters

_Select_Graphics PROC NEAR
PUSH BP ;Standard C entry point
MOV BP,SP

PUSH DI ;Preserve segment registers
PUSH SI
PUSH DS
PUSH ES

; Verify presence of VESA BIOS

MOV AX ,CS ;Pointer to info buffer

498 Advanced Programmer’s Guide to Super VGAs

MOV ES, AX
LEA DI,CS:Ras Buffer
MOV AX,4FD0h ;Fn=Return Super VGA Info
INT IDh
CMP AX,D04Fh ;Check status code
JNE Not VESA BIOS ; and quit if not VESA BIOS
CMP WORD PTR ES:[DI],'EV' ;Check VESA signature in info block
JNE Not VESA BIOS ; and quit if not VESA BIOS
CMP WORD PTR ES : [DI + E], 'AS '
JNE Not VESA BIOS
JMP VESA_BIOS_Found

Not VESA BIOS:
MOV AX, CS ;Pointer to error message
MOV DS, AX
LEA DX,CS:Msg No BIOS
MOV AH,ORh ;Fn=Display string on console device
INT Elh
MOV AX, -1 ;Return code = error
JMP SG_Done

VESA_BIOS _Found:

; Get information about requested mode and select it

MOV AX,4F01h ;Fn=Return Super VGA mode information
MOV CX,GRAPHICS MODE
LEA DI,CS:Mode Info ;Get pointer to info buffer
INT IDh ;Use VESA BIOS to get info about mode
CMP AX,004Fh ;Check if function was successful
JNE Mode_Not_Supported ; and quit if not

; To limit number of versions for each drawing routine, only
; L^kByte pages are supported.
; (And even for L^kByte pages there are already ID versions.)
; Here a check is made that this mode is a 'simple' mode, with
; L4k window at ADDDh. It is assumed that this mode is
; either lb-color planar or E5b-color packed pixel organization.

CMP ES:CD13.WinSize,b4 ;Check that window size is b<k
JNE Mode_Not_Supported
CMP ES:[DI].WinASegment,DADDDh ;Check that window is at ADODh
JNE Mode_Not_Supported

MOV AX,<FDEh ;Fn=Select Super VGA mode
MOV BX,GRAPHICS_MODE ;Mode to select
INT IDh ;Select the mode
CMP AX,D04Fh ;Check returned status
JE Mode_Set

Mode_Not_Supported:

MOV AX, CS ;Pointer to error message
MOV DS, AX
LEA DX, CS:Msg No Mode
MOV AH, OSh ;Fn=Display string on console device
INT Elh
MOV AX, -1 ;Return code = error
JMP SG Done

Mode_Set:

; Reset 'last selected page'
MOV AL,DFFh ;Use 'non-existent' page number
MOV CS:R_Page,AL ;Set currently selected page
MOV CS:W_Page,AL
MOV CS:RW_Page,AL

; Set return parameters

MOV SI,Arg_VertPtr ;Fetch pointer to vertical resolution

The VESA Standard

MOV
MOV
MOV
MOV
MOV

WORD PTR [SI],SCREEN_HEIGHT ;Set
SI, Arg_HorizPtr ;Fetch pointer
WORD PTR [SI],SCREEN_WIDTH ;Set
SI,Arg_ColorsPtr ;Fetch pointer
WORD PTR [SI],SCREEN_COLORS ;Set

vertical resolution
to horizontal resolution
horizontal resolution
to number of colors
number of colors

XOR AX,AX Return code = success

; Clean up and return to caller
SG_Done:

POP
POP

ES
DS

; Restore segment registers

POP SI
POP DI

MOV SP, BP ;Standard C exit point
POP BP
RET

_Select_Graphics ENDP

*

Select_Page * * ***
Entry: *

AL - Page number *

**** *

Select_Page PROC NEAR
CMP AL,CS:RW_Page ;Check if already selected
JNE SP_Go
RET

SP. Go:
PUSH AX
PUSH BX
PUSH DX
MOV CS:RW_Page,AL ;Save page number
; Convert L<k page number according to board granularity
MOV AX,\dA ;Assume L<k granule
XOR DX,DX

DIV CS:Mode_Info.WinGranularity ;Divide by actual granule size
MUL CS:RW_Page ;Multiply by k page number
; Select page using VESA BIOS function D5h
MOV DX,AX
MOV AX,4F05h
MOV BX,00D0h
INT IDh
; Cleanup and return

;Fetch page number
;Fn=Super VGA window control
;Subfn=Set window, Window=A
;Use VESA BIOS to select page

POP DX
POP BX
POP AX
RET

Select_Page ENDP

*

Select_Read_Page *
This function is not supported in this example *

Entry: *
AL - Page number *

*** *

Select_Read_Page PROC NEAR
RET

Select_Read_Page ENDP

500 Advanced Programmer’s Guide to Super VGAs

**
*

Select_Write_Page *
This function is not supported in this example *

Entry: *
AL - Page number *

**

Select_Write_Page PROC NEAR
RET

Select_Write_Page ENDP

; _Select_Page(PageNumber)
; Entry: *
; PageNumber - Page number *

Arg_PageNumber EQO BYTE PTR [BP+4]

_Select_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL/Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Page

_Select_Page ENDP

* *** *******************************
! *

; _Select_Read_Page(PageNumber) *
; Entry: *
; PageNumber- Page number for read *

Arg_PageNumber EQU BYTE PTR [BP+4]

_Select_Read_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Read_Page

_Select_Read_Page ENDP

•J^***
! *
• _Select_Write_Page(PageNumber) *
; Entry: *
; PageNumber - Page number for write *

I**

Arg_PageNumber EQU BYTE PTR [BP+<]

_Select_Write_Page PROC NEAR
PUSH BP ;Setup frame pointer
MOV SP,BP
MOV AL,Arg_PageNumber ;Fetch argument
POP BP ;Restore BP
JMP Select_Write_Page

_Select_Write_Page ENDP

The VESA Standard 501

* **************************

* _Select_Text *
* Set VGA adapter to text mode *
*

_Select_Text PROC NEAR
MOV AX/TEXT_MODE ;Select mode 3
INT lOh ;Use BIOS to reset mode
RET

_Select_Text ENDP

* **********************************
*

* Enable_Dual_Page *
* Disable_Dual_Page *

******************* *

Enable_Dual_Page PROC NEAR
RET

Enable_Dual_Page ENDP

Disable_Dual_Page PROC NEAR
RET

Disable_Dual_Page ENDP

Last_Byte:
_Text ENDS

END

Detection and Identification

The Extended VESA BIOS provides a sophisticated detection mechanism that allows
a program to determine not only the presence of a VESA BIOS but also a list of modes
and information about each mode.

Function OOh, Return SuperVGA Information, can be used to determine the pres¬
ence of a VESA BIOS from the return status in AX and the signature bytes in the
returned information block. Listing 20-2 illustrates how to detect the BIOS VESA and
how to determine the list of modes supported.

Listing 20-2. File: VESA \ INFO.C

Z**********************************,,^*^^^^^^^^^^^^^^^^
7* */
/* File: INFO.C *,
/* Description: This is a program to demonstrate how to test if */

/* VESA BIOS is present, and how to use VESA BIOS */
/* functions. *,
/* *'

/**/

#include <stdio.h
#include <dos.h>

502 Advanced Programmer’s Guide to Super VGAs

/* Structure definitions +Jf:>K****************************/

/* Board information structure '

struct {
char VESASignatureC4]; /* A signature bytes */
int VESAVersion; /* VESA version number */
char far *0EMStringPtr;/* Pointer to OEM string */
char Capabilities!^]; /* Capabilities of the video environment*/
int far *VideoModePtr; /* Pointer to supported Super VGA modes */
char DummytE^t]; /*Info block must be at least E5t Bytes */
} VESA_Info;

information structure */

{
/* Mandatory information (allways provided) */

int ModeAttributes; /* mode attributes */

char WinAAttributes; /* window A attributes */

char WinBAttributes; /* window B attributes */

int WinGranularity; /* window granularity */

int WinSize; /* window size */

int WinASegment; /* window A start segment */

int WinBSegment; /* window B start segment */

char far *WinFuncPtr; /* pointer to window function */

int BytesPerScanLine; /* bytes per scan line */

Optional information (when bit D1 of ModeAttributes is set) */

int XResolution; /* horizontal resolution */

int YResolution; /* vertical resolution */

char XCharSize; /* character cell width */

char YCharSize; /* character cell height */

char NumberOfPlanes; /* number of memory planes */

char BitsPerPixel; /* bits per pixel */

char NumberOfBanks; /* number of banks */

char MemoryModel; /* memory model type */

char BankSize; /* bank size in kb */

char Dummy[E^t] /* Info block must be >E5t Bytes */

} Mode_Info;

char *Msg_Header[7]

VESA BIOS Demonstration Program to detect VESA BIOS
and to display list of modes supported by the BIOS.

The following modes are supported:

/* Main program /

main()
{

void far *farptr;
int i, lines;
union REGS regs;
struct SREGS sregs;

The VESA Standard

/* Force into text mode */
/********* **********************+ * + # + + ## + + ## + #^ + # + + ^#3jtj)tj|{j|s3|{sjtj|cj|{jt{j|t/

regs.x.ax = DxD3; /* Setup for mode 3 */
intflt(DxlO, ®s, ®s); /* Use BIOS to set mode 3 */
for (i = □; i < ?; i++) /* Print header message */

printf("n£s",Msg_Header[i]);

7*******************************^^^^^^^^^^^^^^^^

/* Check if VESA BIOS is present */ Z^*********************************^^^^^^^^^^^^^^^

regs.x.ax = Dx^FOD; /* VESA BIOS call */
farptr = (void far *)&VESA_Info;/* Fetch address of buffer */
sregs.es = FP_SEG(farptr); /* Place address into parm list */
regs.x.di= FP_OFF(farptr);
intfltx(OxlD, ®s, ®s, &sregs); /* Try VESA BIOS */

/* Check status and signature */

if ((regs.x.ax != DxDCKF) M
VESA_Info.VESASignatureC0] != 'V' it
VESA_Info.VESASignatureC1] != 'E1 ii
VESA_Info.VESASignatureC2] != 'S1 ii
VESA_Info.VESASignatureC3] != 'A')

printf("\n...Error: Cannot locate VESA BIOS\n")*
exit(-l);
}

7****$S****r modes, displaying info for each

for (i = □; VESA_Info.VideoModePtr[i] != OxFFFF; i++)

*/ ************7

/* Display mode number *7

printf("\n %4Xh",VESA_Info.VideoModePtr[i])•
printf('• (£s):»,

VESA_Info.VideoModePtr[i] & OxOlDD ? "VESA" : "OEM")-
regs.x.ax = Ox<FDl; /* Fn = Return info */
regs.x.cx = VESA_Info.VideoModePtr[i];/* Mode */
farptr = (void far *)&Mode_Info;/* Fetch addr of buffer */
sregs.es = FP_SEG(farptr); /* Place addr to parm */
regs.x.di= FP_OFF(farptr);
intfitx(Dxia, ®s, ®s, &sregs); /* Get info */
if (regs.x.ax != DxDCKF) /* Check status */

{ /* and quit if bad */
printf("...Error: Cannot get mode info\n»):

exit(-1) ;
}

/* Display mode type (text or graphics)

printf(» %s ",

(Mode_Info.ModeAttributes & OxODlO) ? "Graphics":"Text

/* Display mode resolution

if (Mode_Info.ModeAttributes & 0xDDD2)
{

printf(" x£4d ",
Mode_Info.YResolution, Mode_Info.XResolution);

/* Display number of colors

if (Mode_Info.ModeAttributes & DxDDDfi)
printf("&3d Colors",

□xDOOl << (Mode_Info.BitsPerPixel));

504 Advanced Programmer’s Guide to Super VGAs

else
printf("Mono");

}

else
printf("Optional info not available\n");

if (!((i+fi) % 53)) /* Pause if screen full */
{

printf("\nPress <Enter> to continue...'');
getchar();

}
}

/★sic**/
/* Cleanup and exit */ /**/

exit(0);
}

Displays for SuperVGAs

506 Advanced Programmer’s Guide to Super VGAs

Introduction
Unlike earlier IBM display adapters (including EGA) that used a digital (TIL) inter¬

face to the display, the VGA requires an analog display. Analog displays are capable of
displaying many more colors than digital displays. The 256-color mode of the VGA per¬
mits the display of color photographic images with a high degree of realism.

Early display adapters (MDA and CGA) were designed to support either mono¬
chrome displays or color displays, but not both. The EGA will support either, but only
in specific display modes. Color display modes must be used with a color display, and
monochrome display modes must be used with a monochrome display.

The VGA includes no such restrictions. All display modes of the VGA display adapter
are available regardless of what display is being used. If a monochrome display is used
in a color display mode, the colors will be translated into shades of gray. If a color dis¬
play is used in a monochrome mode, a monochrome image will be displayed.

IBM markets two VGA-compatible displays; a color display and a monochrome dis¬
play. These displays include a feature referred to as automatic monitor detection or
display detection. The IBM VGA BIOS will automatically detect what type of display is
connected (color or monochrome) and configure itself accordingly. The detection
scheme works by reading the voltage level on two pins of the display connector to
identify the display type. Not all VGA-compatible displays support this feature, nor do
all VGA-compatible adapters support it. Some VGA-compatible adapters still use con¬
figuration switches to set the default operating mode.

A large number of VGA-compatible displays are available. Some are purely meant as
VGA displays; some, such as the NEC Multisync and Nanao FlexScan, can be switched
from digital to analog mode and are useable with either EGA or VGA; some are
designed for higher resolutions but include VGA compatibility also.

Operation of CRT Displays
Cathode Ray Tube (CRT) displays, colors are generated by a beam of electrons which

strike the phosphorus coating on the back of the CRT screen and cause it to glow. The
electron beam is swept across the display screen from left to right in a series of hori¬
zontal lines. At the same time, its intensity is modulated to produce display patterns.
The electron beam must continuously redraw the pattern on the screen 50, 60 or 70
times a second, depending on the display used. This process is called Display

Refresh or Screen Refresh.
The sweep pattern of the electron beam on the display screen is called the Raster.

The beam begins in the upper left corner of the display and sweeps right. When it
reaches the right edge of the screen, the beam is shut off (Horizontal Blanking) and
then rapidly brought back to the left edge of the screen (Horizontal Retrace) to
begin the next horizontal scan just below the previous one.

508 Advanced Programmer’s Guide to Super VGAs

• Retrace End - beam starts new scan (top or left)
• Blanking End - border at the start of the scan (top or left)
• Total - display of next scanline starts

The relation of these values is illustrated in Figure 21-2.

CRTC 0 - Horizontal Total
. CH l (J 3 Horizontal Blank End
. uh I c b Horizontal Retrace End
. CRTC 4 Horizontal Retrace Start
. CRTC 2 Horizontal Blank Start
_ CRTC 1 Horizontal Display End |

Figure 21-2. CRT Controller timing values

Factors Affecting Display Resolution

Scan Frequency vs. Resolution

Displays come in a variety of sizes and capabilities. Display performance is usually
defined in three terms: vertical scanning frequency, horizontal scanning frequency and
bandwidth. These in turn determine the vertical resolution (total number of scan
lines) and horizontal resolution (total number of pixels per scan line) that can be
generated.

Displays for SuperVGAs 507

After all horizontal scans have been completed, the electron beam will end up in the
lower right corner of the screen. At this point the beam is shut off (Vertical Blanking)
and then rapidly brought back up to the upper left corner (Vertical Retrace) so the
next raster can begin. This process is represented in Figure 21-1.

Display sweep

Horizontal Retrace

Vertical Retrace

Figure 21-1. Raster scan

The entire display pattern can be considered as a long serial string of bits which are
fed to the electron beam as it passes over the display screen. The horizontal resolution
of the display is equal to the number of bits which can be displayed on one horizontal
scan line. The area of the screen which is lighted by a single bit in this data stream is
called a Pixel. The vertical resolution of the display is determined by the number of
horizontal scans that are made.

Circuitry internal to the CRT display generates the electron beam (or beams, in color
displays) and drives it across the display screen, but the display adapter must be capa¬
ble of controlling the motion of the electron beam so it can be synchronized with the
data stream. By pulsing the Horizontal Sync and Vertical Sync signals to the display,
the adapter controls the timing of horizontal and vertical retrace cycles.

The CRT Controller in any SuperVGA is used to define duration for the various sec¬
tions of the raster scan. Each CRT controller contains registers for vertical and horizon¬
tal parameters. Each of the two sets of parameters includes the following values:

• Display End - border starts (data no longer fetched from display memory) electron
beam turned off

• Blanking Starts - electron beam turned off
• Retrace Start - beam reverses direction

Displays for SuperVGAs 509

Vertical scanning frequency determines how many times per second a complete
frame is displayed; for SuperVGAs this is typically either 60 or 70 times per second (60
or 70 Hz). Sixty Hz is most common, but higher scanning frequencies are generally
perceived as producing less screen flicker and offering a more pleasing display.

Horizontal scanning frequency determines how many scan lines can be displayed in
every frame. With a vertical scan rate of 60 Hz, a 640x480 display mode must be able to
display at least 28,800 scan lines per second (60 times 480). The actual horizontal scan
rate must in fact be slightly higher to allow for the typical 10% overhead needed for
retrace times. A horizontal scanning frequency of 31,500 scan lines per second (31.5
kHz) is adequate (this is the specification for the IBM VGA display).

Bandwidth defines how often the electron beam can change intensity, and deter¬
mines how many pixels can be displayed in each scan line. For 640x480 VGA modes
operating at 60 Hz vertical refresh, each scan line takes 1/32,000 of a second. To pack
640 pixels into each scan line, the display must be able to produce 20,800,000 changes
each second (assuming no two adjacent pixels are of the same color). The actual
bandwidth must in fact be slightly higher to allow for retrace times. VGA uses a 25.125
MHz clock for this mode.

Scan rates for other resolutions can be similarly derived. Since blanking periods and
retrace times vary between displays, the computation above is only approximate.
Actual specifications for some common displays are shown in Table 21-4 on page 513.

Shadow Mask and Gun Arrangement

A high bandwidth in the electronics of a display guarantees that the electron gun(s)
can be modulated at a high frequency. It does not, however, guarantee that each indi¬
vidual pixel can be clearly distinguished on the display screen. The clarity of pixels on
the screen is affected by the construction of the CRT tube itself.

In color displays, three separate electron beams (red, green and blue) are directed
through a metal mask (the shadow mask), so that each beam strikes and excites
phosphors of a particular color on the back face of the CRT screen (see Figure 21-3 on
page 510). Three common types of shadow masks are used: delta, inline, and metal
strip.

A delta gun arrangement is the most common and least expensive to manufacture. It
is also the one most susceptible to misconvergence (discussed later in this section). An
inline shadow mask helps prevent convergence problems. The most accurate' (and
most expensive) is the single-lens metal-strip arrangement used in the Sony Trinitron
(see Figure 21-3). The metal strip also has the advantage of allowing more electrons to
strike the phosphor and thus is capable of more brilliant colors.

510 Advanced Programmer’s Guide to Super VGAs

Shadow masks are so named because they permit each pixel to be illuminated by

the proper gun but shade adjacent pixels of other colors from the energy of the
electron beam (creating shadows over the unwanted pixels).

Dot Pitch and Spot Size

The distance (in microns) between the individual openings in the shadow mask is
referred to as the dot pitch of the screen. The most common dot pitch for VGA displays
is 0.31mm. This pitch determines the theoretical limit on the number of pixels display-

able on a screen. Table 21-1 shows vertical and horizontal dimensions for common

display sizes. A display with a 16” diagonal screen and 0.31mm dot pitch has a theoreti¬

cal pixel limit of 912 pixels (283mm / 0.31mm). Many such displays claim 1024 pixel
resolution. Note that the metal-strip arrangement does not impose any theoretical limit
on the number of horizontal scan lines a screen can support.

To reduce the number of pixels that can be missed or not illuminated sufficiently,
the electron beam shines through several openings in the shadow mask for each pixel.
The size of the illuminated area is referred to as the spot size (which also varies with
the intensity of the beam). For a display adjusted for medium intensity, the spot size,
for 0.31mm shadow mask, is typically around 1mm.

Displays for SuperVGAs 511

Table 21-1. Raster dimensions as function of display size

Display Horizontal Vertical
Size Dimension Dimension

13" 240mm 180mm
16" 283mm 213mm

19" 348mm 26lmm
21" 368mm 276mm

Human Eye and Resolution

The theoretical resolution for a display screen often falls below the rated resolution.

An explanation of this seeming contradiction lies in the human visual system. It is

beyond the scope of this text to go into detail on this subject, but the following factors
contribute to the way an image is perceived by the human eye:

• The shadow mask creates distinct points on the screen; pixels are a measurable dis¬
tance apart from each other.

• Pixels are not illuminated all at once. At any one time only one pixel is being illumi¬
nated by the electron beam.

• Pixels change intensity as the electron beam passes over them and as the electron
beam changes intensity.

• The eye’s response to intensity variations in the discrete pixels is integrated by the
visual system into a single image in the brain.

By carefully choosing the pattern to be displayed, results can be quite contrary to
rated specifications. Display selection tends to be a subjective process and is depend¬
ent on the application for which it will be used.

Brightness (Intensity or Luminance) Typically defined in terms of footlamberts (ft-
L), brightness is usually specified by a range of values. The dimmest of displays provide

brightness levels in the range of six to eight ft-L, while the brightest may range from ten
to thirty ft-L. The brightness of the display is determined by phosphor type (short per¬
sistence phosphors tend to be brighter), electron beam strength, and by the amount of
energy allowed to pass through the shadow mask.

Blooming is used to describe the phenomenon where the spot size increases with
an increase in intensity.

Misconvergence is the alignment error of the red, blue and green guns, as a mean
distance between centers of color spot pairs (R-G, R-B and G-R). For a 19-inch display,
look for less then 0.5mm of misconvergence at the edges of the screen and less then
0.2mm at the center of the screen.

512 Advanced Programmer’s Guide to Super VGAs

Specifications for Common SuperVGA Displays

Interface Type

VGA adapters require analog RGB displays. EGA adapters require TTL displays.
Some displays support both types of interfaces by means of a switch labeled Analog/
TTL. Some displays can automatically detect the type and switch accordingly.

Video Connector Type

The IBM standard connector type for VGA displays is a 15 pin D type connector.
Older IBM TTL displays used 9-pin D type connectors. These connectors are so named
because their shape resembles that of an upper case letter D. Table 21-2 shows the
standard pinout for a 15-pin analog video connector.

Table 21-2. Standard VGA 15-pin video connector pinout

01 - Red 09 - Key (missing pin)

02 - Green 10 - Sync Return (ground)

03 - Blue 11 - Monitor ID bit 0

04 - Monitor ID bit 2 12 - Monitor ID bit 1

05 - Not used 13 - Horizontal Sync (see Table 21-3)

06 - Red Return (ground) 14 - Vertical Sync (see Table 21-3)

07 - Green Return (ground)

08 - Blue Return (ground)

15 - Not used

Table 21-3. Standard VGA sync polarity vs scan line count

Vertical Horizontal Line

Sync Sync Count

+ + Reserved
- + 400 lines

+ - 350 lines
- - 480 lines

When examining specifications for various monitors, Table 21-4 can be used as a
guide to convert between vertical and horizontal refresh rates, and maximum resolu¬

tions of the display.

Displays for SuperVGAs 513

Table 21-4. Typical horizontal and vertical refresh rates

Vertical Horizontal Original Display
Mode Resolution Refresh Refresh Board Mnemonic

STANDARD MODES

0,1 320x200 60 Hz 15.75 kHz CGA CGA
2,3 640x200 60 Hz 15.75 kHz CGA CGA
7 720x350 50 Hz 18.43 kHz MDA MDA
2*, 3*, 640x350 60 Hz 21.85 kHz EGA EGA
F, 10 640x350 60 Hz 21.85 kHz EGA EGA
2 + ,3 + ,7 + 720x400 70 Hz 31.50 kHz VGA VGA
F, 10 640x350 70 Hz 31.50 kHz VGA VGA
11,12 640x480 60 Hz 31.50 kHz VGA VGA
13 320x200 70 Hz 31.50 kHz VGA VGA

ENHANCED GRAPHICS MODES

6Ah 800x600 56/60 Hz 35.20/37.88 kHz SuperVGA SuperVGA
1024x768 43.48 Hz 35.52 kHz 8514/A 8514
1024x768 60 Hz 48.00 kHz SuperVGA XL
1280x1024 60 Hz 64.00 kHz SuperVGA XL

ENHANCED TEXT MODES

132 col 1056x350 70 Hz 31.50 kHz SuperVGA VGA
100 col 800x480 60 Hz 31.50 kHz SuperVGA VGA

Selecting a Display for SuperVGA

Monitor selection can be a very subjective process. Each individual responds differ¬
ently to various displays. Some people are more sensitive to color purity, while others
are more sensitive to flicker or brightness. The best display will also depend on the

intended application. Displays with crisp text may not always be the best to display
complex drawings found in a CAD environment.

Several criteria that one should consider when selecting a display are:

• Maximum resolution. Will the display support the high resolution display modes

of your VGA board? Common display resolutions include are 640x480,800x600, and

1024x768. There are several other factors related to resolution, such as brightness,
shadow mask type, blooming, spot size, and color purity. These are discussed in the
section titled “Factors Affecting Display Resolution” on page 508.

514 Advanced Programmer’s Guide to Super VGAs

Figure 21-4 illustrates the different classes of displays, and their typical maximum
resolutions. Display classes used in Figure 21-4 are the same as those used in Table 21-

4.

• Minimum resolution. Displays that are capable of operating at the highest resolu¬
tions may not operate at very low resolutions. Since VGA adapters perform double
scanning at the lowest resolutions, this is normally only a concern if the display must
also be used with an EGA or CGA adapter.

• Automatic size adjustment. Will the display automatically adjust the picture size
at different resolutions to optimally fill the visible screen? Some displays which call
themselves autosizing will adjust sizes only for VGA resolutions (320x400,640x400,
720x400,640x350, and 640x480); at other resolutions, they have to be adjusted man¬
ually. Other displays may have to be first programmed; they have to be adjusted
once for each frequency or resolution a particular video board supports, and from
then on the display will recognize the frequency and adjust as initially programmed.

• Automatic display detection. If your VGA board supports automatic display
detection, it is important that your display be properly recognized by the board.

• SuperVGA-scanning capability. Will it operate at a large number of different res¬
olutions, or only at two or three fixed resolutions? Many of the displays that are now
available will operate at virtually any resolution between the minimum and maxi¬

mum supported by that monitor.
• VGA compatibility. To operate properly with a VGA, the display must not only sup¬

port VGA resolutions, it must also be compatible with the video timing generated by

Displays for SuperVGAs 515

a VGA adapter. The most significant timing specifications for a display are horizontal
scan rate (which may range from about 20 KiloHertz to about 50 KiloHertz) and ver¬
tical scan rate (which is typically in the range of 50 Hertz to 70 Hertz). IBM VGA is
31.5 kHz and 60 or 70Hz.

• Interlaced vs non-interlaced. Virtually all displays are non-interlaced at resolu¬
tions up to 800x600 pixels. At higher resolutions, some of the less expensive dis¬
plays must operate in interlaced mode. This can produce an annoying flickering of
the screen. Figure 21-5 illustrates the basic operation of an interlaced display. Inter¬
laced displays are becoming more common since IBM introduced the 8514 display,
which connects to the IBM 8514/A display adapter and operates in interlaced mode
at a resolution of 1024 pixels horizontally by 768 pixels vertically.

Interlaced display
40 frames/second

Even field in 1/80 of second

Odd field in 1/80 of second

Figure 21-5. Operation of interlaced displays

• Cost. The least expensive displays (under $200) have the smallest screen sizes (12
or 13 inches diagonally) with the lowest resolutions. As the size and resolution
increase, so does the cost. Fourteen-inch displays with a resolution of 640x480 are
currently priced around $500, and 800x600 around $700. For 19-inch displays that
are capable of 1024x768 resolution, the cost jumps to over $1,500. A high quality 21-
inch display, capable of 1280x1024 resolution, today costs over $3,000.

• Persistence of the phosphor and image flicker. For a CAD application, where large,
complex drawings will be displayed and changes are made slowly, a long persis¬
tence phosphor is desirable to minimize flicker. For word processing, a short per-

516 Advanced Programmer’s Guide to Super VGAs

sistence phosphor will minimize the smearing effect of ghosts on the screen when
text is scrolled. Persistence also affects brightness and color purity.

Popular VGA-Compatible Displays

The table that follows is filled with manufacturer supplied data for popular displays.
These specifications typically represent figures at which the display operates at its opti¬
mum. In practice most of the displays will perform with satisfactory results at resolu¬
tions slightly higher. For example, the Sony multiscan was designed to operate at
640x480 (up to 34kHz), but is commonly used to operate at 800x600 (38kHz) and even

at 1024x768 interlaced (36kHz).
Over 30 different display manufacturers currently offer SuperVGA-compatible dis¬

plays; some manufacturers, such as Sony and Mitsubishi, offer over a dozen different
models at various levels of performance and quality. Only the most popular models are
included here. Appendix F contains an extensive list of display manufacturers, with
addresses and phone numbers, for those who need further information.

This section is primarily intended to give the reader a general feel for the range of
performance and prices available. Prices in the table are list; street prices can be as

much as 40% lower.

T
a
b
le

 2
1

-5
.

T
y

p
ic

a
l

d
is

p
la

y
s

u
se

d
 w

it
h

 S
u
p
er

V
G

A

Displays for SuperVGAs 517

x 1x x
rH O O

VO ON < 'O \o
< i ^

■o
« < <

p O

?oo
x w w
*2 <f <
U O O
J5 u u

IIIIII
x 2 2 > > >

2 -S' i
' p 9
r 3- £ S
P a O
£ 5
<D ^ -<

-§•$ B
X > X.

p o 9 > w S

x ^
^ ^

^ X O x
x ^ oo
< < <
PoP
£ w £

<L> C <L>
a e3 a 3 r< o x x. x
<T 5$ <f

! £ i !>
^ <
9 5 o S w >

iulCS>^<:5002>0irNQ0<^ocNCNONC\a\a\CNxxcNOON « fj'^ONCNXxooro^roocNO^roNON'^xcsONONaNONOON ■2rLL:^in^c0O^rN00rv!NO^v0®iN'^(»0NOHh0\
J U «fr %* ^ ^ ^ ^ csf X h-T x *> X h X ** ^ ^ ^ «* r-T ^ x «■ ^ ^ «*%■ *3% %S= ^ <3^ ^

ooxoo^rxrx'^ro xxx
OXOr-'-OCNCMOC'lOOOO xxt<r-^'ooor-o\or-r-r'

■7= ^><><XXX^HrHX^HXXXX
Oooo^oo x x ^ xo'^'^'^r Q X 'si1 ^ Sri ^ ’ ?N PS

d ^OO^fCM^OOOCMO
5?^OOOOOOOOOXXOX ^ K hH N M H (N

-^oxxx^oooxoxxoo
(NOOOOC<lOOOOOOOOX o\or-r-r'Ovovoxr^xh-r^cN'stH t-hXXXXt-^XXXXXXX^hX
X O ^ XOOO^O^T"^ X o
OO(N0<l(MOOOOCMO(Nr<lOs^H
XXOOOXXXXOCsOOOO

e±i!TiOOXXxoooooxxxx ^isi^^^OOrvJrOOOXfMrOVO^fr^
ffl £ ^ ^ ^ rH

*-• rr< OXOOOOOOOXOOOOO vh 2 Nhf»hhhq\q\CNOphh.opq\qsO\
^r'r'EoxOXOXOOOXOOOOO

x \-r x \-r x x x x x x x x x o

i< K o 2 2 £j
0X000X00000 ,i. 6x6.,kAAOO x^rxxxxxxxxo^HXxxjO^^xx

,2 n< w X X . « C C jg x x *0
lg £ 3 £ £> X

o^rxfoxxoxr-oxr-xo^ror-x
xooxoxxxxoxxx^xxxr"
XOOOOr-Hr-HXOOXXXrHlAoOXO ,—iXXC-lXXfNrHXXrHrH,—iX,—(CMr-lX

^sssessEesgasssasessssess
aeeaaaaaeeaaaeaaeeaeaaaaa

It—(rH,—(QOt—IrH^-l^-lr-iT-IrHOOX'—iXT-Hr-tXXXr-HrHOO
t^rOrON^rOrS XXXXXXXCN<NXCMXX(N(NCNXX(N

XXCNfMX^vfXXXO^ rHrHrHrHrH^H^HrHr-lT-H(NrH

-H «
<U CD 42

■81?
s I o

xxx
T3 "O T3
G C C O O O

bbb^ M00
•a r- o ^0 o ^ .£ cs o\
| §
g S S w
S z z z

X x <u

U U U c
w w w -r

1 fS
a o
S a £ 03 C3 OJ XXX

cn O O rh .
!0 ^ x :

• . Os

QQ^
Oh Oh k U U 00

x x F—1 f-(N (1
):

L
o

w
er

 b
an

d
w

id
th

 f
o

r
D

B
-9

/D
B

-1
5

in
p

u
t,
 h

ig
h
er

 b
an

d
w

id
th

 f
o
r

B
N

C
 i

n
p
u
t

Appendices

519

VGA BIOS Summary

522 Advanced Programmer’s Guide to Super VGAs

VGA BIOS Summary

Function 0 - Mode Select

AH = 0
AL = Mode number (0 to 13H)

Function 1 - Set Cursor Size

AH = 1
CH = start scan line (0-31)
CL = end scan line (0-31)

Function 2 - Set Cursor Position

AH = 2
BH = display page number

DH = Row

DL = Column

Function 3 - Read Cursor Size and Position

AH = 3
BH = Display page number

Return Value:

CH = cursor start scan line

CL = cursor end scan line

DH = cursor row

DL — cursor column

Function 4 - No Standard Support (Get Light Pen)

Function 5 - Select Active Page

Input Parameters:

AH = 5
AL = display page number

VGA BIOS Summary 523

Function 6 - Scroll Text Window Up (or Blank Window)

AH = 6
AL = number of lines to scroll

(AL = 0 blanks window to all spaces)
BH = text attribute to use when filling blank lines at bottom of window
CH = row number of upper left corner of window
CL = column number of upper left corner of window
DH = row of lower right corner of window
DL = column of lower right corner of window

Function 7 - Scroll Text Window Down (or Blank Window)

AH = 7
AL = number of lines to scroll

(AL = 0 blanks window to all spaces)
BH = text attribute to use when filling blank lines at top of window
CH = row number of upper left corner of window
CL = column number of upper left corner of window
DH = row of lower right corner of window
DL = column of lower right corner of window

Function 8 - Read Character and Attribute at Cursor Position

AH = 8
BH = display page number
AL = character code
AH = character attribute (text modes only)

Function 9 - Write Character and Attribute at Cursor Position

AH = 9
AL = character code
BH = display page number
BL = attribute (text modes) or color value (graphics modes)
CX = repetition count (up to end of current row)

524 Advanced Programmer’s Guide to Super VGAs

Function OAh - Write Character Only at Cursor Position

AH = OAh
AL = character code
BH = display page number
BL = color value (graphics modes)
CX = repetition count (up to end of current row)

Function OBh - Set CGA Color Palette (Modes 4,5,6)

AH = OBh

If BH = 0:
BL = graphics background color

or text border color
If BH = 1:
BL = palette number (0 or 1)

Function OCh - Write Graphics Pixel

AH = OCh
AL = pixel value
CX = pixel column number
DX = pixel row number

Function ODh - Read Graphics Pixel

AH = ODh
CX = pixel column number
DX = pixel row number

Return Value:

AL = pixel value

Function OEh - Write Character and Advance Cursor

AH = OEh
AL = character code
BH = page number (text modes only)
BL = character color (graphics modes only)

VGA BIOS Summary 525

Function OFh - Get Current Display Mode

AH = OFh

Return Value:

AH = number of display columns
AL = display mode
BH = active display page

Function lOh -Subfunction 0 - Program a Palette Register

AH = lOh
AL = OOh

BL = palette register number (0 to Fh)
BH = color data (0 to 3Fh)

Function lOh -Subfunction 1 - Set Border Color (Overscan)

AH = lOh
AL = Olh
BH = color data (0 to FFh)

Function lOh -Sub function 2 - Set All Palette Registers

AH = lOh
AL = 02h

ES:DX = address of 17-byte buffer (16 palette values plus overscan value)

Function lOh - Sub function 3 - Blink/Intensity Attribute Control

AH = lOh
AL = 03h
BL = 0 - enable background intensify
BL = 1 - enable foreground blink

526 Advanced Programmer’s Guide to Super VGAs

Function lOh - Subfunction 7 - Read a Single Palette Register

AH = lOh
AL = 7

BL = register number (0-15)

Return Value:

BH = palette register value

Function lOh - Sub function 8 - Read Border Color (Overscan) Register

AH = lOh
AL = 8

Return Value:

BH = Border Color Register value

Function lOh - Sub function 9 - Read All Palette Registers

AH = lOh

AL = 9
ES:DX = address of 17-byte buffer (16 palette values plus overscan value)

Return Value:

17 bytes stored at [ES:BX]

Function 10b - Sub function 10b - Set a Single DAC Register

AH = lOh
AL = lOh
BX = DAC register number (0 to FFh)
DH = Red intensity level (0 to 3Fh)
CH = Green intensity level (0 to 3Fh)
CL = Blue intensity level (0 to 3Fh)

Function 10b - Subfunction 12h - Set Block of DAC Registers

AH = lOh
AL = 12h
BX = starting DAC register (0 to 255)
CX = number of registers to set (1 to 256)
ES:DX = address of color table

VGA BIOS Summary 527

Function lOh - Sub function 13h - Select Color Subset

AH = lOh
AL = 13h

if BL = 0: Select mode
BH = 0: 4 subsets of 64 colors
BH = 1:16 subsets of 16 colors

if BL = 1: Select subset
BH = subset (0-16)

Function 10b - Sub function 15h - Read a Single DAC Register

AH = lOh
AL = 15h
BX = DAC register number (0-255)

Return Value:

DH = red intensity level (0 to 3Fh)
CH = green intensity level (0 to 3Fh)
CL = blue intensity level (0 to 3Fh)

Function 10b - Subfunction 17h- Read Block of DAC Registers

AH = lOh
AL = 17h
BX = starting DAC register number (0-255)
CX = number of registers (1-256)
ES:DX = destination address for register data

Return Value:

Register data at destination address (3 bytes per register)

Function 10b - Sub function lAh - Read Subset Status

AH = lOh
AL = lAh

Return Value:

BH = number of current color subset
BL = 0 if 4 subsets are available
BL = 1 if 16 subsets are available

528 Advanced Programmer’s Guide to Super VGAs

Function lOh - Subfunction lBh - Convert DAC Registers to Gray Scale

AH = lOh
AL = lbh
BX = starting DAC register number (0-255)
CX = number of registers (1-256)

Function llh - Sub function 0 - Load Custom Character Generator

AH = llh
AL = 0
ES:BP = address of character data in system RAM
CX = number of characters to load (1 to 256)
DX = character offset into character generator table

(0 to 255 - for loading a partial character set)
BL = which character generator to load
BH = number of bytes per character (1 to 32)

Function llh - Subfunction 1 - Load 8x14 Character Set

AH = llh
AL = 1
BL = which character generator to load (0 to 7)

Function llh - Subfunction 2 - Load 8x8 Character Set

AH = llh
AL = 2
BL = which character generator to load (0 to 7)

Function llh - Sub function 3 - Select Active Character Set(s)

AH = llh

AL = 3
BL(D0,D1,D4) - Selects which character generator will be active for a character with

attribute bit 3 = 0
BL(D2,D3,D5) - Selects which character generator will be active for a character with

attribute bit 3 = 1

VGA BIOS Summary 529

Function llh - Subfunction 4 - Load 8x16 Character Set

AH = llh
AL = 4

BL = which character generator to load (0-7)

Function llh - Subfunctions 10hf llhf 12h, 14h

Function llh - Subfunctions lOh, llh, 12h and 14h are identical to functions 0,1,2 and
4, except that CRTC is reprogrammed to match the selected character size.

Function llh - Subfunction 20h - Initialize INT lFh Vector (Modes 4-6)

AH = llh
AL = 20h

ES:BP = Pointer to character definitions

Function llh - Subfunction 21h - Set Graphics Mode to Display Custom
Character Set

AH = llh
AL = 21h

ES:BP = address of custom character table in system RAM
CX = bytes per character

BL = number of character rows to be displayed:
1 = 14 character rows

2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows

Function llh - Subfunction 22h - Set Graphics to Display 8x14 Text

AH = llh
AL = 22H

BL indicates number of character rows on screen
1 = 14 character rows

2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows
Not all values will result in satisfactory appearance

530 Advanced Programmer’s Guide to Super VGAs

Function llh - Subfunction 23h - Initialize Graphics Mode to Display 8
x 8 Text

AH = llh
AL = 23H
BL indicates number of character rows on screen

1 = 14 character rows

2 = 25 character rows
3 = 43 character rows
0 = DL contains number of character rows
Not all values will result in satisfactory appearance

Function llh - Subfunction 24h - Initialize Graphics Mode to Display 8
x 16 Text

AH = llh
AL = 24H
BL indicates number of character rows on screen

BL = 1 -14 character rows
BL = 2-25 character rows
BL = 3 - 43 character rows

Function llh - Subfunction 30h - Return Information About Current
Character Set

AH = llh
AL = 30h
BH = Information type requested

BH = 0: return current INT 1FH pointer
BH = 1: return current INT 43H pointer
BH = 2: return pointer to Enhanced (8x14) character set
BH = 3: return pointer to CGA (8x8) character set
BH = 4: return pointer to upper half of CGA 8x8 char set
BH = 5: return pointer to alternate 9x14 monochrome characters
BH = 6: return pointer to 8x16 characters
BH = 7: return pointer to alternate 9x16 characters

Return Values:

CL = character height (number of rows in a character)
DL = character rows on screen -1
ES:BP = return pointer

VGA BIOS Summary 531

Function 12h - Subfunction lOh - Return VGA Information

AH = 12h
BL = lOh

Return Values:

BH = 0 Color mode in effect (3Dx)
1 Mono mode in effect (3Bx)

BL = Memory size: 0 = 64k, 1 = 128k, 2 = 192k, 3 = 256k
CH = Feature bits
CL = EGA switch settings

Function 12h - Subfunction 20h - Revector Print Screen (INT 05h)
Interrupt

AH = 12h
BL = 20h

Function 12h - Sub function 30h - Select Scan Line Count for Next Text
Mode

AH = 12h

AL = Number of scan lines: 0 = 200,1 = 350, 2 = 400
Will take effect on next mode select for modes 0 to 3 and 7.

BL = 30h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Function 12h - Subfunction 31h - Enable/Disable Palette Load During
Mode Set

AH = 12h
AL = 0 enable (default), 1 disable
BL = 31h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

532 Advanced Programmer’s Guide to Super VGAs

Function 12b - Subfunction 32h - Enable/Disable VGA Access

AH = 12h
AL = 0 enable, 1 disable I/O and memory access to VGA
BL = 32h

Return Values:

AL = 12h indicating that function was performed (AL was 0 or 1)

Function 12h - Subfunction 33h - Enable/Disable Gray Scale Summing

AH = 12h
AL = 0 enable, 1 disable gray scale summing
BL = 33h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Function 12h - Subfunction 34h - Enable/Disable CGA/MDA Cursor
Emulation.

AH = 12h
AL = 0 enable, 1 disable CGA cursor emulation
BL = 34h

Return Values:

AL = 12h indicating that function is supported (AL was 0 or 1)

Function 12h - Sub-function 35h - Switch Displays.

AH = 12h
AL = Select video

0 - Initial adapter video system off (before call with AL= 1)
1 - Initial motherboard video system on (after call with AL = 0)
2 - Switch to inactive BIOS and video system (before call with AL = 3)
3 - Initialize video system with parameters in ES:DX (after call with AL = 0 or 2)

BL = 35h
ES:DX = address of 128-byte save area (for AL = 0, 2, or 3)

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

VGA BIOS Summary 533

Function 12b - Subfunction 36h - Display On/Off

AH = 12h

AL = 0 enable, 1 disable video output (maximum access to display memory)
BL = 36h

Return Values:

AL = 12h indicating that function is supported (0 if VGA not active)

Function 13h ■ Write Text String

AH = 13h
BH = display page number
CX = character count (length of string)
DH = row for start of string
DL = column for start of string
ES:BP = address of source text string in system RAM
AL = mode: 0: BL = Attribute for all characters - Cursor is not updated

1: BL = Attribute for all characters - Cursor is updated

2: String contains alternating character codes and Attributes - Cursor is not updated
3: String contains alternating character codes and Attributes - Cursor is updated

Function lAh - Subfunction 0 - Read Display Configuration Code

AH = lAh
AL = 0

Return Values:

AL = lAh
BL = primary display
BH = secondary display
Display information is interpreted as follows:

0 = no display
1 = MDA
2 - CGA
3 = EGA with ECD display
4 = EGA with CD display
5 = EGA with Monochrome Display
6 = PGC (Professional Graphics Controller)
7 = VGA with monochrome display
8 = VGA with color display

534 Advanced Programmer’s Guide to Super VGAs

OBh = MCGA with monochrome display
OCh = MCGA with color display

Function lAh - Subfunction 1 - Write Display Configuration Code

AH = lAh
AL = 1
BL = primary display info
BH = secondary display info
For an explanation of info codes, see sub-function 0.

Return Value:

AL = lAh

Function lBh - Return VGA Status Information

AH = lBh
BX = 0
ES:DI = pointer to 64 byte buffer for return data

Return Values:

AL = lBh
The return buffer will contain information as shown in table A-l

Table A-l. VGA Functionality and video state information

Byte Number Size Contents

0 dword Pointer to STATIC FUNCTIONALITY TABLE (see table A-2)

4 byte Current display mode

5 word Number of character columns

7 word Size of video data area (REGEN BUFFER) in bytes

9h word Current offset within REGEN BUFFER

OBh 8 words Cursor positions, two words per page, for up to 8 pages

lBh byte Cursor end

ICh byte Cursor start

lDh byte Current display page

lEh word CRT Controller address (3B4h or 3D4h)

20h byte CGA/MDA mode register value (value of 3B8h/3D8h)

21h byte CGA/MDA color register value (value of 3B9h/3D9h)

22h byte Number of text rows

23h byte Character height (in scan lines)

25h byte Display Configuration Code (active display)

VGA BIOS Summary 535

Table A-l. VGA Functionality and video state information (continued)

Byte Number Size
26h byte
27h word
29h byte
2Ah byte

2Bh byte
2Ch byte
2Dh byte

2Eh byte
2Fh byte
30h byte
31h byte
32h byte

33h to 33F

Contents
Display Configuration Code (inactive display)

Number of colors in current mode (0 for mono modes)

Number of display pages in current mode

Number of scan lines in current mode:

0 = 200,1 = 330, 2 = 400,3 = 480

Primary character generator (0-7)

Secondary character generator (0-7)

Miscellaneous state information:

D5 = 1 - Blinking enabled

D5 = 0 - Background intensify enabled

D4 = 1 - CGA cursor emulation enabled

D3 = 1 - Default palette initialization disabled
D2 = 1 - Monochrome display attached

D1 = 1 - Gray scale conversion enabled

DO = 1 - All modes supported on all monitors
Reserved

Reserved

Reserved

Size of display memory: 0 = 64KB 1 = 128KB 2 = 192KB 3 = 236KB
Save Pointer State Information

D5 = 1 - DCC extension is active (DCC override)
D4 = 1 - Palette override active

D3 = 1 - Graphics font override active
D2 = 1 - Alpha font override active
D1 = 1 - Dynamic save area active

DO = 1-512 Character set active
Reserved

Table A-2. VGA Static functionality table

Byte Number Size Contents
0 byte Video modes supported (1 indicates mode supported)

D7 - mode 7
D6 - mode 6

D5 - mode 5
D4 - mode 4

D3 - mode 3
D2 - mode 2

D1 - mode 1

DO - mode 0

536 Advanced Programmer’s Guide to Super VGAs

Table A-2. VGA Static functionality table (continued)

Byte Number
1

2

3 to 6

7

8

9
OAh

OBh

Size Contents
byte Video modes supported (1 indicates mode supported)

D7 - mode OFh
D6 - mode OEh

D5 - mode ODh
D4 - mode OCh

D3 - mode OBh
D2 - mode OAh

D1 - mode 9
DO - mode 8

byte Video modes supported (1 indicates mode supported)

D7 - Reserved
D6 - Reserved

D5 - Reserved
D4 - Reserved

D3 - mode 13h
D2 - mode 12h
Dl-modellh

DO - mode lOh

Reserved
byte Scan line available in text modes (1 indicates supported)

D2 - 400 lines
D1 - 350 lines
DO - 200 lines

byte Maximum number of simultaneously displayable character generators

byte Number of available character generators
byte Miscellaneous BIOS capabilities (1 indicates function supported)

D7 - Color paging (fn lOh)
D6 - DAC loading (fn lOh)

D5 - EGA palette loading (fn lOh)
D4 - CGA cursor emulation (fn 1)
D3 - Palette loading after mode set (fn 0)
D2 - Character generator loading (fn llh)

D1 - Gray scale summing (fn lOh and 12h)
DO - All modes on all displays

byte Miscellaneous BIOS capabilities (1 indicates function supported)

D7 - Reserved
D6 - Reserved

D5 - Reserved
D4 - Reserved

D3 - DCC (fn lAh)

VGA BIOS Summary 537

Table A-2. VGA Static functionality table (continued)

Byte Number Size

OCh to ODh

OEh byte

OFh

Contents
D2 - Blink/Intensify select (fn lOh)

D1 - Save/Restore video state (fn ICh)
DO - Light pen (fn 4)

Reserved

Save area function support (1 indicates supported)
D7 - Reserved

D6 - Reserved

D5 - DCC extensions
D4 - Palette override

D3 - Text character generator override

D2 - Graphics character generator override

D1 - Dynamic save area

DO - 512 simultaneous characters
Reserved

Function ICh - Subfunction 0 - Return Required Buffer Size

AH = ICh
AL = 0

CX = Type of data to be saved
DO - Registers
D1 - BIOS data area
D2 - DAC registers

Return Value:

AL = ICh

BX = Required buffer size (in 64 byte blocks)

Function ICh - Subfunction 1 - Save Display Adapter State

AH = ICh
AL = 1

CX = Type of data to be saved
DO - Registers
D1 - BIOS data area
D2 - DAC registers

538 Advanced Programmer’s Guide to Super VGAs

ES:BX = Pointer to save buffer

Return Value:

AL = ICh

Function ICh - Sub function 2 - Restore Display Adapter State

AH = ICh
AL = 2
CX = Type of data to be restored

DO - Registers
D1 - BIOS data area
D2 - DAC registers

ES:BX = Pointer to save buffer

Return Value:

AL = ICh

The BIOS Data Area
The BIOS Data Area is a section of the low memory where various BIOS services

keep their working variables. Variables used by Video Services are summarized in
table A-3. Programs which directly alter the status of the display without using the BIOS
calls (such as cursor position in CRTC registers) should update these variables to avoid
confusing the BIOS.

Table A-3. BIOS Data Area

Address Size Contents
0000:041Oh byte EQUIPMENT_FLAG

Bits D4 and D5 of this byte identify the current primary display

device:
D5 D4 Adapter
0 0 VGA

01 CGA 40x25
10 CGA 80x25
1 1 MDA

0000:0449h byte VIDEOJVIODE (current mode)
0000:044Ah word COLUMNS (number of text columns)

0000:044Ch word PAGEJLENGTH (length of each page in bytes)

0000:044Eh word START_ADDR (Start Address Register value)

VGA BIOS Summary 539

Table A-3. BIOS Data Area (continued)

Address
0000:0450h

Size

8 words
Contents

CURSOR_POSITION (cursor positions for all pages)
0000:0460h word CURSOR_SHAPE (Cursor Start and End Registers)
0000:0462h byte ACTIVE_PAGE (current active page number)
0000:0463h word CRTC_ADDRESS (3B4h or 3D4h)
0000:0465h byte MODE_REG_DATA (CGA Mode Register setting)
0000:0466h byte PALETTE (CGA Color Register setting)

0000:0484h byte ROWS (number of text rows -1)
0000:0485h word CHAR_HEIGHT (bytes per char)
0000:0487h byte EGA_INFO_l

D7 = bit D7 from AL on most recent mode select.
(a one indicates memory was not cleared by mode select)

D6,D5 = Display memory size (00 = 64K, 01 = 128K, 10 = 192K,
11 = 256K)
D4 = reserved

D3 = A zero indicates VGA is the primary display
D2 = A one will force the BIOS to wait for Vertical Retrace

before writing to display memory.

D1 - A one indicates that VGA is in monochrome mode.

0000:0488h byte

0000:0489h byte

0000:048Ah byte
0000:04A8h dword

DO - A zero means that CGA cursor emulation is enabled.
EGA_INFO_2

D4-D7 = Feature connector settings

D0-D3 = Switch settings
MISC_FLAGS D7&D4 = Scanline count:

0 0 = 350 lines
01 = 400 lines

I 0 = 200 lines
II = reserved

D6 = Display switching enabled
D3 = Default palette loading disabled
D2 = Monochrome monitor
D1 = Gray scale summing enabled
DO = VGA active

DCC_INDEX Index of current video combination
SAVE_AREA_PTR Pointer to save area (see table A-4)

540 Advanced Programmer’s Guide to Super VGAs

Table A-4. VGA BIOS Save area

Byte Number Size Contents
0 dword Mandatory pointer to Video Parameter Table (see table A-5)

4 dword Optional pointer to Dynamic Save Area. (This 256 byte table contains
16 palette register values and overscan register value)

8 dword Optional pointer to Text Mode Auxiliary Character Set (see table A-6)

OCh dword Optional pointer to Graphics Mode Auxiliary Character Set (see table A-

7)
Optional pointer to Secondary Save Area (see table A-8) lOh dword

I4h dword Reserved

18h dword Reserved

Note: At system initialization, the Environment Pointer is set to point to an Environment Table
in ROM. This default Environment Table has only one entry (the Video Parameter Table
Pointer.) To modify the Environment Table, first copy it from ROM to RAM and then update the

Environment Pointer.

Table A-5. VGA BIOS Video Parameter Table

Byte Number Size Contents
0 Number of text columns
1 Number of text rows

2 Character height (in pixels)

3 and 4 Display page length (in bytes)

Sequencer register values:

5 Clock Mode Register
6 Color Plane Write Enable Register

7 Character Generator Select Register
8 Memory Mode Register

9 Miscellaneous Register
CRT Controller register values:

Oah Horizontal Total Register
Obh Horizontal Display End Register
Och Start Horizontal Blanking Register
Odh End Horizontal Blanking Register
Oeh Start Horizontal Retrace Register
Ofh End Horizontal Retrace Register
lOh Vertical Total Register
llh Overflow Register

12h Preset Row Scan Register
13h Maximum Scan Line Register

VGA BIOS Summary 541

Table A-5. VGA BIOS Video Parameter Table (continued)

Byte Number Size Contents
I4h Cursor Start

15h Cursor End
I6h-19h Unused
lah Vertical Retrace Start Register
lbh Vertical Retrace End Register
lch Vertical Display End Register
ldh Offset Register
leh Underline Location Register
lfh Start Vertical Blanking Register
20h End Vertical Blanking Register
21h Mode Control Register
22h Line Compare Register

Attribute Controller Register Values:
23h Palette Register 0
24h Palette Register 1
23h Palette Register 2
26h Palette Register 3
27h Palette Register 4
28h Palette Register 3
29h Palette Register 6
2ah Palette Register 7
2bh Palette Register 8
2ch Palette Register 9
2dh Palette Register 10
2eh Palette Register 11

2fh Palette Register 12
30h Palette Register 13
31h Palette Register 14
32h Palette Register 15
33h Mode Control Register
34h Screen Border Color (Overscan) Register

35h Color Plane Enable Register
36h Horizontal Panning Register

Graphics Controller register values:

37h Set/Reset Register
38h Set/Reset Enable Register
39h Color Compare Register
3ah Data Rotate & Function Select Register
3bh Read Plane Select Register

3ch Mode Register
3dh Miscellaneous Register

542 Advanced Programmer’s Guide to Super VGAs

Table A-5. VGA BIOS Video Parameter Table (continued)

Byte Number Size Contents
3eh Color Don’t Care Register
3fh Bit Mask Register

Modes are ordered in the parameter table as follows:

Table Mode

0 0
1 1
2 2

3 3
4 4

3 3
6 6
7 7
8 8

9 9
10 A
11 B
12 C

13 D
14 E

15 F (64 KByte display RAM)
16 10 (64 KByte display RAM)

17 F (more than 64 KBytes)
18 10 (more than 64 KBytes)
19 0*
20 1*

21 2*

22 3*

23 0 + ,l +
24 2 + ,3 +
25 7 +
26 11

27 12

28 13

VGA BIOS Summary 543

Table A-6. VGA BIOS Text Mode Auxiliary Character Set Table

Byte Number Size Contents
0 byte Bytes per character
1 byte Character Map # (0-3 for EGA, 0-7 for VGA)

2,3 word # of characters

4,5 word first character #

6,7,8,9 dword pointer to character set in system memory
10 byte character height (in pixels)
11-n bytes list of modes this character set is compatible with, terminated by FFh

Table A-7. VGA BIOS Graphics Mode Auxiliary Character Set Table

Byte Number Size Contents
0 byte Number of character rows on display
1,2 word Bytes per character
3,4,5,6 dword Pointer to character set in system memory
7-n bytes List of modes this character set is compatible with, terminated by FFh

Table A-8. VGA BIOS Secondary Save Area Table

Byte Number Size Contents
0 word Length of this table
2 dword Pointer to DCC table (see table A-9)
6 dword Pointer to second Text Mode Auxiliary Character Set (see table A-6)
OAh dword Pointer to User Palette Table (see table A-10)
OEh dword Reserved
12h dword Reserved
I6h dword Reserved

Table A-9. VGA BIOS Device Combination Code Table

Byte Number Size Contents
0 byte Number of entries in this table

1 byte Version number
2 byte Maximum display type code

3 byte Reserved

Advanced Programmer’s Guide to Super VGAs

Table A-9. VGA BIOS Device Combination Code Table (continued)

Byte Number Size Contents
4 - n words List of valid video combinations, one pair per combination.

Pairs are built from the following values:
0 = no display
1 = MDA
2 = CGA
3 = EGA with ECD display
4 = EGA with CD display

3 = EGA with Monochrome Display
6 = PGC (Professional Graphics Controller)

7 = VGA with monochrome display
8 = VGA with color display

OBh = MCGA with monochrome display
OCh = MCGA with color display

Table A-10. VGA BIOS User Palette Table

Byte Number Size Contents
0 byte Underlining flag: -1 = Off, 0 = Ignore, 1 = On
1 byte Reserved
2 word Reserved
4 word Number of palette registers in the table
6 word First palette registers in the table
8 dword Pointer to palette register values
OCh word Number of DAC registers in the table
OEh word First DAC register in the table
lOh dword Pointer to DAC register values (table has 3 bytes per RGB register)
I4h bytes List of video modes terminated by OFFh

VGA Register Summary

545

546 Advanced Programmer’s Guide to Super VGAs

VGA Register Summary

Miscellaneous Output Register (I/O Address Write 3C2h,
Read 3CCh)

D7 - Vertical Sync Polarity
D6 - Horizontal Sync Polarity
D7 D6

0 0 invalid
0 1 350 lines
1 0 400 lines
1 1 480 lines

D5 - Odd/Even Page Bit
D4 - Disable Video
D3 - Clock Select 1
D2 - Clock Select 0
D1 - Enable/Disable Display RAM
DO - I/O address select (3Bx vs 3Dx)

Input Status Register 0 (I/O Address 3C2, Read only)

D7 - Vertical Retrace Interrupt Pending
D6 - Feature connector bit 1
D5 - Feature connector bit 0
D4 - Switch sense bit
DO to D3 - Unused

Input Status Register 1 (I/O Address 3BAh/3DAh, Read only)

D7 - unused
D6 - unused
D5 - Diagnostic
D4 - Diagnostic
D3 - Vertical Retrace
D2 - unused
D1 - unused
DO - Display Enable

VGA Register Summary 547

VGA Enable Register (I/O Address 3C3h/46E8h)

D7-D1 - Reserved

DO-VGA Enable/Disable

The CRT Controller Registers - 3D4H/3B4, 3D5h/3B5h

Index 0 - Horizontal Total
Index 1 - Horizontal Display Enable
Index 2 - Start Horizontal Blanking
Index 3 - End Horizontal Blanking

D7 - Test
D6 - Skew control
D5 - Skew control
DO to D4 - End blanking

Index 4 - Start Horizontal Retrace
Index 5 - End Horizontal Retrace

D7 - End horizontal blanking bit 5
D6 - Horizontal retrace delay
D5 - Horizontal retrace delay
DO to D4 - End horizontal retrace

Index 6 - Vertical Total
Index 7 - Overflow Register

D7 - Vertical Retrace Start (Bit 9)
D6 - Vertical Display Enable End (Bit 9)
D5 - Vertical Total (Bit 9)
D4 - Line Compare (Bit 8)
D3 - Start Vertical Blank (Bit 8)
D2 - Vertical Retrace Start (Bit 8)
D1 - Vertical Display Enable End (Bit 8)
DO - Vertical Total (Bit 8)

Index 8 - Preset Row Scan
D7 - Unused
D6 - Byte panning control
D5 - Byte panning control
DO to D4 - Preset Row Scan

Index 9 - Maximum Scan Line/Character Height
D7 - Double Scan

D6 - Bit D9 of Line Compare register
D5 - Bit D9 of Start Vertical Blank register
D4-D0 - Maximum Scan Line

548 Advanced Programmer’s Guide to Super VGAs

The CRT Controller Registers - 3D4H/3B4, 3D5h/3B5h
(continued)

Index OAh - Cursor Start
D7,D6 - reserved (0)

D5 - Cursor Off
D4-D0 - Cursor Start

Index OBh - Cursor End
D7 - reserved
D6,D5 - Cursor Skew
D4-D0 - Cursor End

Index OCh - Start Address (High Byte)
Index ODh - Start Address (Low Byte)
Index OEh - Cursor Location (High Byte)
Index OF - Cursor Location (Low Byte)
Index lOh - Vertical Retrace Start
Index llh - Vertical Retrace End

D7 - Write protect CRTC registers 0 to 7
D6 - Refresh cycle select
D5 - Enable vertical interrupt (when 0)
D4 - Clear vertical interrupt (when 0)

DO to D3 - Vertical retrace end
Index 12h - Vertical Display Enable End
Index 13h - Offset/Logical Screen Width
Index I4h - Underline Location Register

D7 - Reserved
D6 - Double word mode
D5 - Count by 4
DO to D4 - Underline Location

Index 15h - Start Vertical Blanking
Index I6h - End Vertical Blanking
Index 17h - Mode Control Register

D7 - Enable vertical and horizontal retrace
D6 - Byte mode (1), Word mode (0)

D5 - Address wrap
D4 - Reserved
D3 - Count by two
D2 - Multiply vertical by 2 (use half in CRTC 8,10h,12h,15h,18h)
D1 - Select row scan counter (allows 400 line modes)
DO - Compatibility mode support (enable interleave)

Index 18h - Line Compare Register

VGA Register Summary 549

Sequencer Registers - 3C4h, 3C5h

Index 0 - Reset Register
D7-D2 - reserved
D1 - Synchronous Reset
DO - Asynchronous Reset

Index 1 - Clock Mode Register
D7,D6 - Reserved
D5 - Display Off
D4 - Allow 32 bit fetch (not used in standard modes)
D3 - Divide dot clock by 2 (used in some 320x200 modes)
D2 - Allow 16 bit fetch (used in mono graphics modes)
D1 - Reserved
DO - Enable (0) 9 dot characters (mono text and 400 line text modes)

Index 2 - Color Plane Write Enable Register
D7,D6 - reserved
D3 - plane 3 write enable
D2 - plane 2 write enable
D1 - plane 1 write enable
DO - plane 0 write enable

Index 3 - Character Generator Select Register
D7,D6 - reserved
D5 - Character generator table select A (MSB)
D4 - Character generator table select B (MSB)
D3,D2 - Character generator table select A
D1,D0 - Character generator table select B

Index 4 - Memory Mode Register
D4 to D7 - Reserved
D3 - Chain 4 (address bits 0&1 to select plane, mode 13h)
D2 - Odd/Even (address bit 0 to select plane 0&2 or 1&3, text modes)
D1 - Extended memory (disable 64k modes)
DO - Reserved

Graphics Controller Registers - 3CEh, 3CFh

Index 0 - Set/Reset Register
D7-D4 - reserved (0)
D3 - fill data for plane 3
D2 - fill data for plane 2
D1 - fill data for plane 1
DO - fill data for plane 0

550 Advanced Programmer’s Guide to Super VGAs

Index 1 - Set/Reset Enable Register
D7-D4 - reserved (0)
D3 - enable Set/Reset for plane 3(1 = enable)
D2 - enable Set/Reset for plane 2
D1 - enable Set/Reset for plane 1
DO - enable Set/Reset for plane 0

Index 2 - Color Compare Register
D7-D4 - reserved
D3 - Color Compare value for plane 3
D2 - Color Compare value for plane 2
D1 - Color Compare value for plane 1
DO - Color Compare value for plane 0

Index 3 - Data Rotate/Function Select Register
D7-D5 - reserved (0)
D4,D3 - Function Select
D2-D0 - Rotate Count
D4 D3 - Logical Operation

0 0 Write data unmodified
0 1 Write data AND processor latches
1 0 Write data OR processor latches
1 1 Write data XOR processor latches

Index 4 - Read Plane Select Register
D7-D2 - reserved (0)
D1,D0 - defines color plane for reading (0-3)

Index 5 - Mode Register
D7 - reserved (0)
D6 - 256 color mode
D5 - Shift Register Mode
D4 - Odd/Even Mode
D3 - Color Compare Mode Enable (1 = enable)
D2 - reserved (0)
D1,D0- Write Mode

0 0 Direct write (Data Rotate, Set/Reset may apply)
0 1 Use processor latches as write data
1 0 Color plane n (0-3) is filled with the

value of bit n in the write data
1 1 Use (rotated) write data ANDed with Bit Mask as Bit Mask

Use Set/Reset as if Set/Reset was enabled for all planes

VGA Register Summary 551

Index 6 - Miscellaneous Register
D4 to D7 - Reserved
D2 to D3 - Memory Map

D3 D2
0 0 A000 for 128k
0 1 A000 for 64k
1 0 B000 for 32k
1 1 B800 for 32k

D1 - Chain odd planes to even
DO - Graphics mode (disable character generator)

Index 7 - Color Don’t Care Register
D7-D4 - reserved (0)

D3 - Plane 3 don’t care
D2 - Plane 2 don’t care
D1 - Plane 1 don’t care
DO - Plane 0 don’t care

Index 8 - Bit Mask Register
D7 - mask data bit 7
D6 - mask data bit 6
D5 - mask data bit 5
D4 - mask data bit 4
D3 - mask data bit 3
D2 - mask data bit 2
D1 - mask data bit 1
DO - mask data bit 0

Attribute Controller - 3C0h, 3Clh

Index 00 to OFh - The Palette Registers
D6,D7 - Reserved
DO to D5 - Color value

Index lOh - Mode Control Register
D7 - P4,P5 Source Select
D6 - Pixel Width
D5 - Horizontal Panning Compatibility
D4 - reserved
D3 - Background Intensify/Enable BLink
D2 - Line graphics enable (text modes only)
D1 - Display Type
DO - Graphics/Text Mode

Index llh - Screen Border Color

552 Advanced Programmer’s Guide to Super VGAs

Index 12h - Color Plane Enable Register
D7,D6 - reserved
D5,D4 - Video Status Mux
D3 - Enable Color Plane 3
D2 - Enable Color Plane 2
D1 - Enable Color Plane 1
DO - Enable Color Plane 0

Index 13 - Horizontal Panning Register
D7-D4 - reserved
D3-D0 - Horizontal Pan

Value Number of pixels 13h
shifted to the left
OH-,1 + ,2+ +
3 +, 7, 7 +

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9

Index 14 - Color Select Register
D7-D4 - reserved
D3 - color 7
D2 - color 6
D1 - color 5
DO - color 4

0
1
2

3
4

5
6
7

Other
modes

0

1

2

3

3C6 - Pixel Mask Register

3C7 - DAC State Register (Read Only)

3C7 - Look-up Table Read Index (Write Only)

3C8 - Look-up Table Write Index

3C9 - Look-up Table Data Register

Character Set

554 Advanced Programmer’s Guide to Super VGAs

Character Set
DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX

r _0 0 32 20 Q 64 40 96 60 ^ 128 80
a

160 A0
L

192 CO a
224 E0

0 , , f
33 21 a

65 41 a 97 61 U
129 81

s
l

161 A1 193 Cl R 225 El

0
_2 2

u

34 22 B
66 42 b

98 62 e
130 82

*
o

162 A2 T 194 c? r 226 E2

*
_3 3 II 35 23 c

67 43 c 99 63 a
131 83

*
u

163 A3 \ 195 C3 IT
227 F3

♦
_4 4 5 36 24 D

68 44 d 100 64 a
132 84 n 164 A4

-
196 C4 Z 228 E4

*
_5 5 * 37 25 E

69 45 e 101 65

X
a 133 85 R

165 A5 + 197 C5 V 229 F5

♦ _6 6 a
38 26 F

70 46 f
102 66 a 134 86

a
166 A6 \ 198 C6 P 230 F6

•
_7 7

>

39 27 G 71 47 g 103 67 9 135 87

o
167 A 7 II 199 C 7 T 231 F7

D 8 8 (
40 28 H

72 48
h

104 68 e 136 88 6 168 A8
Ii

200 C8 5 232 F8

o
_9 9) 41 29 I

73 49 i
105 69 e 137 89

r
169 A9 Ii 201 C9 e

233 F9

0 10 A
**

42 2A J 74 4A j 106 6A

X
e 138 8A 170 AA

Jl
202 CA ft 234 EA

6
11 B

+
43 2B

K
75 4B k 107 68 l 139 8B 171 AB ir 203 CB 5

235 EB

9
12 C i 44 2C L 76 4C 1 108 6C l 140 8C 172 AC if 204 cc

a>
236 EC

r
13 0

-
45 20 M 77 4D n

109 60 l 141 80 *
173 AO

=
205 CO 0

237 ED

n 14 E • 46 2E N
78 4E n

110 6E
A

142 8E
«c

174 AE
ji
ir 206 CE 6 238 EE

*
15 F /

47 2F 0 79 4F o 111 6F

♦
A 143 8F 175 AF

_L
207 CF n 239 EF

►
16 10 0

48 30 P 80 50 _P 112 70

✓
E 144 90 176 B0

ii
208 00 240 FO

4
17 11 1 49 31 Q 81 51 q 113 71 a 145 91 i 177 81 T 209 D1

+
241 FI

t
18 12 2 50 32 R 82 52 r 114 72 a 146 92 i 178 B2 IT 210 D2

>
242 F2

jj
19 13 3

51 33 S 83 53 s 115 73 ® 147 93 i 179 B3
U

211 D3
<

243 F3

<n
20 14 4

52 34 T 84 54 t
116 74 o

148 94 i 180 B4
t

212 D4 f 244 F4

§ 21 15 5
53 35 U 85 55 u

117 75

X
o 149 95 \ 181 B5 F 213 05 J

245 25_

■
22 16 6

54 36 U
86 56 u

118 76

A
u

150 96 182 B6 rr 214 06
-r

246 F6

t
23 17 7

55 37 U
87 57 u 119 77 u

151 97 Tl 183 B7 if 215 D7 247 F7

t 24 18 8
56 38 X

88 58 X 120 78 y 152 98 i 184 B8 t 216 08

o
248 F8

i 25 19 9
57 39 Y 89 59 y 121 79 ® 153 99 i 185 B9

j
217 09

•
249 F9

26 1A * 58 3A 2 90 5A z
122 7A ^ 154 9A ii 186 BA r 218 DA 250 FA

«-
27 IB 9

59 3B [91 5B { 123 7B
c
V 155 98 n 187 BB i 219 OB 4 251 FB

28 1C <
60 3C \

92 5C
1 1

124 7C
£
U 156 9C

jj
188 BC ■ 220 DC

n
252 FC

4*
29 ID

=
61 3D] 93 5D >

125 7D ¥
157 90

ii
189 B0 i 221 DO

2
253 FD

A
30 IE > 62 3E

A

94 5E
**

126 7E ^ 158 9E
A

190 BE i 222 DE
■

254 FE

▼
31 IF ?

63 3F — 95 5F 127 7F f 159 9F 1 191 BF
■

223 OF 255 FF

Standard VGA Modes

555

556 Advanced Programmer’s Guide to Super VGAs

Standard VGA Modes

Mode Type Resolution Colors Display Type
0,1 Text 40 cols x 25 rows, 8x8 cell 16 CGA
0* Text 40 cols x 25 rows, 8x14 cell 16 EGA
0 + Text 40 cols x 25 rows, 9x16 cell 16 VGA

2,3 Text 80 cols x 25 rows, 8x8 cell 16 CGA
2* Text 80 cols x 25 rows, 8x14 cell 16 EGA

2 + ,3 + Text 80 cols x 25 rows, 9x16 cell 16 VGA

4,5 Graphics 320 horizontal x 200 vertical 4 CGA
6 Graphics 640 horizontal x 200 vertical 2 CGA
7 Text 80 cols x 25 rows, 8x14 cell Mono MDA
7 + Text 80 cols x 25 rows, 9x16 cell Mono VGA
D Graphics 320 horizontal x 200 vertical 16 CGA
E Graphics 640 horizontal x 200 vertical 16 CGA
F Graphics 640 horizontal x 350 vertical Mono MDA
lOh Graphics 640 horizontal x 350 vertical 16 EGA
llh Graphics 640 horizontal x 480 vertical 2 VGA
12h Graphics 640 horizontal x 480 vertical 16 VGA
13h Graphics 320 horizontal x 200 vertical 256 VGA

Display types:

CGA - Color display (TTL, 640x200,15.75kHz)
EGA - Enhanced display (TTL, 640x350, 21.85kHz)
VGA - VGA display (Analog, 720x400 & 640x480,31.5kHz)

Examples Summary

558 Advanced Programmer’s Guide to Super VGAs

Examples Summary

Listing
Listing 7-1. File: 256COL\WPIXEL.ASM

Listing 7-2. File: 256COL\RPIXEL.ASM

Listing 7-3. File: 256COL\LINE.ASM

Listing 7-4. File: 256COL\SCANLINE.ASM

Listing 7-5. File: 256COL\RECT.ASM
Listing 7-6. File: 256COL\CLEAR.ASM

Listing 7-7. File: 256COL\BITBLT.ASM

Listing 7-8. File: 256COL\CURSOR.ASM

Listing 7-9. File: 256COL\DAC.ASM
Listing 7-10. File: 256COL\READ.ASM

Listing 7-11. File: 256COL\WRITE.ASM

Listing 8-1. File: l6COL\WPIXEL.ASM
Listing 8-2. File: l6COL\RPIXEL.ASM

Listing 8-3. File: l6COL\LINE.ASM
Listing 8-4. File: l6COL\SCANLINE.ASM

Listing 8-5. File: l6COL\RECT.ASM

Listing 8-6. File: l6COL\CLEAR.ASM

Listing 8-7. File: l6COL\BITBLT.ASM

Listing 8-8. File: l6COL\CURSOR.ASM

Listing 8-9. File: l6COL\PALETTE.ASM
Listing 9-1. File: 4COL\WPEXEL.ASM

Listing 9-2. File: 4COL\RPIXEL.ASM
Listing 9-3. File: 4COL02\WPIXEL.ASM

Listing 9-4. File: 4COL02 \ RPIXEL.ASM

Listing 9-5. File: 4COL01 \WPIXEL.ASM
Listing 9-6. File: 4COL01 \ RPIXEL.ASM

Listing 9-7. File: 4COLATIXWPIXEL.ASM
Listing 9-8. File: 4COLATI \ RPIXEL.ASM
Listing 9-9. File: 4COLPACKXWPIXEL.ASM
Listing 9-10. File: 4COLPACKX RPIXEL.ASM
Listing 10-1. File: AHEAD VSELECT.ASM
Listing 11-1. File: ATI\SELECTASM
Listing 11-2. File: 16COLATIXWPIXEL.ASM

Listing 11-3. File: 16COLATIXRPIXEL.ASM
Listing 11 -4. File: ATI \TEXT.ASM

Listing 11-5. File: ATI \ INFO.C
Listing 12-1. File: 256COLCI\WPIXEL.ASM
Listing 12-2. File: 256COLCIXRPIXEL.ASM
Listing 12-3. File: CIRRUS\HWCURSORASM
Listing 13-1. File: CTI\SELECT.ASM

Description Page
Write pixel for 256-color modes 131

Read pixel for 256-color modes 132
Draw line pixel for 256-color modes 134

Fill scan line for 256-color modes 141
Fill solid rectangle for 256-color modes 142

Clear screen for 256-color modes 145

Copy block for 256-color modes 148
Control cursor for 256-color modes 166

Read and Load DACs 172

Read one raster for 256-color modes 174
Write raster for 256-color modes 176

Write pixel for 16-color modes 182
Read pixel for 16-color modes 184

Draw line for 16-color modes 186
Fill scan line for 16-color modes 194

Fill solid rectangle for 16-color modes 197

Clear screen for 16-color modes 200

Copy block for 16-color modes 202

Control cursor for 16-color modes 210
Load palette registers for 16-color modes 216
Write pixel for 4-color modes 222

Read pixel for 4-color modes 224
Write pixel for 4-color modes 226

Read pixel for 4-color modes 228
Write pixel for 4-color modes 230

Read pixel for 4-color modes 232

Write pixel for 4-color modes 234
Read pixel for 4-color modes 236
Write pixel for 4-color modes 239
Read pixel for 4-color modes 240
Select mode and paging for Ahead 249
Select mode and paging for ATI 273
Write pixel for 16-color ATI mode 280
Read pixel for 16-color ATI mode 281
Show 8 simultaneous fonts 283

Show board configuration for ATI 290
Write pixel for 256-color Cirrus mode 299
Read pixel for 256-color Cirrus mode 300
Move cursor around the screen 303
Select mode and paging for Chips 330

Examples Summary 559

Listing

Listing 13-2. File: CTI\HWCURSOR.ASM
Listing 14-1. File: GENOA\ SELECT.ASM
Listing 15-1. File: HEADLAND \ SELECT.ASM
Listing 15-2. File: HEADLAND\HWCURSORASM
Listing 16-1. File: TRIDENT\ SELECT.ASM

Listing 17-1. File: TSENG\SELECTASM
Listing 17-2. File: TSENG\ZOOM.ASM

Listing 17-3. File: TSENG\TEXT.ASM
Listing 18-1. File: WD\SELECT.ASM

Listing 19-1. File: ZYMOS\SELECT.ASM
Listing 20-1. File: VESA\ SELECT.ASM
Listing 20-2. File: VESA\VESAINFOASM

Description Page

Hardware curosr for Chips 338
Select mode and paging for Genoa 351
Select mode and paging for Headland 374
Hardware cursor for Headland 382
Select mode and paging for Everex 408
Select mode and paging for Tseng 424
Hardware text zoom for Tseng 430
Enable 8 simultaneous fonts 436
Select mode and paging for WD 466

Select mode paging for Zymos 480

Select mode and paging for VESA 496
Show configuration for VESA 501

VGA Boards

562 Advanced Programmer’s Guide to Super VGAs

SuperVGA Mode Summary

Chip Text Graph Graph Graph Graph Graph Graph Graph

132x44 640x400 640x480 800x600 1024x768 800x600 1024x768 1024x768

Manufacturer and Model 132x43 256-col 256-col 256-col 256-col 16-col 16-col 4-col

Ahead Wizard Ahead 22h 60h 6lh 62h 63hi 6Ah 74h 75h

ATI VGAWONDER ATI 33h 6lh 62h 63h 6Ah 55h/65h 67h

AST VGA Plus WD 56h 5Eh 5Fh - 58h

Boca Res. 1024 VGA Chips 78h 79h 6Ah 72h -

Chips & Technologies Chips 78h 79h 6Ah 72h

Cirrus Cirrus 20h 50h 6Ah

Everex Viewpoints Trident *0Bh *14h *30h *31h *02h *20h *60h

Genoa 6400 Genoa 63h 7Eh 5Ch 5Eh 79h 5Fh 7Fh

Headland VRAM Headland *42h *66h *67h *69h *62h *65h *64h

Headland VGA 1024i Headland *42h *66h *67h - 6Ah *65h *64h

HP Paradise 5Eh 5Fh - 58h

MaxLogic MaxVGA Cirrus 20h 50h - 6Ah

NSI VGA/16 NSI 22h - 2Eh 30h 6Ah 37h 38h (2 col)

Orchid ProDesigner Tseng 24h - 2Eh 30h 29h 37h

Quadram Spectra Tseng 22h 2Eh 30h 29h 37hi

Sigma VGA Legend ET-4000 lDh 2Eh 30h 38h 6Ah 37h i

Sota VGA/16 Tseng 22h lBh 2 Eh 30h 29h 37h

STB VGA Extra Tseng 22h 2Eh 30h 29h 37h

Tecmar VGAADGM Tseng #17h lBh ICh lDh l6h 19h

TrueTech Hires VGA Zymos 57h 5Ch 5Dh 5Eh 6Ah 5Fh

Tseng Tseng 22h 2Eh 30h 29h 37h

VESA *100h * 101 h *103h *105h *102h *104h -

WD Professional WD 54h 5Eh 5Fh - 58h -

WD 1024 WD 54h 5Eh 5Fh 5Ch - 58h 5Dh 5Bh

Willow Publishers VGA Tseng 22h 2Eh 30h 29h 37h i

Zymos Zymos 57h 5Ch 5Dh 5Eh 6Ah 5Fh

i = Interlaced only

* = Needs special mode select call for INT lOh

= Must use BIOS functions AH = 12h, BL = 30 to set scan line count, and AH = 11 to select font

ET-4000 = New chip from Tseng. Paging as follows: Read = 3CDh bits 0-3, Write = 3CDh bits 4-7

VGA Boards 563

Addresses of companies covered in this book
Ahead Systems Inc.
44244 Fremont Boulevard
Fremont, CA 94538
Tel: (415) 623-0900

ATI Technologies Inc.
3761 Victoria Park Avenue
Scarborough, Ontario
Canada M1W 3S2
Tel: (416) 756-0718
Fax: (416) 756-0720

Boca Research Inc.
6401 Congress Avenue
Boca Raton, FL 33487
Tel: (407) 997-6227
Fax: (407) 997-0918

Chips and Technologies Inc.
3050 Zanker Road
San Jose, CA 95134
(408) 434-0600

Cirrus Logic Inc.
1463 Center Pointe Drive
Milpitas, CA 95035
Tel: (408) 945-8300
Fax: (408) 263-5682

Everex Systems Inc.
48431 Milmont Drive
Fremont, CA 94538
Sales: (415)683-2100
Tech: (415) 498-1115
FAX: (415) 651-0728
BBS: (415) 683-2924

Genoa Systems Corporation
75 E. Trimble Road
San Jose, CA 95131
Tel: (408) 432-9090
Fax: (408) 434-0997

Headland Technology Inc.
(formerly Video Seven)

46221 Landing Parkway

Fremont, CA 94538

Tel: (415) 656-7800

(800) 248-1850
(800) 553-1850 (Calif.)

Fax: (415) 657-4604

BBS: (415) 656-0503

MaxLogic Systems Inc.

48350 Milmont Drive

Fremont, CA 94538

Tel: (415) 683-2684

Tech: (415)490-4199

Paradise

see Western Digital

STB Systems Inc

1651 N. Glenville
P.O. Box 850957

Richardson, TX 75085

Tel: (214) 234-8750

Trident Microsystems Inc.

321 Soquel Way

Sunnyvale, CA 94086

Tel: (408) 738-3194

Fax: (408) 738-0905

TrueTech Inc.
181-B W. Orangethorpe

Placentia, CA 92670

Tel: (714) 961-0438
(800) PC-AT-386

Fax: (714) 961-0952

564 Advanced Programmer’s Guide to Super VGAs

Tseng Laboratories Inc.
10 Pheasant Run
Newtown Commons
Newtown, PA 18940
Tel: (215) 968-0502
Fax: (215) 860-7713

VESA

1330 South Bascom Avenue, Suite D
San Jose, CA 95128
Tel: (408) 971-7525
Fax: (408) 286-8988

Video Seven
see Headland

VGA manufacturers
Ahead Systems Inc.
44244 Fremont Boulevard
Fremont, CA 94538

American Mitac
410 East Plumeria Drive
San Jose, CA 95134

AST Research
2121 Alton
Irvine, CA 92714

ATI Technologies Inc.
3761 Victoria Park Avenue, Scarborough
Ontario, Canada M1W 3S2

Boca Research Inc.
6401 Congress Avenue
Boca Raton, FL 33487

Cardinal Technologies
1827 Freedom Road
Lancaster, PA 17601

C2 Micro Systems
1205 Fulton Place
Fremont, CA 94539

Western Digital Imaging
800 E. Middlefield Road
Mountain View, CA 94043
Tel: (415) 960-3360
(800) 356-5787 (outside Calif.)
BBS: (4l5)-968-1834

ZyMOS Corporation
477 N. Mathilda Avenue
Sunnyvale, CA 94086
Tel: (408) 730-5400
Fax: (408) 730-5473

Chips and Technologies Inc.
3050 Zanker Road
San Jose, CA 95134

Cirrus Logic Inc.

1463 Center Pointe Drive
Milpitas, CA 95035

Club American Technologies
3401 W. Warren Avenue

Fremont, CA 94539

Colorgraphic Communications Corp
5388 Peachtree Road, P.O. Box 80448
Atlanta, GA 30366

Commax Technologies

2031 Concourse Drive

San Jose, CA 95131

Compaq Computer

20555 FM 149, P.O. Box 692000
Houston, TX 77269

VGA Boards 565

Computer Electronik Infosys of

America Inc.

512A Herndon Parkway

Herndon, VA 22070

CSS Labs
1641 McGaw Avenue
Irvine, CA 92714

Dell Computer Corp.

9505 Arboretum Boulevard

Austin, TX 78759

Enertronics

1910 Pine Street

St. Louis, MO 63103

Everex Systems Inc.

48431 Milmont Drive
Fremont, CA 94538

Genoa Systems Corporation

75 E. Trimble Road

San Jose, CA 95131

Goldstar Technology

1130 E. Arques Avenue
Sunnyvale, Ca. 94086

GVC-Chenel Corp.

99 Demarest Road

Sparta, NJ. 07871

Headland Technology Inc.

(formerly Video Seven)

46221 Landing Parkway
Fremont, CA 94538

Hewlett-Packard

19310 Pruneridge Avenue
Cupertino, CA 95014

Hercules Computer Technology

921 Parker Street
Berkeley, CA 94710

IBM
900 King Street
1A515 Rye Brook, NY 10573

Imagraph
800 W. Cummings Park
Woburn, Mass 01801

Intel
would not give address

call (800) 548-4725

Intelligent Graphics
4800 Great American Parkway, Suite 200
Santa Clara, CA 95054

Logitech

6505 Kaiser Drive
Fremont, CA

Magni Systems
9500 SW Gemini Drive
Veaverton, OR 97005

MaxLogic Systems Inc.
48350 Milmont Drive
Fremont, CA 94538

Micron Technology
2805 E. Columbia Road
Boise, Idaho, 83706

MicroWay Inc
P.O. Box 79
Kingston, Mass 02364

Mylex
47650 Westinghouse Drive
Fremont, CA 94539

National Semiconductor
(formerly Quadram)
750 Central Expressway, m/2 3410

Santa Clara, CA 95050

566 Advanced Programmer’s Guide to Super VGAs

NSI Logic
Cedar Hill Business Park
257-B Cedar Hill Road
Marlboro, Mass 01752

Orchid Technology
45365 Northport Loop West
Fremont, CA 94538

Paradise
see Western Digital

Personal Computer Graphics Corp
5819 Uplander Way
Culver City, CA 90230

Prism Imaging Systems
5309 Randall Place
Fremont, CA 94538

Quadram
see National Semiconductor

QDP Computer Systems Inc
23632 Mercentile Road
Beachwood, Ohio 44122

Relisys

320 S. Milpitas Boulevard
Milpitas, Ca. 95035

Renaissance GRX
Cedar Park

2265 116th Avenue, N,E,m
Bellvue, WA 98004

Scouri/Twinhead Corp.
P.O. Box 702, 30 Chapin Road
Pine Brook, NJ 07058

SCOA Systems
2100 Golf Road, Suite 100
Rolling Medows, IL 60008

Sigma Design
46501 Landing Parkway
Fremong, CA 94538

SMT

1145 Linda Vista Drive
San Marcos, CA 92069

Sota Technology
559 Weddell Drive
Sunnyvale, CA 94089

STB Systems Inc

1651 N. Glenville, P.O. Box 850957
Richardson, TX 75085

Tatung Co. of America
2850 El Presidio Street
Long Beach, CA 90810

Tecmar

6225 Cochran Road
Solon, OH 44139

Thomson Consumer Products Corp
5731 West Slauson Avenue, Suite 111
Culver City, CA 90230

Trident Microsystems Inc.
321 Soquel Way
Sunnyvle, CA 94086

TrueTech Inc.
181-B W. Orangethorpe
Placentia, CA 92670

Tseng Laboratories Inc.
10 Pheasant Run, Newtown Commons
Newtown, PA 18940

US Video

One Stamford Landing, 62 Southfield
Avenue
Stamford, CT 06902

Video Seven
see Headland

Vutek

10855 Sorrento Valley Road
San Diego, CA 92121

VGA Boards 567

Western Digital Imaging
(fromerly Paradise)
800 E. Middlefield Road
Mountain View, CA 94043

Willow Peripherals
190 Willow Ave
Bronx, NY 10454

Zenith Data Systems

100 Milwaukee Avenue,

Glenview, IL 60025

ZyMOS Corporation

477 N. Mathilda Avenue

Sunnyvale, CA 94086

VGA Displays

569

570 Advanced Programmer’s Guide to Super VGAs

VGA Display Manufacturers

Acer Technologies Corp.
401 Charcot Avenue
San Jose, Ca. 95131

(408)922-0333
(800)538-1542
FAX:(408)922-0176

Amdek Corp.
3471 N. First Street
San Jose, Ca. 95134

(408)559-3953 Sandy Parker
(800) PC-AMDEK

FAX:(408)922-5729

Aydin Controls
414 Commerce Drive
Fort Washington, Pa. 19034

(215)542-7800

(800)366-8889

Conrac Corp.

1724 S. Mountain Avenue
Duarte, Ca. 91010

(818)303-0095
FAX:(818)303-5484
Ruby

CTX International Inc.
161 Commerce Way
Walnut, Ca. 91789
(714)595-6146

FAX:(7l4)595-6293

Electrohome Ltd.
809 Wellington Street North
Kitchener, Ontario
N2G 4J6 Canada
(519)744-7111

Goldstar Technology, Inc.
1130 E. Arques Avenue
Sunnyvale, Ca. 94086

(408)432-1331 Bill Lynch
FAX:(408)739-0202

Hitachi America, Ltd.
950 Elm Avenue
San Bruno, Ca. 94066
(415)589-8300

Idek America Inc.

204 S. Olive Street
Rolla, Mo. 65401
(314)364-7500

Magnavox

NAP Consumer Electronics Group
P.O. Box 14810

Knoxville, Tenn. 37914
(615)521-4316

Mitsubishi Electronics of America,
Inc.
991 Knox Street
Torrance, Ca. 90502
(800)441-2345 ext. 54M
(213)217-5732

(213)515-3993
FAX:(213)324-6466

Nanao USA Corp.
23510 Telo Avenue, Suite 5
Torrance, Ca. 90505
Steven Leon—Answering Machine
(213)670-5606
(213)325-5202

FAX: (213) 530-1679

VGA Displays 571

NEC Home Electronics
Computer Products Division

1255 Michael Drive

Wood Dale, Illinois 60191-1094

(312)860-9500

(800) 826-2255
(800) FONE-NEC

(800) 323-1728

Packard Bell

9425 Canoga Avenue

Chatsworth, Ca. 91311

(818)733-4400

(800)521-7979
FAX:(818)773-9521

Panasonic

2 Panasonic Way, 7D-3
Secaucus, N.J. 07094

(201)348-7000

(800)PIC-8086

Princeton Graphic Systems

601 Ewing Street Building A

Princeton, N.J. 08540

(609)683-1660

Princeton Graphics Systems

1100 Northmeadow Parkway

Roswell, Ga. 30076

(404)475-2725
(800)241-3946

FAX:(404)475-2707

Quimax Systems, Inc.

844 Del Rev Avenue

Sunnyvale, Ca. 94086

(408)773-8282

FAX: (408)730-2340

Relisys
320 S. Milpitas Boulevard

Milpitas, Ca. 95035
(408)945-9000
(408)945-1062

FAX:(408)945-0587

Sampo Corp. of America
6350 Peachtree Industrial Boulevard

Norcross, Georgia 30071
(404) 449-6220

FAX: (404)447-1109

Samsung Electronics America Inc.

301 Mayhill Street
Saddlebrook, NJ 07662
(201)587-9600
FAX:(201)587-9178

Seiko Instruments USA
1144 Ringwood Court

San Jose, Ca. 95131
(800)888-0817
(408)943-9100

(800)553-5315
(408)922-5900

FAX:(408)922-5835

Sony Corp. of America

1 Sony Drive
Park Ridge, N.J. 07656
(201)930-1000

(800)222-SONY

Tatung of America Inc.

2850 El Presidio Street
Long Beach, Ca. 90810

(213)637-2105
(213)979-7055
(800)421-2929
FAX:(213)637-8484

572 Advanced Programmer’s Guide to Super VGAs

Taxan USA Corp.
161 Nortech Parkway
San Jose, Ca. 95134
(800)544-3888
(408)946-3400

FAX:(408)262-9059

Thompson Consumer Products
Corp.

5731 West Slauson Avenue, Suite 111
Culver City, Ca. 90230

(800)237-9483

Taxan USA Corp.
18005 Cortney Court
City of Industry, Ca. 91748

(818)810-1291

Zenith Data Systems

1000 Milwaukee Avenue
Glenview, Ill. 60025

(800)842-9000

Debugging Video

574 Advanced Programmer’s Guide to Super VGAs

Debugging Video
Some special precautions are necessary when debugging programs that interface with
a video display adapter.

Most software debugging tools output debugging information to the system console
device. If the software being debugged is also outputting information to the console,
the resulting interaction between the program and the debugger may produce totally
unpredictable results. The debugger itself may even cease to function.

One way around this problem is to install a secondary display adapter in the system.
If the program under debug outputs to the secondary display, it will not interfere with
the debugger’s use of the primary (console) display. If, for instance, the software under
debug is outputting color graphics to an EGA, an MDA monochrome adapter can be
installed. The MODE MONO command can be used to declare the monochrome dis¬
play as the console device for the debugger. This method is not guaranteed to elimi¬
nate problems if the program under debug uses any DOS or BIOS functions that
output to the console device. For SYMDEB and CodeView debuggers you can use
SYMDEB /M or CV /2 to redirect I/O to secondary (monochrome) monitor.

Another approach is to connect a CRT terminal to a serial port, then redirect console
I/O to the serial port by using the CTTY COM1 command. This method also may not be
reliable if the software being debugged outputs data to the console device. For
SYMDEB debugger you can use = COM1 (after the debugger was invoked) to redirect
I/O to serial port 1.

In cases where only one display adapter is available, or if the debugger and program
under debug must both output to the console device, special precautions must be
taken. Program single stepping or setting of breakpoints must be done with great care.
When the debugger is activated by a breakpoint, it will output data to the console,
thereby altering the state of the display adapter. This may destroy any adapter configur¬
ation that was done by the program under debug.

For EGA and VGA, register access is usually a two step process of outputting first an
index and then register data. If a breakpoint is set between the output of the index and
data, it is virtually guaranteed that the debugger will overwrite the index and the subse¬
quent data output will be performed incorrectly.

Above all, bear in mind that if the display adapter is left in an invalid state for more
than a few seconds damage to the display may result.

Glossary

575

576 Advanced Programmer’s Guide to Super VGAs

Glossary
40x25 Text mode of operation which displays 25 lines of text with 40 character columns
per line.

80x25 Text mode of operation which displays 25 lines of text with 80 character columns
per line.

80X86 The Intel family of microprocessors, including the 8086, 8088, 80186, 80286, and
80386, which are all software compatible.

320x200, 640x350, etc. Graphics screen resolutions, expressed as the number of pixels
displayed horizontally across the screen by the number of pixels displayed vertically; i.e.,
320x200 means 320 horizontal pixels by 200 vertical pixels.

ADAPTER or DISPLAY ADAPTER A circuit board designed to interface a display device
to a computer system, such as MDA, CGA, EGA, or VGA.

ALL POINTS ADDRESSABLE (APA) IBM terminology for a graphics mode, so called
because each dot on the display screen may be controlled independently.

ANALOG INTERFACE A type of interface used between video controller and video dis¬
play in which colors are determined by the voltage levels on three output lines, normally
called the RED, GREEN, and BLUE (or RGB) lines. A theoretically unlimited number of colors
can be supported by this method. Output voltage normally varies between zero volts (for
black) to one volt (for maximum brightness). Load impedance is normally 75 ohms.

ANALOG DISPLAY/ANALOG MONITOR A display device that uses an analog interface.
Such displays use variable voltage and allow a large number of colors.

ASCII American Standard Code for Information Interchange, the most common method of
digitally encoding alphanumeric data.

ASPECT RATIO The ratio of height to width of a single pixel on a display screen. High
resolution displays usually have a 1:1 aspect ratio, or are said to have SQUARE PIXELS.
Graphics drawing algorithms must compensate for the aspect ratio of the display if it is not
1:1; otherwise, circles will appear elliptical and squares will appear rectangular.

ATTRIBUTE CONTROLLER The section of logic on EGA and VGA which generates dis¬
play attributes (see DISPLAY ATTRIBUTES).

AUTOSENSE Capability of display adapter to automatically detect 16 bit connection and
operate BIOS in 16 bit mode.

AUTOSIZING Capability of a display to automaticaly adjust size of the displayed when
switching from one resolution to another. Some displays will autosize only for a fixed set of
frequencies, and need manual adjustment for the rest.

Glossary 577

BACKGROUND In text mode, the area of a character cell that is not illuminated by the
character. The rest of the character cell is referred to as the FOREGROUND. In graphics
mode, the area of the screen that is not illuminated by a graphics object.

BIOS/ROM BIOS Basic Input Output System; in IBM compatible personal computers, this
is a set of ROM based firmware routines which control the resources of the system and make
them available to applications programs in an orderly fashion.

BIOS DATA AREA An area in system memory where the EGA/VGA BIOS stores data defin¬
ing the display resolution, cursor position, etc.

BITBLT Bit oriented BLock Transfer; this is a type of graphics drawing routine which
moves a rectangle of display data from one area of display memory to another. This can be
difficult because the data to be moved is usually neither contiguous nor byte aligned. Graph¬
ics controllers frequently include varying levels of hardware assist to help speed BITBLT

operations.

BIT MAPPED GRAPHICS A graphics display mode in which each pixel on the display sur¬
face is represented by one or more bits in display memory. All EGA and VGA graphics modes

are bit mapped.

BIT PLANE See Color Plane.

BLANKING, BLANK PULSE For CRT displays, a timing signal which shuts off the electron
beam during retrace intervals to prevent unwanted diagonal lines of light from appearing on

the screen.

BLOCK GRAPHICS (OR LINE GRAPHICS) In text modes, a set of primitive graphics
objects that can be used as text characters to create simple graphics such as borders and

lines.

CGA Color Graphics Adapter, the first IBM color graphics product for personal computers
(EGA was the second.) CGA can produce 4 color graphics or 16 color text at a resolution of

640 pixels horizontally by 200 pixels vertically.

CHARACTER CELL In text mode, the area of display used to display one character. On
EGA, character cells are either 8 or 9 pixels wide and usually either 8,14 or 16 pixels high.

CHARACTER CODE A one byte code representing a text character (usually ASCII).

CHARACTER GENERATOR A translation table used to translate an ASCII character code
into character font information for display. Some display adapters use ROM based character
generators; for EGA and VGA, the character generator is loaded into a section of display RAM.

CHARACTER SET The set of characters which a display adapter is capable of displaying.
In text mode, this is determined by the contents of the Character Generator. The EGA charac¬

ter set contains 256 characters.

578 Advanced Programmer’s Guide to Super VGAs

COLOR PALETTE The set of colors that are available with a given display system.

COLOR PLANES In plane oriented graphics adapters, color planes are overlapping pages
or sections of memory which control different display colors.

COMPOSITE DISPLAY A display device that uses a composite sync signal (combined hor¬
izontal and vertical sync) as opposed to separate sync signals.

CONSOLE DEVICE The keyboard and display that are used to control the computer. In
multiple display systems, the console device can usually be assigned to be any one of the
display devices.

CPU Central Processing Unit, another name for the system processor.

CRT DISPLAY Cathode Ray Tube Display; all of the the display devices discussed in this
book fall into this category.

CRT CONTROLLER (CRTC) On the EGA and VGA, as well as many other video display
adapters, the CRT Controller is the circuit which is responsible for generating the timing sig¬
nals required to operate a CRT display (including blanking and retrace sync pulses.)

DIGITAL INTERFACE A type of interface used between video controller and video dis¬
play in which display color is controlled by digital color control lines switching on and off.
The number of colors that can be supported depends on the number of signal lines in the
interface. Most digital interfaces are TTL (Transistor-Transistor Logic) compatible. CGA and
EGA both use digital interfaces.

DIGITAL DISPLAY A display device that uses a digital interface, where limited number (2
for VGA displays) of discrete voltages is used to control small set of colors (4 for VGA dis¬
plays) for each color input.

DISPLAY ATTRIBUTE A programmable display characteristic. In graphics modes, color
is usually the only display attribute. In text modes, attributes may include blinking, under¬
lining, or reverse video.

DISPLAY REFRESH (or SCREEN REFRESH) An image drawn on a CRT display will only
remain visible for a few milliseconds (the presistence of the screen phosphor), unless it is
redrawn continuously. This process is called DISPLAY REFRESH or SCREEN REFRESH. Dif¬
ferent displays use different refresh rates, but display refresh is normally required between
50 and 70 times a second to avoid any visible screen flickering. 60 times a second is a com¬
mon refresh rate.

DOT CLOCK (or PIXEL CLOCK) The timing signal on a display adapter that controls the
serial output of pixels to the display device.

DOUBLE SCAN A technique used by VGA to gain compatibility with the lower resolution
CGA. Each horizontal scan line is drawn twice, which converts a CGA 200 line image into a

Glossary 579

VGA 400 line image. This also partially compensates (actually over-compensates) for the dif¬
ferent aspect ratio of the VGA.

DRIVER A software module that interfaces a particular display device to an application
program. EGA drivers have been written for programs such as Microsoft Windows, DRI GEM,

Lotus 1-2-3, etc.

ELECTRON BEAM In a CRT display, a moving beam of electrons creates the display image
seen on the display screen. Timing and modulation of the electron beam are controlled by

the display adapter.

EMULATION A technique for making one type of display device appear to operate as if it
were a different display device. Emulations improve the usefulness of a product by making it
compatible with other products. EGA is capable of emulating MDA and sometimes CGA and

Hercules. VGA is capable of emulating EGA, CGA and MDA.

FEATURE CONNECTOR An expansion connector on the EGA which can be used to com¬
bine other video signals with EGA video output. It is not widely used.

FONT This term originated in the publishing industry. A font is a character set of one par¬

ticular size and style (such as 14 point Helvetica).

FOREGROUND In text mode, the portion of a character cell that is illuminated by the

character font (as opposed to BACKGROUND.)

GRAPHICS CONTROLLER On EGA and VGA, a section of circuitry that can provide hard¬
ware assist for graphics drawing algorithms by performing logical functions on data written

to display memory.

GRAPHICS MODE A display mode in which all pixels on the display screen can be con¬
trolled independently to draw graphics objects (as opposed to TEXT MODE, in which only a

pre-defined set of characters can be displayed.)

HERCULES GRAPHICS Graphics programs which are compatible with the monochrome

graphics adapter produced by Hercules Corporation.

HGC Hercules monochrome Graphics Controller.

HORIZONTAL RETRACE In CRT displays, the time interval when the electron beam is
being returned from the right side of the display screen to the left side of the display screen.
The electron beam is turned off during this time (HORIZONTAL BLANKING.)

IBM COLOR DISPLAY (CD) The display device marketed by IBM for use with the CGA

display adapter.

IBM ENHANCED COLOR DISPLAY (ECD) The display device marketed by IBM for use

with the EGA display adapter.

580 Advanced Programmer’s Guide to Super VGAs

INDEX REGISTER A register used to indirectly address other registers.

INTERLACED DISPLAY/8514 DISPLAY Type of display where beam scans odd lines
first, and on next vertical scan, scans all even lines. Such displays are typically less expensived
than non-interlaced displays.

I/O REGISTER A data register (either read only, write only, or read-write), which is
mapped into the I/O space of the processor.

LATCH In electronics, a type of memory device that captures and holds several bits of data.

LIGHT PEN A device that allows an operator to input commands to the computer by plac¬
ing the pen tip to a certain position on the display screen (such as touching an item on a
menu.) The application software must be written to support the use of a light pen. Light pens
have not become nearly as popular as mice or joysticks for this purpose.

LINE GRAPHICS See BLOCK GRAPHICS

MDA Monochrome Display Adapter; the original display adapter marketed by IBM for per¬
sonal computers. MDA has no bit-mapped graphics capability.

MONOCHROME DISPLAY A one color display device; often referred to as a black and
white display, even though the color used is often amber or green. Sometimes referred to as
a two color display (the second color being black.)

MONITOR Another term for a CRT Display.

MULTISYNC DISPLAY A display marketed by NEC Corporation. The Multisync is EGA
compatible, and also supports higher resolutions. Many displays operate only at a single hor¬
izontal scanning rate. The Multisync display can operate over a range of scanning frequen¬
cies and screen resolutions. This term, as is term MULTIFREQUNCY DISPLAY, is often used to
describe displays capable of working at several frequencies including 640x350, 640x480 and
800x600 with 256 colors.

MULTIFREQUENCY DISPLAY Type of display that is capble of working at several differnt
frequencies. Typically a class of PC displays that support resolutions of 640x350,640x480 and
800x600.

NON-INTERLACED DISPLAY Type of display where all lines (even and odd) are dis¬
played in one vertical scan. As opposed to interlaced display where all odd lines are dis¬
played on one vertical scan, and all even lines are displayed on the next scan.

PALETTE The choice of available colors with a color graphics display system. The term
PALETTE is sometimes used to refer to a color look-up table.

PANNING A technique by which the display screen is made to appear to be a viewport into
a larger display, and then the viewport is moved around so that different areas of the display
come into view.

Glossary 581

PEL IBM terminology for a pixel.

PGC or PGA Professional Graphics Controller, a high resolution color display adapter
sold by IBM. The PGC was not highly successful as a product.

PIXEL A single dot on the the display surface. The smallest independently programmable
display element.

PRIMARY DISPLAY An IBM term for the console device; the display where DOS displays
prompts and messages.

RASTER The left-to-right, top-to-bottom scanning pattern made on the screen by the elec¬
tron gun in a CRT display.

RESOLUTOIN A measure of the quality of image that can be shown on a particular display;
usually expressed as the number of pixels that can be displayed horizontally across the dis¬
play screen by the number of pixels that can be displayed vertically on the display screen.

RGB A type of interface used with color displays which uses three color signals (Red,
Green and Blue).

SCAN LINE One horizontal scan of the electron beam in a CRT display.

SCROLLING On a text display, the process of moving the displayed text up or down (usu¬
ally up) on the display screen, normally to make room for new text to be displayed. This
allows a large block of text to be viewed a small amount at a time. Scrolling is usually done in
an upward direction one line at a time so that the text appears to roll smoothly upward on
the screen.

SECONDARY DISPLAY An IBM term for a display device which is not the console device,
but that may be used by an application program to display data.

SEQUENCER The section of circuitry on EGA and VGA that controls timing for the board.
The sequencer also contains memory plane enabling and disabling functions.

SERIALIZER On display adapters, the section of circuitry that converts words of display
refresh data into a serial bit stream to be output to the display.

SET/RESET A function on EGA and VGA (poorly named) that permits a fill pattern to be
quickly written into display memory. The Set/Reset function is part of the Graphics
Controller.

SIMULTANEOUS COLORS The number of colors in a display system that can be dis¬
played on the screen at one time. This number is limited by the circuitry of the display
adapter, and is usually much smaller than the number of colors the display device can actu¬
ally support. The number of simultaneous colors a display adapter will support is normally
determined by the number of color planes, or bits per pixel, that it uses. For example, a
device with four bits per pixel will support 16 simultaneous colors.

582 Advanced Programmer’s Guide to Super VGAs

SMOOTH SCROLLING A scrolling process by which text characters scroll up or down

smoothly one pixel at a time, rather than scrolling one full character line at a time which

tends to appear slightly jerky. Smooth scrolled text can easily be read while scrolling is in

process. EGA and VGA provide hardware support to assist in smooth scrolling.

SUPERVGA Display adapter for PC or PS/2 computer that is compatible with IBM VGA and
is capable of displaying 256 simultaneous colors in resolutions of 640 x 400 or above.

SYNC, SYNC PULSE Another term for horizontal and vertical retrace pulses to a CRT
display.

TELETYPE MODE An EGA/VGA BIOS call that displays text as if the display screen were a

page in a teletype machine. The cursor is advanced after each character, scrolling and line
wrap are performed as needed, carriage return, line feed bell, and backspace characters are
recognized.

TEXT MODE On EGA and VGA, a display mode in which the display adapter converts
ASCII character data into display information directly. Text mode displays impose very little
overhead on the system processor, but do not support graphics.

VERTICAL RETRACE On CRT displays, the time interval after a raster scan has been com¬

pleted when the electron beam is returning to the top of the display screen for the next scan.
The electron beam is blanked during this time. Retrace occurs between 50 and 70 times a
second, depending on the display.

VGA The IBM Video Graphics Array display adapter

VLSI Very Large Scale Integration - the technology of manufacturing Integrated Circuits

(chips) with thousands of transistors on a single device. The personal computer was made
possible because of VLSI technology.

WAIT STATE When a system processor is reading or writing a memory or peripheral

device which cannot respond fast enough, a time interval (usually a fraction of a microsec¬
ond) is inserted during which the processor does nothing but wait for the slower device.

This has a detrimental effect on system throughput, but is often necessary. Because of the
constant requirement to perform screen refresh, many display adapters, including EGA and
VGA, impose wait states on the processor.

WINDOW As commonly used in personal computers, the term WINDOW refers to a sec¬
tion of the display screen (usually rectangular) that displays data independently of the reset
of the screen. Several windows may be present at once on the display.

In advanced computer graphics, the terms WINDOW and VIEWPORT are used to refer to
the content and position of display information. The section of data which is to be displayed
is referred to as a WINDOW (as if looking at a scene through a window, and only part of the
scene is visible.) The position and scaling of the information on the screen is referred to as a
VIEWPORT.

583

584 Advanced Programmer's Guide to SuperVGAs

2-color graphics mode, 11,12,29
Paradise VGA 1024,448
Video Seven boards, 360
Wizard/Deluxe, 245

4-bit packed pixels, AH, 279
4-color graphic mode, 10,26,110,220

VGAWONDER, 261
Paradise VGA 1024,448
Video Seven boards, 360
Viewpoint, 398-399
Wizard/Deluxe, 245
Genoa SuperVGA, 348

4-color mode
high resolution modes, 229-230,233-234,

238
implementation, 220
VGA programming examples, 220-240

16-bit data buses, 111-112
16-color graphics mode, 12,13,28,29,109,

180
1024VGA, 317
AH, 279
ET3000 chip, 417-418
Genoa SuperVGA, 348
MaxVGA, 295
Paradise VGA 1024,449
programming examples, 180-216
TrueTech VGA, 477
VGAWONDER, 260-261
Video Seven boards, 360
Viewpoint, 399
Wizard/Deluxe, 245

256-color, 13,29,107,108,109,130,131
1024VGA, 317
ET3000 chip, 418
Genoa SuperVGA, 348
MaxVGA, 299-300
Paradise VGA 1024,449
programming examples, 130-176
TrueTech VGA, 477
VGAWONDER, 260
Video Sevn boards, 360
Viewpoint, 399

Wizard/Deluxe, 246
40X25 mode, 9, 576
80 X 25 mode, 9,10, 576
80 X 86, 576
320 X 200 graphics, 9,10,13,576
640 X 200 graphics mode, 11,29
640 X 350, graphics mode, 9,12,28,576
640 X 400,108
640 X 480,9,12,13,29,106,108
800 X 600,106,109
82C452 VGA chip, 316
1024 X 768,106,109-110,130,180
1024VGA, 316 seeabo Boca 1024VGA
8514 display, 580

A

Accessing
display memory, 104
extended registers, 463

1024VGA, 328-329
VGAWONDER, 271

pixels, 182-184
Adapter, 576
Ahead Systems, Inc., 244
Algorithms

fill, 140,194
incremental, 133,185

Alignment error, 511
All points addressable, 17, 576
Analog

display, 4,8, 576
interface, 576
monitor, 576

Architecture, VGA, 16-36
ASCII, 576
Aspect ratio, 576
Assembly language, 118,180
Asychronous reset, 51
AT bus. Paradise 1024,446-447
AH Technologies, 258
AH18800 controller chip, 258

Video Dot Clock Generator, 258

Index 585

Attribute controller, 18,32-34,57,551-552,
576
registers, table of, 58

Attributes, 12
AutoCAD, 294,396,476
Automatic display detection, 506,514
Automatic size adjustment, 514
Autosense, 576
AutoShade, 294,396,476
Autosizing, 576

6

Background, definition, 577
intensify, 59

Bandwidth, 509
BIOS

1024VGA, 325
Chips and Technologies, 325-328
Cirrus signature code, 312-313
data area, 86-90,538-539

definition, 86,577
variables, table of, 87

device combination code table, 543-544
Genoa SuperVGA, 346
graphics mode auxiliary character set

table, 543
palette table, 544
Paradise VGA 1024,459-463
select function, 110
save area, 540
secondary save area table, 543
text mode auxiliary character set table,

543
VESA, 489-495
VGAWONDER, 269-271
video parameter table, 540-543
Video Seven, 370-372
Viewpoint, 401-405

BIOS functions, 64-90, summary, 522-538
0,64, summary, 522

Paradise VGA 1024,459-463
VESA, 489-490

Viewpoint, 401-405
1.64, summary, 522

VESA, 490-492
2.64, summary, 522

VESA, 492
3.65, summary, 522

VESA, 492
4.65, summary, 522

VESA, 493
5.65, summary, 522

VESA, 494
6.65, summary, 523
7.66, summary, 523
8.66, summary, 523
9.66, summary, 523
lOh, 69,172,216, summary, 525-528
OAh, 67, summary, 524
OBh, 67, summary, 524
OCh, 67, summary, 524
ODh, 68, summary, 524
OEh, 68, summary, 524
OFh, 69, summary, 525
llh, 73, summary, 528
12h, 78, summary, 531

VGAWONDER, 269-270
13h, 80, summary, 533
1 Ah, 81, summary, 533
lBh, 82, summary, 534
ICh, 85, summary, 537
5Fh,1024VGA, 325-328
6Fh, Video Seven, 370-372
70h, Viewpoint, 401-405

Bit annotation convention, 39
Bit mapped graphics, 577
Bit mask register, 56
Bit plane, see Color plane
BITBLT, 125,577

operations, 102,103,106
transfers, 118
with two pages. Paradise VGA 1024,

471
Blank window, 65,66,523
Blanking, 577

586 Advanced Programmer's Guide to SuperVGAs

Blink/intensify attribute control, 70,525
Block copying

16-color, 201-210
256-color, 146-147

Block graphics, 577
Blooming, 511
Board-dependent

routines, 122-123
variables, 121

BOCA 1024VGA, 316
Boca Research, 316
Bresenham's line drawing algorithm, 133,

185
Brightness, 511
Buffer

address, 123
size, 85

Byte panning control, 46

c

C language, 118
CAD, 5,180
CAD/CAM, 107-108
CADKEY, 294
Cathode Ray Tube, see CRT
CGA, 4,577

2-color graphics, 25
4-color graphics, 26
compatibility, 9
graphics mode, 10

Changing the DAC registers, 172
Character

attribute, 20
cell, 577
code, 21,577
generator, 21,577

format, 22
select register, 51
RAM-resident, 23

height, 46
Character set, 577

load, 74-75,528-529
table, graphics mode auxiliary, 91
table, text mode auxiliaiy, 91

Characters in horizontal scan, total num¬
ber, 45
Chips and Technologies, 316,358,488

82C452 VGA chip, 316,317
Cirrus, 488

510/520 chips, see MaxVGA
Cirrus Logic, 294-313,358
Clear screen

16-color, 200-201
256-color, 145-146

Color compare, 32
register, 53

Color, define fill, 53
Color don't care register, 56
Color fill data, 53
Color graphics adapter, see CGA
Color lookup table, 32,33,42

altering, 126
Color mapping, controlling, 216

256-color, 172-173
Color palette, 58,67,578
Color planes, 19-20,578

enable register, 59
method, 16
write enable register, 51

Color select register, 32,60
Color text attributes, 24

standards, 23
Colors, number of, 8,9
Compatibility, 8

of VGA boards, 488
Composite display, 578
Composite Video output jack, 10
Computer-aided design, see CAD
Connector, 512
Console device, 578
Convert DAC registers to gray scale, 73,528
Converting (x,y) to Page:Offset, ATIboards,

279

Index 587

Copy block, 125-126
16-color, 201-210
256-color, 146-165

Cost of VGA display, 515
CPU, 578
CRT, 506

controller, 18,34-35,578
registers, 43-52,547-548

table of, 43
display, 506-517,578

operation, 506-508
timing, 34

CRTC timing registers, 44
Cursor, 126

1024VGA, 322-324
color registers, 324
hardware, 336

automatically advanced, 68
defining

16-color, 210-216
256-color, 165-171

end, 47
graphics. Video Seven, 363
location, 48
masks

16-color, 337
256-color, 338

MaxVGA, 301-312
moving

16-color, 210-216
256-color, 165-171

off, 47
removing

16-color, 210-216
256-color, 165-171

start, 47
Video Seven, 380-391

Custom character set, 75

D

DAC registers, 32-34

changing, 172
modifying, 172
state register, 61,552

Data rotate register, 54
Data serializer, 18,32
DDA, 104
Debugging programs, 574
Define a fill color, 53
Define cursor shape. Video Seven, 381
Desktop publishing, 108,110

resolution, 220
Detection and identification

AHEAD boards, 256
Chips and Technologies, 343-344
Cirrus VGA chip, 312-313
ET3000 chip, 443
Everex Viewpoint, 412-413
Extended VESA BIOS, 501-504
Genoa SuperVGA, 356
Paradise VGA 1024,472473
Trident, 412-413
TrueTech VGA, 485
VGAWONDER, 290
Video Seven, 392-393

Device combination code table, 92
Diagnostic bits, 42
Digital Differential Analyzers, 104
Digital display, 578
Digital interface, 8,578
Disable color planes, 59
Disable video, 41,80
Diskette organization, 119
Display adapter, 8,576

restore, 85
save, 85

Display
attributes, 24,25,578
configuration information codes, 81
detection, 506

automatic, 112
enable, 42
image from a file, 127

588 Advanced Programmer's Guide to SuperVGAs

Display continued
interface

analog, 4
digital, 5

modes
1024VGA, 316
ET3000 chip, 416-417
Everex Viewpoint, 396-398
Genoa SuperVGA, 346-347
Paradise VGA 1024,447
Trident, 396-398
VESA, 488
Video Seven boards, 359

on/off, 80,533
performance, 508,514
refresh, 8,32,145,200,506,578

timing, 35
resolution, factors affecting, 508-511
stored images, 174
type, 59
VGA, 506-517

Display memory, 18,19-30
in text modes, 20
Move_Cursor, MaxVGA, 303
organization, 130,131

1024VGA, 321
4-color, two consecutive planes, 229-

230
16-color, 181

ET3000 chip, 417-418
four alternating planes, 233-234
four planes, 220-221

Genoa SuperVGA, 347-348
MaxVGA, 295-296
packed pixels, 238
Paradise VGA 1024,447-449,452
TrueTech VGA, 476-477
two even planes, 225-226
VGAWONDER, 259-262
Video Seven, 359-360
Viewpoint, 398-399
Wizard/Deluxe, 244-246

paging, 100-106
1024VGA, 329-335

Chips and Technologies 82C452 chip,
320

ET3000 chip, 423-428
Genoa SuperVGA, 351-356
Paradise VGA 1024,464-471
Select_Graphics, 122

1024VGA, 330
AHEAD, 251
Paradise VGA 1024,465
TrueTech VGA, 480
VESA, 495
Viewpoint, 407

Select_Mode, AH, 273
Select_Page, 122

1024VGA, 330
AHEAD, 251
AH, 273
Genoa SuperVGA, 351
Paradise VGA 1024,465
TrueTech VGA, 480
Viewpoint, 407

Select_Read_Page, 122
1024VGA, 330
AHEAD, 251
AH, 273
Genoa SuperVGA, 351
Paradise VGA 1024,465

Select_Text
Paradise VGA 1024,465
TrueTech VGA, 480
Viewpoint, 407

Select_Write_Page, 122
1024VGA, 330
AHEAD, 251
AH, 273
Genoa SuperVGA, 351
Paradise VGA 1024,465

Trident VGA chip
version 1 mode, 406-412
version 2 mode, 406-412

V5000 chip, 249-256
VESA, 495-501
VGAWONDER, 271-278

Index 589

Video Seven, 368,373-379
ZyMOS, 479-485

Remove_Cursor, MaxVGA, 303
saving, 174
Set_Cursor, MaxVGA, 303

Dot clock, 578
Dot pitch, 510
Double scan, 47,578
Double scanning, 10,11
Download fonts, AH boards, 283
Draw characters, 76
Draw horizontal lines, 186-194
Draw scan line, 125

16 color, 194-196
256-color, 140-142

Draw solid line, 125
16-color, 185-194
256-color, 133-140

Drawing algorithms, 32,104,118
Drawing routines, 104,124,131-177

16-color, 181-216
MaxVGA, 299

Driver, 579

E

EGA, 4
Electron beam, 579
EM-16 extended registers, ET3000 chip, 419
EMS memory, 100
Emulate CGA, 67
Emulation, 579
Enable blink, 59
Enable color planes, 59
Enable/disable

CGA/MDA cursor, 532
CGA/MDA cursor emulation, 79
display RAM, 42
gray scale summing, 79
gray scale summing, 532
palette load during mode set, 79,531
VGA access, 79,532

End horizontal blanking, 45

End horizontal retrace, 45
End vertical blanking, 49
Enhanced color graphics, 12,28
Enhanced display modes, 106-110

1024VGA, 316
ET3000 chip, 416-417
Everex Viewpoint VGA, 397
MaxVGA, 295
Paradise, 447
Trident, 398
TrueTech VGA, 477
VGAWONDER, 259

Enhanced graphics adapter, see EGA
Erase screen, 200

16-color, 200-201
256-color, 145-146

ET3000 VGA chip, 346,416
Everex

EVGA, 396
Ultragraphics II VGA, 396
Viewpoint, 396-413

Expanded memory specifications, 101
Extended BIOS

data area, VGAWONDER, 270
functions

1024VGA, 325-328
Paradise VGA 1024,459-463
VGAWONDER, 269-270
Video Seven, 370-372
Viewpoint, 401-405

Extended registers
1024VGA, 317-325
ET3000 chip, 418-423
Genoa SuperVGA, 348-351
MaxVGA, 296-298
Paradise VGA 1024,449-459
Trident, 400-401
V5000 chip, 246-249
VGAWONDER, 264-268,271
Video Seven boards, 360-370
Viewpoint, 399-401
ZyMOS chip, 477-479
ZyMOS POACH51,478

590 Advanced Programmer's Guide to SuperVGAs

Extra memory paging configurations,
ET3000 chip, 422

F

Feature connector, 579
Fill algorithms, 140,194
Fill solid rectangle, 125

16-color, 197-200
256-color, 142-144

Font, 282,579
multiple, ET3000 chip, 435443
soft, ET3000 chip, 422

Foreground, 579
Four planes, translating color value to plane

content, 221
Framework, 294,476
Function select register, 54
Functions, see BIOS functions

G

G2,358

GEM, 294,358,396,476
Genoa SuperVGA, 346-356
Get current display mode, 69
Get light pen, 65,522

Get VGA status, 78
Granularity, 102

Graphic modes, enhanced, 107-109
Graphical user interfaces, see GUI
Graphics controller, 18,30-32,579

data latches. Video Seven, 365-368
registers, 52-57,549-551

table of, 52
Graphics cursor. 111 ,126,363

1024VGA, 322-324,336-343
MaxVGA, 301-312
Video Seven, 380-391

Graphics mode, 17,18,26,29,579
Graphics programming, 104
Graphics/ text mode, 59

GUI, 3
Gun arrangement, 509-510

H

Hardware cursor, 302,322,336,363,380
masks, 336
registers

MaxVGA, 302
Video Seven, 363,380

Hardware zoom. 111, 418
registers ET3000 chip, 418-420,429-435

Headland Technologies, 294,358
Hercules Computer Technology Inc., 4
Hercules graphics, 579
Hercules Monochrome Graphics Adapter,

4
HGC, 579
High resolution graphics modes, 106

VGAWONDER, 260
Viewpoint, 398-399

High resolution text modes, 106
1024VGA,317
ET3000 chip, 417
Genoa SuperVGA, 347-348
MaxVGA, 295
Paradise VGA 1024,447-448
TrueTech VGA, 476
VGAWONDER, 259
Video Seven boards, 359
Viewpoint, 398

Horizontal
blanking, 506
display enable, 45
lines, 186-194
panning, 59-60
retrace, 506,579
scan lines, total number of, 45
scanning frequency, 508-509
sync, 507

Host windows, VGA, 99

Index 591

HT-208 chip, see Video Seven

I

1/O address select, 42
I/O addresses, 38
I/O register, 580
IBM, 4

color display, 579
compatibility with, 114
enhanced color display, 579
Micro Channel, 346

Images, display stored, 174
Index register, 57,580
Industry standards, 488
Initialize graphics mode

display 8X8 text, 76,530
display 8 X16 text, 77,530

Initialize INT IF vector, 75,529
Input status register

0, 42,546

1, 546
Intel, 488
Intensity, 511
Interface type. Super VGA display, 512
Interlaced display, 580

Interlaced mode, 515
Invoke a graphics mode, 122

L

Latch, 580
Light pen, 580
LIM/EMS memory, 100
Line compare register, 50
Line graphics enable, 59
Line graphics, 577, see also Block graphics
Lines, horizontal, 186-194

Load
8X8 character set, 74,528
8 X14 character set, 74,528

8 X16 character set, 75,529
custom character generator, 73,74,528
DACs, 126,172-173
palette, 127

16-color, 216-217
Logical functions performed on write data,

54
Logical unit, 31
Lookup table

data register, 552
read index, 61,552
write index, 61,552

Lotus 1-2-3,294,396,476
Luminance, 511
LUT, 32

M

Manipulating pixels, 67

Mask, 73,123
Maximum resolution, 513

Maximum scan line, 46
MaxLogic, 294
MaxVGA, 294-313
MCG A, 4
MDA,4,11,580
Memory address

decoding, 50
segment, 123

Memory map
CGA graphics mode 6,26
CGA graphics modes 4 and 5,27

PC, 99
planar modes, 28
VGA graphics mode 13,30

Memory mode register, 52
Memory organization, 118, see also Display

memory organization
Memory pages, see also Display memory

paging
one display, 102

592 Advanced Programmer's Guide to SuperVGAs

Memory pages continued
two fully independent, 104
two simultaneous, 103

Memory segment address, 123
Micro Channel bus version. Paradise 1024,

446-447

Microsoft Windows, 294,358,396,476
Microstation, 294
Minimum resolution, 514
Miscellaneous output register, 41,546
Miscellaneous graphics controller register,

56
Misconvergence, 511
Mode control register, 49,58
Mode-dependent

constants, 121-122
CAN_DO_RW, 122
GRAPHICS_MODE, 122
SCREENHEIGHT, 122
SCREEN_PAGES, 122
SCREEN_PITCH, 121-122
SCREEN_WIDTH, 122

routines, 122-123
Graph_Seg, 123
Line_Buffer, 123
Select_Graphics, 122
Select_Page, 122
Select_Read_Page, 122
Select_Write_Page, 122
Two_Pages, 122
Video_Height, 122
Video_Pitch, 122
Video_Width, 122

variables, 121
Mode register, 54
Mode select, 64,522
Modes, standard, 9
Modes

0,9
1.9
2.10

3.10
4.10
4, memory, 26
5.10

memory, 26
6.11

memory, 25
7,11
10,12
10, memory, 28
11,12

memory, 29
12.13

memory, 29
13.13

memory, 29
D, memory, 29
E, 11
E, memory, 29
F, 12

memory, 28

Mode summary,, SuperVGA, 562
Modifying VGA registers, 40
Monitor, 580
Monitor selection, 513
Monochrome, 12

display adapter, see MDA
display, 580
graphics, 28
text attributes, 11,25
text mode, 11

Move
cursor, 126

16-color, 210-216
256-color, 165-171
Video Seven, 381

rectangle, 125
Multi-color graphics array, see MCGA
Multifrequency display, 580
Multiple character sets, 51
Multisync display, 580

Index 593

N

Nanao FlexScan, 506
NEC Multisync, 506
Non-interlaced display, 580
Non-interlaced mode, 515

O

Offset, 123
Offset/logical screen width, 49
Orchid, 488
Organization of display memory, 130

16-color, 181
4-color, two consecutive planes, 229-230
ET3000 chip, 417-418
four alternating planes, 233-234
four planes, 220-221
Genoa SuperVGA, 347-348
MaxVGA, 295-296
packed pixels, 238
Paradise VGA 1024,447-449
TrueTech VGA, 476-477
two even planes, 225-226
VGAWONDER, 259-262
Video Seven, 359-360
Viewpoint, 398-399
Wizard/Deluxe, 244-246

Organization
of book, 5-6
of diskette, 119

OS/2 Presentation Manager, 396
Overflow register, 46

P

Packed pixels, 16,180
Page, 123
Page boundary detection, 104
Palette, 580

address source, 57
load, 127
registers, 58

address, 57
changing, 216

Panning, 580
Paradise, 488
Paradise Systems, 446
Paradise VGA 1024,446-473
Pel, 581
Persistence, 515-516
PGC, 4, 581
Phoenix Technologies, 488
Pixel, 130,507,581

access with x,y coordinates, 131,182-184
attributes, 12
clock, 578
convert to bit location, 220
mask register, 552
planar, 17
read,125

4-color
2-planes, 228-229
alternating planes, 236-238
packed pixels, 240-241
two consecutive planes, 232-233

16-color, 184-185
256-color, 132-133
ATI boards, 281-282

width, 59
write, 124-125 4-color, 2-planes, 226-228

4-color
alternating planes, 234-236
packed pixels, 239-240
two consecutive planes, 230-232

16-color, 181-184
256-color, 131-177
ATI boards, 280-281

Planar pixels, 17
Plane selection, 100
Popular application programs. 111

594 Advanced Programmer's Guide to SuperVG As

Position of the cursor on the screen, 48
Preset row scan, 46
Primary display, 581
Processor read latches, 30
Professional graphics controller, see PGC
Program a palette register, 69,525
Programming examples, 118-240

4-color
2-planes

RPIXEL. ASM, 228-229
WPIXEL.ASM, 226-228

4-planes
RPIXEL. ASM, 224-225
WPIXEL. ASM, 222-223

alternating planes
RPIXEL. ASM, 236-238
WPIXEL. ASM, 234-236

packed pixels
RPIXEL.ASM, 240-241
WPIXEL.ASM, 239-240

two consecutive planes
RPIXEL.ASM, 232-233
WPIXEL.ASM, 230-232

16-color
All, 279-282

RPIXEL.ASM, 281-282
WPIXEL.ASM, 280-282

BITBLT.ASM, 202-210
CLEAR.ASM, 200-201
CURSOR.ASM, 210-216
LINE.ASM, 186-194
PALETTE.ASM, 216-217
RECT.ASM, 197-200
RPIXEL.ASM, 184-185
SCANLINE. ASM, 194-196
WPIXEL.ASM, 182-184

256-color
BITBLT.ASM, 148-165
CLEAR.ASM, 145-146
CURSOR.ASM, 166-171
DAC.ASM, 172-173
LINE.ASM, 134-140
READ.ASM, 174-175

RECT.ASM, 142-144
RPIXEL.ASM, 132-133
SCANLINE.ASM, 141-142
WPIXEL.ASM, 131-132
WRITE.ASM, 176-177

1024VGA, HWCURSOR.ASM, 338-343
AHEAD, SELECT.ASM, 251-256
An

INPO.C, 290-292
SELECT.ASM, 273-278
TEXT. ASM, 283-290

Cirrus
HWCURSOR.ASM, 303-312
RPIXEL. ASM, 300-301
WPIXEL.ASM, 299-300

CTI, SELECT.ASM, 330-335
Genoa SuperVGA, SELECT.ASM, 351-

356
Headland

HWCURSOR.ASM, 381-391
SELECT.ASM, 374-379

how to use, 120
summary of, 558-559
Trident, SELECT.ASM, 408-412
Tseng

SELECT. ASM, 424-428
TEXT. ASM, 436-443
ZOOM. ASM, 430-434

VESA, SELECT.ASM, 496-501
Western Digital, SELECT.ASM,466-471
ZyMOS, SELECT.ASM, 480-485

Q

Quattro, 294

R

RAM-resident character generators, 23
Raster, 506,581

dimensions, 511
line

Index 595

read, 256-color, 174-175
write, 256-color, 176-177

read, 127
507
write, 127

Read
a single DAC register, 72,527
a single palette register, 70,526
all palette registers, 70,526
block of DAC registers, 72,527
border color, 526

(overscan) register, 70
character and attribute at cursor posi¬

tion, 66,523
configuration, 81
cursor size and position, 65,522
display configuration code, 81,533
graphics pixel, 68,524
palette registers, 59
PEL mask, 73
pixel, 125

4-color, 4-plane, 224-225
4-color, 2-planes, 228-229
4-color, alternating planes, 236-238
4-color, packed pixels, 240-241
4-color, two consecu ti ve planes,232-233
16-color, 184-185
256-color, 132-133
ATI boards, 281-282

plane select register, 54
raster, 127
raster line, 256-color, 174-175
subset status, 73,527

Read-only memory, 21
Rectangle filling, 125

16-color, 197-200
256-color, 142-144

Refresh,8,506, see also Display refresh. Screen
refresh

display, 145
rates, table of, 513

Registers
attribute controller, 57

control, 41-43
CRT controller, 43-52
extended, 1024VGA, 328-329
graphics controller, 52
sequencer, 50-52
video DAC, 57

Remove cursor, 126
16-color, 210-216
256-color, 165-171

Reset register, 50
Resolution, 9,508-509,511,581

highest, 109
Restore display adapter state, 538
Return informationaboutcuirentcharacter

set, 77,530
Return required buffer size, 537
Return VGA information, 78,531
Return VGA status information, 82,534
Revector print screen, 531

interrupt, 78
Reverse video, 447
RGB, 581
ROM, 21
ROM BIOS, 64-90,577

definition, 64

s

Save
contents of display memory, 174
display adapter state, 537
image in display memory to a file, 127

Save/restore display adapter state, 85
Scan frequency, 508-509
Scan line, 581

draw, 125
16 color, 194-196
256-color, 140-142

fill, 194
Scan rates, 509
Screen

border color, 59
clear, 256-color, 145-146

596 Advanced Programmer's Guide to SuperVGAs

Screen continued
refresh, 8,506,513,578, see aho Display

refresh
Scroll text window down, 66,523
Scroll text window up, 65,523
Scrolling, 581
Secondary display, 581
Segment, 123
Segment configuration, definition of, 422
Select

active character set(s), 74,528
active page, 522
color subset, 71,527
paging registers, ET3000 chip, 423
scan line count, 78,531

Selecting a display
criteria, 513-516
for SuperVGA, 513-518

Selecting a page of display memory, 494
Sequencer, 18,35
Sequencer, 581

registers, 50-52,549
Serializer, 581
Set

a single DAC register, 71,526
all palette registers, 69,525
alternate print screen, 78
block of DAC registers, 71,526
border color, 69,525
CGA color palette, 67,524
cursor, 126

16-color, 210-216
256-color, 165-171
position, 64,522
size, 64,522

EGA palette registers, 69
graphics mode to display custom char¬

acter set, 75,529
graphics to display 8 X14 text, 76,529
PEL mask, 72

Set/reset enable register, 53
Set/reset register, 52,581

Shadow mask, 509-510
Sigma Designs, 5,488
Simultaneous colors, 581
Smooth scrolling, 582
Snow, 172
Software cursor, 302,322,380
Software drivers. 111
Solid line, draw, 125

16-color, 185-194
256-color, 133-140

Spot size, 510
Standard color text attributes, 23,24
Standards, video, 4
Start address, 48
Start horizontal retrace, 45
Start vertical blanking, 49
STB Systems, 5,488
Storing color information, 16
SuperVGA, 5,95,180,582

architecture of, 98
features, 110-113
scanning capability, 514
selecting, 113

Switch displays, 80,532
Symphony, 294,396,476
Sync, 582
Sync polarity, 41
Synchronous reset, 51

T

Teletype mode, 582
Text

attributes, 23-25
monochrome, 24

character height, 46
mode, 17,582

display memory in, 20
enhanced, 107

string, 80
Timing, VGA functions, 50
Toggling the control bit, 70

Index 597

Translating color value to plane content
four planes, 221
two even planes, 226

Trident
880CS based adapters, 396
VGA chips, 396-413

TrueTech, 476-485 see also ZyMOS
Tseng Laboratories, 180,346,416, see ako

ET3000 chip
TVGA 8900,396, see ako Trident

U

Underline location register, 49
User palette table, 92

V

V5000 VGA chip, 244-255
V7VGA chip, see Video Seven
Ventura, 294,358,396,476
Vertical blanking, 49,507
Vertical display enable end, 49
Vertical interrupt, 47,48
Vertical retrace, 42,507,582

end, 48
interrupt pending, 42
start, 48

Vertical scanning frequency, 508-509
Vertical sync, 507
Vertical total, 45
VESA, 294

BIOS, 489-495
definition of, 488
standard display modes, 488

VGA, 4,8,582
BIOS summary,, 521-544

video parameter, table of, 88-90
color I/O map, 38
compatibility, 514-515
compatible displays, 506
displays, 506-517

modes, 9-13
table of, 517

enable register, 42,547
Extra/EM, see ET3000 chip
functionality and video state informa¬

tion, table of, 82-83
modes, standard, 556
monochrome 1/O map, 38
registers, 40

criteria, 40
modifying, 40

static functionality table, 84-85,535-537
VGAWONDER, 258-290

BIOS, 269
versions, 258

Video
connector type, 512
DACs, 18

registers, 61,57
debugging, 574
modes, standard, table of, 9
standards, 4
state information, table, 534-535
status mux, 59

Video Electronics Standards Association
see VESA

Video graphics array, see VGA
Video Seven, 294,358-393,488

VGA1024i, 358
Viewpoint, see Everex Viewpoint
Vision Technologies Vision VGA, 396
VLSI, 582

W

Wait state, 582
WD90C00,446 see ako Paradise
Western Digital, 446
Window, 582
Wizard/Deluxe

display adapters, 244-255
display modes, 245

598 Advanced Programmer's Guide to SuperVGAs

WordPerfect, 396
Write

character and advance cursor, 68,524
character and attribute at cursor posi¬

tion, 66,523
character only at cursor position, 67,524
configuration, 81
data rotation, 54
display configuration code, 82,534
graphics pixel, 67,524
pixel, 124-125

4-color

2-planes, 226-228
4-plane, 222-223

4-color, alternating planes, 234-236
4-color, packed pixels, 239-240
4-color, two consecutive planes, 230-

232
16-color, 181-184
256-color, 131-177
ATI boards, 280-281

raster, 127
raster line, 256-color, 176-177
text string, 80,533

Writing to all 4-color planes, 181
WYSIWYG, 108

X

X coordinates, 123,131,182-184

Y

Y coordinates, 123,131,182-184

Z

Zooming, 418
Zoom registers, 429
ZyMOS POACH51 VGA chip, 476-485

also TrueTech

About the Authors
George Sutty of Huntington Beach, California received his BA in mathematics from
Vassar College and his MA in mathematics/computer science from UCLA. He is a
consultant who now operates Computer Graphics Labs, specializing in the field of
computer graphics software and systems. He has developed software for such
companies as AST Research, Western Digital (Paradise), Basic Four, and IBM.

Steve Blair of Alta Loma, California is an independent engineering consultant who
operates Digital Resources in Alta Loma. He has developed software and circuit
designs for companies such as AST Research, Emulex Corporation, General
Automation, Computer Automation, and others. He holds a BSEET degree from
DeVry Institute of Technology.

Programming Examples Diskette
for

Advanced Programmer’s Guide to SuperVGAs
This diskette contains source code and make files for programming examples used

in the text of the Advanced Programmer’s Guide to SuperVGAs. Due to their size, all
files had to be compressed to fit onto single diskette. Compression utility PKZIP.EXE
has been used to pack the files onto this diskette. To unpack files, utility PKUNZIP.EXE
should be used. Both of these utilities are included on the diskette.

Files in the directory DEMOS are demonstration and test programs DEMO.C,
SHOW.ASM, and GRAB.ASM, files in directory IMAGES contain sample scanned images
PICTUREx.IMG. Files in directories 256COL, 16COL, 4COL, and 2COL, contain drawing
routines that are independent of any particular board (one directory for each memory
organization type). Rest of the directories contain files with board-dependent and
mode-dependent procedures, one directory for each chip manufacturer discussed in
the book.

Quick Start For the Impatient Reader

For each board there are two programs available for 640x480 256-color mode; the
program DRAW.EXE to demonstrate drawing routines, and program SHOW.EXE to dis¬
play scanned images. These must be unpacked from a proper, board dependent, direc¬
tory. For example for Tseng based boards use the following commands:

C:
A:\PKUNZIP A:\TSENG\TSENG DRAW.EXE
A:\PKUNZIP A:\TSENG\TSENG SHOW.EXE
A:\PKUNZIP A:\IMAGES\IMAGES

To run the drawing demo program type:

DRAW

To display scanned images type:

SHOW PICTURED.IMG

How to Transfer Files From the Diskette

Diskette is organized in several directories, and this organization should be pre¬
served so that the make files operate properly. You will need about 2MBytes of space
on your disk for all the programming examples. To transfer files onto your hard disk,
you may use batch file INSTALL.BAT with a name of the board you are interested in. For
example for Tseng based boards you would use the following commands:

C:
MD C:\SUPERVGA
CD C:\SUPERVGA
A:\INSTALL TSENG

Note that the batch file should be started from the directory where you want the
files. If you also need to add to your disk examples for other boards, use utility

PKUNZIP.EXE. For example to add ATI examples you would use the following
commands:

CD C:\SUPERVGA
MD ATI
CD ATI
A:\PKUNZIP A:\ATI\ATI

When you get done with transferring the files, the following directories should be in
subdirectory C: \ SUPERVGA

Directories used by all boards:

256COL 256 color drawing routines (packed)

256COLCI 256 color drawing routines (Cirrus planar)

16COL 16 color drawing routines (planar)

16COLATI 16 color drawing routines (ATI packed)

4COL 4 color drawing routines (Headland style)

4COL01 4 color drawing routines (Genoa style)

4COL02 4 color drawing routines (Ahead style)

4COLATI 4 color drawing routines (ATI style)

4COLPACK 4 color drawing routines (WD style)

IMAGES Images to display with SHOW.EXE

DEMOS Source for DEMO.EXE, GRAB.EXE, SHOW.EXE

Board specific directories:

TSENG Tseng specific files

ATI ATI specific files

If you are pressed for space, you can use PKUNZIP.EXE to unpack only the directo¬
ries you need. All files in each directory on the diskette are packed into a single *.ZIP
file. For example to unpack only 256 color examples for Tseng based boards use the
following commands:

C:
MD \SUPERVGA
CD SUPERVGA
MD 25GC0L
CD 25GC0L
A:\PKUNZIP A:\55tCOL\E5GCOL
CD . .
MD DEMOS
CD DEMOS
A:\PKUNZIP A:\DEMOS\DEMOS
CD . .
MD TSENG
CD TSENG
A:\PKUNZIP A:\TSENG\TSENG

How to Compile and Link Example Program Demo.exe

Each board dependent directory contains a file named SELECT.ASM containing
mode and page selection procedures, files named MODExx.INC containing mode
dependent constants, and make file named DEMO used to compile and link demon¬
stration program.

Two command line macros are needed to properly use the make file DEMO. The
first one, MODE macro, determines the mode to be used. And the second one,
DRAWPATH macro, determines which set of drawing routines to use (4, 16 or 256
color). For example, to build a program DEM062.EXE for the 640x480 256 color mode
on ATI boards use the following commands:

CD \ATI
MAKE M0DE = t,5 DRAWPATH=. .\E5bC0L DEMO

These commands will cause the file MODE62.INC to be copied over MODE.INC
(which is used by the SELECT.ASM file), SELECT.ASM will be assembled, drawing rou¬
tines in directory 256COL will be assembled, test program DEMO.C in directory
DEMOS will be compiled, and the resulting object files will be linked to form the
DEM062.EXE demo program.

The make file was prepared with Microsoft C 5.1 and Microsoft Assembler 5.0. To use
it with other versions, you may have to prepare you own make file to perform the steps
described in the previous paragraph.

How to Use Programming Examples With Pascal

Due to the size limitations, we were unable to include Pascal versions of the pro¬
gramming examples on this diskette. If you would like to obtain a separate diskette
with Pascal examples please include $15.00 for shipping and handling, and write to:

Graphics Software Labs
7906 Moonmist Circle
Huntington Beach, CA 92648

Format of Scanned Images

Each image file in the directory IMAGES starts with 768 bytes of DAC register values,
three bytes (R, G, B) for each index. DAC register values are followed by 480 scan lines
of image data, 640 bytes per scan line, with one byte per pixel. Images are courtesy of:

RIX SoftWorks Inc.
1855 MacArthur Blvd
Irvine, California.
(714) 467-8266

These images are not in RTX format.

How to Find Out More About Compression Utility

PKZIP and PKUNZIP are (c) Copyright of PKWARE Inc. To find out more about the
compression utilities and to get documentation contact:

PKWARE Inc.
7545 North Port Washington Road, Suite 205,
Glendale, WI 53217
(414) 352-3670

George Sutty April 3,1990

CUSTOMER SUPPORT

It is important that you register your purchase of any Simon & Schuster software package.
By completing and returning your Owner Registration Card, you become eligible for:

• Software support directly from S & S.
• Diskette replacement when applicable.
• Purchase of future product upgrades at special prices.
• Subscriptions to Hint Books and newsletters where applicable.

Software Support

S & S will provide support to registered owners. Our technical support number is (900) 454-
8900. It is staffed on working days during normal business hours, 10:00 am to 6:00 pm.
Eastern time. There is a charge of $1.00 per minute charged to your phone for each minute
after the first.

Mail-in Support Service—Registered owners may write to us with questions. We will
respond in writing. There is no additional charge for this service.

We realize that our software packages are put to a wide variety of uses, however, we can
only answer questions about the software package itself. We cannot support the hardware

and operating system required to run our software packages.

Before Calling Customer Support

Before calling our Technical Support Department, please make sure you have followed the
steps in the "Pre-call Checklist" below.

Pre-call Checklist

1. If you are having difficulty understanding the program, have you read and performed
the suggestions listed in the manual?

2. If you are not sure how to operate the program, have you used the help system (where
available) to find the answer?

3. If there seems to be a problem in the software, can you reproduce the problem by
following your steps again?

4. If the program displayed an error message, please write down the exact message.

5. You should be familiar with the hardware configuration you are using. We may need to
know the brand/model of your computer, printer, the total amount of memory avail¬
able, what video adaptor(s) you have in the system, the operating system version, etc.

6. When you call our Technical Support Department, please be at your computer or be
prepared to repeat the sequence of steps leading up to the problem.

Services and Prices

The above services and prices are subject to change without prior notice.

