

VolantPCI Component Specification
Version 1.01

Document Number BOC-PCI-09003

August 1, 1997

 — Page 1 of 98

Page 2 of 98 — VolantPCI Component Specification

 Preface

This document describes the functions of the VolantPCI VLSI component. VolantPCI provides an efficient means
of interfacing serial communication chips and other peripheral components to a high-speed bursting local bus.
VolantPCI uses a dual-bus structure, containing eight independent DMA channels, with linked-list chaining and
automatic appended I/O operations.

Preface — Page 3 of 98

Page 4 of 98 — VolantPCI Component Specification

 Contents

1.0 VolantPCI Component Overview . 9
1.1 General .9
1.2 Performance .9
1.3 RAS Highlights .10
1.4 VolantPCI Block Diagram . 10
1.5 VolantPCI Signal Description . 10

1.5.1 PCI Bus Signals. 11
1.5.2 VolantPCI AIB Bus Signals . 13
1.5.3 VolantPCI Interrupt Controller Signals. 14
1.5.4 VolantPCI Test .14
1.5.5 VolantPCI Miscellaneous Signals. 15

1.6 Vero Compatibility .16
1.6.1 Interrupts .16
1.6.2 AIB Bus .16
1.6.3 DMA .16
1.6.4 Setup/Configuration .17
1.6.5 PIO's .17
1.6.6 Multi-Master Mode .17

1.7 VolantPCI Register Address Map. 18
1.7.1 Register Reset States. 18
1.7.2 DMA Registers .19
1.7.3 PCI Bus Related Registers. 19
1.7.4 Interrupt Related Registers. 20
1.7.5 AIB Bus Related Registers. 20
1.7.6 Miscellaneous Registers .20

2.0 VolantPCI DMA Controller . 21
2.1 General .21
2.2 DMA FIFO .22
2.3 Channel Descriptor Register Set. 22

2.3.1 Channel Control Register (CCR). 23
2.3.2 DMA Channel Command Registers (DCCR). 26
2.3.3 Memory Pointer Register (MPR) . 27
2.3.4 Transfer Count Register (TCR) . 28
2.3.5 Chain Pointer Register (CPR). 29
2.3.6 AIB Address 1/2 Register (AIB_ADDR 1/2). 30
2.3.7 AIB_OP1 DATA Register (AIB_OP1) . 31
2.3.8 AIB_OP2 DATA Register (AIB_OP2) . 32
2.3.9 DMA Interrupt Status Registers (DISR). 33
2.3.10 Enhanced Status Pointer Register (ESP). 34

2.4 Linked List Chaining (LLC) . 35
2.4.1 Modes of List Chaining . 35
2.4.2 Linked List Chaining/Stopping. 36
2.4.3 Adding CDB's to a Chain . 36

2.5 DMA Miscellaneous Registers . 37
2.5.1 AIB Bus Global DMA Command Register (GDCR). 37
2.5.2 DMA FIFO Residual Count registers (DFRC). 39
2.5.3 DMA Buffer Data registers (DBD) . 40

3.0 VolantPCI Interrupts .41

Contents — Page 5 of 98

3.1 General .41
3.2 Interrupt Sources .41

3.2.1 DMA Interrupts .41
3.2.2 AIB Interrupts .41
3.2.3 AIB ERROR Interrupt . 41
3.2.4 PIO Interrupts .41
3.2.5 Interrupt Priorities .42

3.3 Programmable Options .43
3.3.1 Interrupt Initialization register (IIR) . 43
3.3.2 Interrupt Mask register (IMR) . 45
3.3.3 Interrupt Status register (ISR). 46
3.3.4 AIB Error Interrupt Mask register (EIMR) . 47

3.4 Interrupt Commands .48
3.4.1 AIB INT0/1 End-of-Interrupt (EOI0/1) commands. 48
3.4.2 Interrupt Vector Register (IVR) . 49

4.0 VolantPCI AIB Bus Interface . 51
4.1 General .51

4.1.1 AIB Arbiter .51
4.2 AIB Initialization registers . 53

4.2.1 Chip Select Definition registers (CSD0-3). 53
4.2.2 DMA Acknowledge Pulse Width Registers (DAPW). 56
4.2.3 AIB Bus Configuration Register (ACR). 57

5.0 PCI Bus Interface . 59
5.1 PCI Bus Operation . 59
5.2 PCI Bus target . 59

5.2.1 AIB bus access . 59
5.2.2 Internal Registers Accesses. 59

5.3 PCI Bus Master . 59
5.3.1 Internal Arbitration for the PCI Bus. 59
5.3.2 Multiple VolantPCI Chips on the PCI Bus. 60

5.4 PCI Bus Configuration Registers. 61
5.4.1 Device/Vendor ID (DEVID) . 61
5.4.2 Host Status/Command Register (HSCR). 62
5.4.3 Class Code/Revision ID Register (CCRID). 63
5.4.4 Host Miscellaneous Functions Register (HMFR). 63
5.4.5 Register Base Address Register (REGBAR). 64
5.4.6 AIB Base Address Register (AIBBAR). 65
5.4.7 Subsystem ID (SSID). 66
5.4.8 Latency/Grant/Interrupt Register (LGIR). 67

6.0 VolantPCI Miscellaneous Registers . 69
6.1.1 Configuration Register (CFGR) . 69
6.1.2 LED Enable Register (LER). 70
6.1.3 Clock Timer Register (CTR). 71

6.2 Programmable I/O Control Registers. 72
6.2.1 PIO Configuration Registers (PIOCFG). 72
6.2.2 PIO Status Registers (PIOSTAT). 73
6.2.3 Serial EPROM Register (SER). 74

Appendix A. VolantPCI Pin Name/Number Cross Reference . 77

Appendix B. PIO Functional Diagrams . 81

Page 6 of 98 — VolantPCI Component Specification

Appendix C. VolantPCI Electrical Specifications . 83
C.1 Absolute Maximum Ratings. 83
C.2 Operating Conditions .83
C.3 Recommended Connections .83

C.3.1 Decoupling .83
C.4 Specifications for the PCI Bus Interface. 84
C.5 DC Specifications .84

C.5.1 DC Specifications for the AIB Bus and Misc. Signals. 84
C.6 AC Timing Specifications . 85

C.6.1 PCI Bus Timings . 85
C.6.2 AIB Bus Timings . 85
C.6.3 VolantPCI Serial EPROM Interface Timing. 87

Appendix D. VolantPCI Test Information . 89
D.1 JTAG TAP Controller Features. 89

D.1.1 Boundary Scan .89
D.2 Scan Testing .95
D.3 RAM Isolation Testing . 95
D.4 Driver Tri-State .96

Appendix E. Volant Errata .97

Contents — Page 7 of 98

Page 8 of 98 — VolantPCI Component Specification

 Figures

 1. Major Functional Blocks in VolantPCI .10
 2. Linked List Chaining: Vero Compatibility Mode. .35
 3. Linked List Chaining: VolantPCI Enhanced Status Mode List Chaining. 37
 4. PCI Bus Address to AIB Address Map. .51
 5. Connecting two VolantPCI chips using Multi-Master. 60
 6. Input/Output PIO .81
 7. Output-Only PIO .81
 8. Output-Only w/clock PIO .82
 9. SEPROM read timing .87
10. SCLK, SCS, SD timing . 88

 Tables

 1. PCI bus specific signals .11
 2. VolantPCI AIB Bus Signals .13
 3. VolantPCI Interrupt Controller Signals .14
 4. VolantPCI Clocks and Test .14
 5. VolantPCI Miscellaneous Signals. .15
 6. VolantPCI Reset Conditions. .18
 7. VolantPCI DMA Register Set .19
 8. PCI Bus Registers .19
 9. VolantPCI Interrupt Related Registers. .20
10. VolantPCI AIB Bus Registers . 20
11. VolantPCI Miscellaneous Registers. 20
12. VolantPCI DMA Channel Descriptor Table Registers. 22
13. VolantPCI DMA Channel Vector Assignment. 42
14. VolantPCI Maximum Ratings (referenced to Vss). 83
15. VolantPCI Operating Conditions . 83
16. VolantPCI AIB Bus and Misc. Signals. 84
17. Timings .86
18. VolantPCI Serial EPROM Interface Timings. 88
19. VolantPCI JTAG Interface . 89
20. VolantPCI JTAG Interface . 89
21. VolantPCI Scan Chains . 95
22. RAM Testing .95

Figures — Page 9 of 98

Page 10 of 98 — VolantPCI Component Specification

1.0 VolantPCI Component Overview

 1.1 General
The major highlights of VolantPCI are listed below:

� Custom ASIC using LSI's 3.3v, LCB600K 0.6µ technology

� Eight-channel DMA controller

� One Sixteen-byte data buffer per channel

� PCI Local Bus interface

� One Application Interface Bus (AIBs)

� Support of Linked List Chaining

� Support of AIB I/O operations

� 32 General Purpose Input/Output Pins (PIO)

 � 3.3V operation

 � 208 PQFP

� up to 33 Mhz operation

 � JTAG Support

VolantPCI interfaces a high-speed PCI Bus to one independent Application Interface Bus (AIB). Eight DMA chan-
nels provide support for transfers between the Local Bus and the AIB.

Each DMA channel supports Linked List Chaining, the ability for the channel to auto-initialize its registers from a
predefined list in PCI address space. Each DMA also has the ability to append I/O operations within the list chain
operation.

 1.2 Performance
Each DMA channel is capable of supporting zero-wait-state data transfers to the PCI Bus for a maximum of 4
four-word transfers, or a peak throughput of 57 MBytes/sec at 25 Mhz, 75 Mbytes/sec at 33 Mhz (assuming
AWDDDDT). VolantPCI rearbitrates for the Local Bus after each DMA channels' access.

Performance for DMA list chaining is slightly higher than for DMA data transfers. (Chaining operations burst up
to 7 words.)

VolantPCI also accesses the AIB bus as a Bus Master. The AIB bus can support 4-state (160 ns at 25 Mhz and
121 ns at 33 Mhz) bus cycles to 8-bit devices, or a maximum rate of 6.25 MBytes/sec at 25 Mhz and 8.3
MBytes/sec at 33 Mhz (50 - 66 MBits/sec).

Sustained Throughput The following factors influence the amount of data throughput sustained between the PCI
Bus and one of the AIBs:

� AIB device cycle time

� AIB device buffer size

� Frequency of linked list chaining

VolantPCI Component Overview — Page 11 of 98

� Frequency of DMA executed AIB I/O operations (AIB OP's)

� PCI Bus utilization by other master devices

� The frequency of AIB Interrupt Acknowledge cycles

 1.3 RAS Highlights

VolantPCI provides the following RAS support:

� Local Bus address and data parity generation and checking

� Gate Array ID (CCRID) register, providing a revision level for VolantPCI.

� JTAG Chip Testing Support

Note that VolantPCI does not generate or check parity for its internal structures.

1.4 VolantPCI Block Diagram

 ───┐

 (PIOs) ─────────────┐

 <───────>┤

 <───────>┤

 <───────>┤Programmable

 <───────>┤ I/O ─────────────┐

 <───────>┤ Logic DMA

 <───────>┤ Data

 <───────>┤ Buffers

 <───────>┤ ─ ────── ─ ──┘

 ─────────────┘ & & & ───────┐ ───────────┐

───────────┐ ┤PCI DMA├┤

 AIB Bus AIB ───┴───┐ ─┤Control

<───────>┤ Interface AIB DMA├───┘ ───────┘ PCI PCI Bus

├┤Control Local Bus ├<───────>

─────── ─ ─┘ ───────┘ Interface

& & ───────┐

─┤ PCI

 target├<┤

 ───────────────┤Control ───── ─────┘

 ──────┘

 ────────┴──┐

─────────┤ Interrupt ├<──────────┘

 ────────────────────────>┤ Support

 ────────────────────────>┤

 ────────────────────────>┤ ├──────────────────────────>

 ───────────┘

 ───┘

Figure 1. Major Functional Blocks in VolantPCI

1.5 VolantPCI Signal Description
The following tables provide a description of each signal in the VolantPCI module. See Appendix A, “VolantPCI
Pin Name/Number Cross Reference” on page 77 for module pin number information.

Page 12 of 98 — VolantPCI Component Specification

1.5.1 PCI Bus Signals

Table 1 (Page 1 of 2). PCI bus specific signals

Name Type Description

FRAME# I/O
PCI

Cycle Frame indicates the beginning and duration of a PCI access. This signal is
driven by VolantPCI as an initiator and received as a target.

IRDY# I/O
PCI

Initiator Ready indicates the initiator's ability to complete the current data phase
of the transaction. This signal is driven by VolantPCI as an initiator and received
by VolantPCI as a target.

TRDY# I/O
PCI

Target Ready indicates the target's ability to complete the current data phase of
the transaction. This signal is driven by VolantPCI as a target and received by
VolantPCI as an initiator.

STOP# I/O
PCI

Stop indicates the current target is requesting the initiator to stop the current trans-
action. This signal is driven by VolantPCI as a target and received by VolantPCI
as an initiator.

pAD31:0 I/O
PCI

Address/Data Bits 31-0 are used by the PCI initiator to address memory and I/O
targets. These signals are also used to select the VolantPCI chip for target oper-
ations.

CBE3:0# I/O
PCI

Bus Command/Byte Enables are driven by VolantPCI as a master and received as
a target. During the address cycle they contain the bus command. During data
cycles they are used as byte enables and determine which bytes of data are valid
for each data cycle.

PAR I/O
PCI

PCI Parity bit provides a single bit of even parity across AD(31:0) and
CBE(3:0)#. It is driven by the device supplying address or data and checked by
the device receiving the address or data.

IDSEL I Initialization Device Select selects VolantPCI during configuration read and write
transactions.

DEVSEL# I/O
PCI

Device Select is driven by VolantPCI to indicate that VolantPCI is selected as a
target. This signal is received by VolantPCI as an initiator to indicate that a device
has been selected.

PERR# I/O
PCI

Parity Error is used to report data parity errors during all PCI transactions (except
Special Cycle). VolantPCI asserts this signal when detecting a parity error on
received data, and receives this signal when driving data.

SERR# O
PCI

System Error is used to signal catastrophic errors. It is driven, when enabled, if
an address parity error is detected.

CLK I Clock provides timing for all transactions on the PCI Bus and internal functions.

INTA# O
PCI

Interrupt is driven active when VolantPCI requires interrupt service by the
system. This driver is open-drain.

RST# I PCI Reset when driven active immediately causes VolantPCI to tri-state all of its
PCI drivers. All VolantPCI functions are reset and do not operate until this line is
released.

REQ# O
PCI

Request is driven active when VolantPCI desires access to the bus as a master.

VolantPCI Component Overview — Page 13 of 98

Table 1 (Page 1 of 2). PCI bus specific signals

Name Type Description

GNT# I Grant indicates to VolantPCI that it has been granted master access to the PCI
Bus.

Page 14 of 98 — VolantPCI Component Specification

1.5.2 VolantPCI AIB Bus Signals

Table 2. VolantPCI AIB Bus Signals

Name Type Description

a_A17:2 O AIB Address(17-2)

These pins function as the 16-bit address bus during an AIB bus cycle. All DMA
data transfers use implicit addressing of the I/O device with the DACK signals and
therefore these signals are unknown during DMA cycles.

The bits are numbered from 17 to 2 to simplify conversion of PCI Bus addresses to
AIB bus addresses. All access to the AIB must be byte accesses to byte-aligned
addresses.

a_D7:0 I/O AIB Data(7-0)

These pins function as the 8-bit data bus during an AIB bus cycle. These pins are
outputs during writes and inputs during reads.

-aWR O -AIB Write is driven low during a write operation to an AIB target device.

-aRD O -AIB Read is driven low during a read operation to an AIB target device.

-aCS3:0 O -AIB Chip Select(3-0) are driven active when a valid address decode is detected
for the address ranges defined in the CSD0-3 registers.

-aRESET O -AIB Reset is used to reset the AIB bus. It is driven active/inactive synchronous
to the RST# input signal from the PCI Bus, and can also be driven active by
writing the ACR register to reset AIB devices.

-aERROR I -AIB Error input is driven by AIB logic when any defined critical error occurs.
This will cause vector #232 (E8h) to be generated. (see 3.2.3, “AIB ERROR
Interrupt” on page 41).

aCLK O AIB Clock is the AIB Bus reference clock.

This clock is equal in frequency to the local bus clock. See 4.2.3, “AIB Bus Con-
figuration Register (ACR)” on page 57.

-aDREQ7:0 I -DMA Request(7-0) are the 8 DMA request signals that AIB bus devices use to
request DMA service. These signals are asynchronous inputs and should be driven
inactive in response to the device receiving the corresponding DACK signal.

-aDACK7:0 O -DMA Acknowledge(7-0) are the 8 DMA acknowledge signals that the DMA con-
troller drives to the AIB Bus when the corresponding DREQ is being serviced.
The duration of these signals are programmable within the DAPW registers. See
4.2.2, “DMA Acknowledge Pulse Width Registers (DAPW)” on page 56.

-aEOPTC I/O -DMA End-of-Process/Terminal Count is a synchronous signal used for termi-
nation of the DMA channels on a bus. This signal is an output "TC" for DMA
transmit channels, and an input "EOP" for DMA receive channels.

As an output, TC is driven active synchronous with the data DACK transfer on
which a DMA terminal count condition occurs.

As an input, EOP is received synchronously with the data DACK and can
optionally cause a DMA channel to flush the current buffer, stop, interrupt, or
chain.

VolantPCI Component Overview — Page 15 of 98

1.5.3 VolantPCI Interrupt Controller Signals

 1.5.4 VolantPCI Test

Table 3. VolantPCI Interrupt Controller Signals

Name Type Description

-aINT3:0 I -AIB Interrupts(3-0) are four separate interrupt input signals that are driven active
by devices on the AIB bus when interrupt service is required. -A_INT(1-0) can be
optionally programmed to require the interrupting device to supply an 8-bit inter-
rupt vector when the corresponding INTACK signal is driven active. Otherwise
these inputs can be used as direct interrupt inputs with the vector being automat-
ically supplied by the VolantPCI chip.

When operating -AIB_INT(0) or -AIB_INT(1) in interrupt acknowledge mode, the
interrupt must be cleared at its source, AND the appropriate EOI to the interrupt
controller must be issued, or interrupts below that prioritization level will be locked
out (see 3.4.1, “AIB INT0/1 End-of-Interrupt (EOI0/1) commands” on page 48).

-aINTACK1:0 O -AIB Interrupt Acknowledge(1-0) function as the interrupt acknowledge for the
AIB_INT(1-0) signals when the AIB_INT(1-0) signals are programmed in vectored
mode.

When a device uses the -AIB_INT(1-0) signals and the VolantPCI chip is pro-
grammed to request an external vector, it must be capable of responding to the
corresponding -AIB_INTACK(1-0) signal by driving an 8-bit interrupt vector on
lines D(7-0) during the interrupt acknowledge cycle.

Table 4. VolantPCI Clocks and Test

Name Type Description

JTAG-TDI I Serial Test Data IN is used during JTAG chip testing. This pin should be pulled
up to Vdd external to the chip during normal operation.

JTAG-TDO O Serial Test Data Out is used during JTAG chip testing.

JTAG-TCK I Test Clock is used during JTAG chip testing. This pin should be pulled up to
Vdd external to the chip during normal operation.

JTAG-MOD I Test MODE is used during JTAG testing of the chip. This pin should be pulled
up to Vdd external to the chip during normal operation.

JTAG-RST# I Test Logic Reset is used during JTAG testing of the chip. This pin should be
pulled down to Vss external to the chip during normal operation.

ScanMuxSel# I Scan Mux Select is used by the chip manufacturer to test the chip. This pin
should be pulled up to Vdd external to the chip during normal operation.

ScanTestEn# I Scan Test Enable is used by the chip manufacturer to test the chip. This pin
should be pulled up to Vdd external to the chip during normal operation.

PTSTOUT O P Test Output is used by the chip manufacturer to test the chip. This pin must be
left unconnected.

IDDTST I IDD Test is used by the chip manufacturer to test the chip. When driven high, all
chip outputs are tri-stated. This pin should be pulled down to Vss external to the
chip during normal operation.

Page 16 of 98 — VolantPCI Component Specification

1.5.5 VolantPCI Miscellaneous Signals

Table 5. VolantPCI Miscellaneous Signals

Name Type Description

-LED_EN O -LED Enable is a signal dedicated to enabling an external light emitting diode for
diagnostic purposes. (see 6.1.2, “LED Enable Register (LER)” on page 70).

REFCLK I Reference Clock is an input clock signal. It is used to allow software to deter-
mine the PCI CLK speed (see 6.1.3, “Clock Timer Register (CTR)” on page 71).
It is also the clock used to generate the various programmable output clocks (see
6.2.1, “PIO Configuration Registers (PIOCFG)” on page 72).

PIO0(3-0) I/O AIB Port 0 Programmable I/O(3-0) provide 4 independent programmable I/O
signals.

PIO0(7-4) O
t.s.

AIB Port 0 Programmable I/O(7-4) provide 4 independent programmable output
signals.

PIO1(3-0) I/O AIB Port 1 Programmable I/O(3-0) provide 4 independent programmable I/O
signals.

PIO1(7-4) O
t.s.

AIB Port 1 Programmable I/O(7-4) provide 4 independent programmable output
signals.

PIO2(3-0) I/O AIB Port 2 Programmable I/O(3-0) provide 4 independent programmable I/O
signals.

PIO2(7-4) O
t.s.

AIB Port 2 Programmable I/O(7-4) provide 4 independent programmable output
signals.

PIO3(3-0) I/O AIB Port 3 Programmable I/O(3-0) provide 4 independent programmable I/O
signals.

PIO3(7-4) O
t.s.

AIB Port 3 Programmable I/O(7-4) provide 4 independent programmable output
signals.

MMI I Multi-Master In is a daisy-chain input connected to another chips MMO signal.
If not using Multi-Master mode then it must be connected to its own MMO signal.

MMO O Multi-Master Out is a daisy-chain output connected to another chips MMI signal.
If not using Multi-Master mode then it must be connected to its own MMI signal.

SED I/O Serial Eprom Data can be connected to the Data In (DI) and Data Out (DO) of a
three-wire serial EPROM chip (e.g. Microchip 93C06). This pin has a weak
internal pull-up. It should be pulled-up externally to Vdd by approx. 10kΩ.

SECS O Serial Eprom Chip Select can be connected to the Chip Select (CS) pin of a
three-wire serial EPROM chip (e.g. Microchip 93C06).

SECLK O Serial Eprom Clock can be connected to the Clock (CLK) pin of a three-wire
serial EPROM chip (e.g. Microchip 93C06).

Vss All Vss pins should be connected to a ground plane.

Vdd All Vdd pins should be connected to a 3.3V power plane.

VolantPCI Component Overview — Page 17 of 98

 1.6 Vero Compatibility

VolantPCI is intended to be highly software compatible with the functions performed by the Vero chip on the
four/eight-port JUNO AIB cards. It is not intended to be a drop in replacement for Vero with a PCI Bus replacing
the CFE Local Bus. Some Vero configuration registers will not be fully compatible with VolantPCI and many
features have been added. The following lists which register groups have programming considerations (refer to the
individual register description sections for more detail):

 1.6.1 Interrupts
The PCI bus defines a single interrupt pin versus the 8-bit vector defined for Vero. When an interrupt is pending,
VolantPCI will activate its pin. Software should then read the IVR (3.4.2, “Interrupt Vector Register (IVR)” on
page 49) to determine the vector for the interrupt and branch to the appropriate handler. The vectors read in the
IVR are the same values used for Vero's vector.

The DISR (2.3.9, “DMA Interrupt Status Registers (DISR)” on page 33) has changed to handle the additional errors
due to the PCI Bus. PERR# has been mapped to Exception, parity errors remains the same and master and target
abort errors have been added.

When operating in interrupt vector mode, there will no longer be a defined range for each vector or conversion of
out-of-range vectors to the highest vector. VolantPCI will ignore the vector FFh (which is returned from the
DUSCC when no interrupt is pending).

A bit in the IVR is equivalent to the INTA# pin and indicates an interrupt is pending in VolantPCI.

The EOI will now operate as either a write or read command. (Previously it was only a write command.) This is
being done because it is possible that PCI bridge chips could post the EOI write command which would not allow a
deterministic time between the EOI and the interrupt clearing to the PCI Bus. The user can now use the read EOI
(which cannot be posted) to have a deterministic timing.

 1.6.2 AIB Bus
� The bus now only supports 8-bit devices (vs. 8, 16 and 32)
� The bus is demultiplexed (16 address bits, 8 data bits)
� The READY and DEN signals have been deleted
� The separate EOP signals have been combined to a single pin.
� Parity support has been removed.

 1.6.3 DMA
� DMA CCR Register

– EOP no longer supported on Transmit channels (TC is supported)
– Asynchronous DMA no longer supported. All DMA activity is synchronized to DREQ
– Asynchronous EOP has been deleted.
– Port size is fixed at 8-bit.
– Added "write value read on first AIBOP masked by AIBOP2 data".

� AIB OPs on Transmit channels are no longer supported
� Chip can be configured to write DMA status at end of current CDB Status which includes byte count, OP data

and termination status (TC, EOP, etc.)
� Added "flush FIFO" bit to 2.3.2, “DMA Channel Command Registers (DCCR)” on page 26.
� Fixed support of 64kB byte count.
� Added "quick start" and "do not chain if CPR=0" to allow simpler and faster chain control.
� Added 2.3.10, “Enhanced Status Pointer Register (ESP)” on page 34.

Page 18 of 98 — VolantPCI Component Specification

� Changed definition of 2.5.2, “DMA FIFO Residual Count registers (DFRC)” on page 39.
� DMA Queuing is no longer supported

 1.6.4 Setup/Configuration
� 4.2.2, “DMA Acknowledge Pulse Width Registers (DAPW)” on page 56 (reduced to one for Tx, one for Rx)

had some bits redefined or eliminated.
� Presence Detect Registers (deleted)
� 4.2.1, “Chip Select Definition registers (CSD0-3)” on page 53 changed.
� PCI Bus configuration is now required. For address compatibility, the registers and AIB address space may be

programmed to the same address they occupied on ARTIC960 Adapter.
 � LBCR deleted.
� 6.1.1, “Configuration Register (CFGR)” on page 69 added.

 1.6.5 PIO's
A total of 32 programmable I/O pins have been added. Half of these are fully programmable for input/output,
polarity and interrupt. The other half are output-only with programmable polarity (four of which can be pro-
grammed to output a divided version of REFCLK).

These are not program compatible with the FPGAs used on previous Vero-based daughter cards.

 1.6.6 Multi-Master Mode
Multiple VolantPCI chips can be connected to a single PCI Bus request/grant signal pair without additional glue
logic. See 5.3.2, “Multiple VolantPCI Chips on the PCI Bus” on page 60 for more details.

VolantPCI Component Overview — Page 19 of 98

1.7 VolantPCI Register Address Map
The memory map of all registers addressable within the VolantPCI module is shown below. Detailed information is
found in the indicated section. Each register is four byte aligned in the address space as noted.

Reserved bit locations in a register must always be written as '0' when programming a register. These bits are
undefined. Users should not rely on reserve bits reading back as '0'.

1.7.1 Register Reset States

At the end of each register description section, the register's RESET conditions are shown. There are several
different reset conditions. Some registers may have only one reset condition while others may have two or three.
The following table describes the names and the function of each reset condition.

A 'U' in the "Reset Conditions" section means undefined, and an 'S' means the value stays the same as before the
reset command.

Table 6. VolantPCI Reset Conditions

Reset Condition Description

CHIP RESET CHIP RESET will reset the entire chip. This reset is active
when the RST# signal is active. This condition overrides
all other pending conditions within the chip and automat-
ically forces all logic to its RESET state.

DMA RESET A DMA RESET resets DMA channel related registers and
logic. This reset condition is activated by either a write to
the GDCR (see 2.5.1, “AIB Bus Global DMA Command
Register (GDCR)” on page 37) or the DCCR (see 2.3.2,
“DMA Channel Command Registers (DCCR)” on page 26).

AIB RESET There is a separate AIB RESET for the AIB Bus. This
reset affects AIB Bus related registers and associated logic.
The AIB RESET is activated by writing to the ACR (see
4.2.3, “AIB Bus Configuration Register (ACR)” on
page 57).

Note: Currently there are no AIB bus related registers that
are affected by this reset. Only the AIB RESET pin is
affected.

Page 20 of 98 — VolantPCI Component Specification

 1.7.2 DMA Registers
Note: An 'n' in an address represents the channel number (0-7).

1.7.3 PCI Bus Related Registers

Table 7. VolantPCI DMA Register Set

Section, Name Address
Offset

Access
Type

2.3.6, AIB Address 1/2 Register (AIB_ADDR 1/2) +n000h r/w

2.3.7, AIB_OP1 DATA Register (AIB_OP1) +n004h r/w

2.3.8, AIB_OP2 DATA Register (AIB_OP2) +n008h r/w

2.3.3, Memory Pointer Register (MPR) +n00Ch r/w

2.3.4, Transfer Count Register (TCR) +n010h r/w

2.3.5, Chain Pointer Register (CPR) +n014h r/w

2.3.1, Channel Control Register (CCR) +n018h r/w

2.3.2, DMA Channel Command Registers (DCCR) +n020h r/w

2.3.9, DMA Interrupt Status Registers (DISR) +n028h ro

2.5.2, DMA FIFO Residual Count registers (DFRC) +n02Ch ro

2.3.10, Enhanced Status Pointer Register (ESP) +n038h r/w

2.5.3, DMA Buffer Data registers (DBD) +n100h-
+n10Ch

r/w

2.5.1, AIB Bus Global DMA Command Register (GDCR) +8000h r/w

Table 8. PCI Bus Registers

Section, Name Config
Offset

Access
Type

5.4.1, Device/Vendor ID (DEVID) +00h ro

5.4.2, Host Status/Command Register (HSCR) +04h r/w

5.4.3, Class Code/Revision ID Register (CCRID) +08h ro

5.4.4, Host Miscellaneous Functions Register (HMFR) +0Ch r/w

5.4.5, Register Base Address Register (REGBAR) +10h r/w

5.4.6, AIB Base Address Register (AIBBAR) +14h r/w

5.4.7, Subsystem ID (SSID) +2Ch ro

5.4.8, Latency/Grant/Interrupt Register (LGIR) +3Ch r/w

VolantPCI Component Overview — Page 21 of 98

1.7.4 Interrupt Related Registers

1.7.5 AIB Bus Related Registers

 1.7.6 Miscellaneous Registers

Table 9. VolantPCI Interrupt Related Registers

Section, Name Address
Offset

Access
Type

3.3.1, Interrupt Initialization register (IIR) +8010h r/w

3.3.2, Interrupt Mask register (IMR) +8014h r/w

3.3.3, Interrupt Status register (ISR) +8018h r/w

3.3.4, AIB Error Interrupt Mask register (EIMR) +801Ch r/w

3.4.1, AIB INT0/1 End-of-Interrupt (EOI0/1) commands +9000h
+A000h

r/w

3.4.2, Interrupt Vector Register (IVR) +F000h r/w

Table 10. VolantPCI AIB Bus Registers

Section, Name Address
Offset

Access
Type

4.2.1, Chip Select Definition registers (CSD0-3) +B000h-
+B00Ch

r/w

4.2.2, DMA Acknowledge Pulse Width Registers (DAPW) +B030h,
+B038h

r/w

4.2.3, AIB Bus Configuration Register (ACR) +C000h r/w

Table 11. VolantPCI Miscellaneous Registers

Section, Name Address
Offset

Access
Type

6.1.2, LED Enable Register (LER) +D004h r/w

6.1.1, Configuration Register (CFGR) +D008h r/w

6.1.3, Clock Timer Register (CTR) +D00Ch ro

6.2.1, PIO Configuration Registers (PIOCFG) +D100h-
+D137h

r/w

6.2.2, PIO Status Registers (PIOSTAT) +D200h-
+D237h

r/w

6.2.3, Serial EPROM Register (SER) +F100h r/w

Page 22 of 98 — VolantPCI Component Specification

2.0 VolantPCI DMA Controller

 2.1 General

The functions of the DMA portion of the VolantPCI module are highlighted below.

� 8 independent DMA channels (any channel may operate as transmit or receive)
� split bus implementation (8-bit AIB Bus to 32-bit Local Bus)
� support of 16-bit Address, 8-bit Data AIB Bus devices
� 16 byte fifo per channel
� 16 byte burst capability on Local Bus for Data
� 3 Write / 7 Read List Chain Operation on Local Bus for Chaining
� 32-bit 4GB addressability on Local Bus
� 16-bit 64KB addressability on AIB Bus for AIB OP's
� separate DREQ and DACK signals for each DMA channel
� programmable DACK cycle time for transmit and receive DACK cycles
� 64KB byte count capability
� Descriptor Table for each channel
� Linked list chaining of buffers on all channels
� Chaining support for end-of-process and terminal count condition
� Automatic storage of residual transfer count and termination status on chain event
� Automatic storage of AIB OP reads on chain event
� Up to two programmable auto I/O operations on chain event (Receive DMA channels only)
� Six interrupt sources for each channel

Each channel is controlled by a Channel Descriptor Table (CDT) register set. The program normally writes a block
of the CDT register values to memory resident structures called Channel Descriptor Blocks (CDB's). The program
then writes the starting address of a CDB to the Chain Pointer Register (CPR) with bit 0 set to '1'. At this point,
the CDB is automatically fetched from memory and loaded into the CDT. With the linked list chain option, once
the DMA channel is started, the CDBs can be automatically fetched by the DMA channel's state machine. Alterna-
tively, the CDT registers can be programmed directly.

Once enabled, a channel will service DMA requests from the AIB Bus until one of a number of programmable
conditions is reached. If the DMA channel is programmed to stop on one of these conditions, the channel can be
re-enabled with a write to the Channel Control Register (CCR). Any condition that can stop the channel can also
interrupt the PCI Bus. Also, the channel has the ability to interrupt without stopping the channel. All of the
options are programmable in the CCR and are described later.

Devices on the AIB bus assert two types of requests: Transmit (TR) and Receive (RR).

Once a Transmit channel is started, the DMA controller arbitrates for control of the Local Bus, and when granted
control, bursts up to 16 bytes of data from memory into that channel's FIFO. The data is then transferred to the
requesting device across the AIB Bus until the FIFO is empty. This allows data transfer to the AIB device to occur
in the background of Local Bus activity.

For a receive DMA channel, the DMA controller will receive up to 16 bytes of data across the AIB Bus. It then
arbitrates for control of the Local Bus. Once granted, the DMA controller bursts all data into memory. This, again,
allows data transfer from the AIB device to occur in the background of Local Bus activity.

VolantPCI DMA Controller — Page 23 of 98

 2.2 DMA FIFO
As mentioned above, data transfer from Local Bus to AIB Bus is not direct, but rather, is buffered in a set of fifos.
There is a 16 byte deep fifo associated with each DMA channel that acts as an intermediate storage area for data.
The fifos support high speed access so that all accesses to the Local Bus will move data into and out of the fifos
instead of directly to the AIB Bus, which might support only slower devices. This allows all Local Bus DMA data
transfer initiated by VolantPCI to be high speed bursted accesses.

The fifos are configured such that AIB Bus accesses and Local Bus accesses can occur simultaneously for different
channels. A DMA channel can be performing a read or write on the AIB Bus, while at the same time, another
channel is performing a read or write on the Local Bus.

2.3 Channel Descriptor Register Set
Table 12 on page 22 shows the organization of the channel descriptor table (CDT) registers for one of the DMA
channels. This table is duplicated for each of the 8 DMA channels. Each register is fully addressable on the PCI
Bus.

Table 12. VolantPCI DMA Channel Descriptor Table Registers

Register
Name

Register Function Valid Bits

CCR Channel Control Register 31-0

CPR Chain Pointer Register 31-2

TCR Transfer Count Register 15-0

MPR Memory Pointer Register 31-0

AIB_OP2 AIB OP2 Data Register 7-0

AIB_OP1 AIB OP1 Data Register 7-0

AIB_ADDR2 AIB OP2 Address Register 31-16

AIB_ADDR1 AIB OP1 Address Register 15-0

ESP Enhanced Status Pointer Register 31-2

Note: The ESP is not part of a CDB and normally is never written by software. The exceptions would be: 1)
when running in Enhanced Status Mode List Chaining and the first CDB is programmed directly, 2) diagnostics and
other test code.

Page 24 of 98 — VolantPCI Component Specification

2.3.1 Channel Control Register (CCR)

 2.3.1.1 Description:
The CCR register controls the operational personality for a DMA channel.

 2.3.1.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð18h (read/write)

 1 +ð1ð18h (read/write)

 2 +ð2ð18h (read/write)

 3 +ð3ð18h (read/write)

 4 +ð4ð18h (read/write)

 5 +ð5ð18h (read/write)

 6 +ð6ð18h (read/write)

 7 +ð7ð18h (read/write)

 2.3.1.3 Register Format
 31 3ð 26 25 24 23 22 21 2ð 19 18 17 16

 AIB AIB

| | |Reserve|Reserve| write | operation |

| | Reserved | | |control| control |

─── ─────────────────── ─── ─── ─── ─── ─── ─── ─── ─── ───────┐

GEN x x x x WR WR OP OP # of

STA Reserved 1 ð #2 #1 I/O OPs

───┴───────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───────┘

 15 14 13 12 11 1ð 9 8 7 6 5 4 3 2 1 ð

channel channel channel channel

| stopping | interrupt | chaining | definition | |

| options | options | options | options | |

─── ─── ─── ─── ─── ─── ─── ─── ─── ─────── ─── ─────── ─── ───┐

STP STP STP INT INT INT LCH LCH LCH Rsvd. EOP Rsvd. +T/ EN/

 2 1 ð 2 1 ð 2 1 ð DIR -R DIS

───┴───┴───┴───┴───┴───┴───┴───┴───┴───────┴───┴───────┴───┴───┘

 2.3.1.4 Bit Descriptions

� Bit 31. General purpose status bit. This bit can be used for any application dependent purpose. It has no
function internal to the chip. It is updated by I/O writes, and during list chaining fetches.

� Bits 30-22. Reserved. Always write these bits to '0'.

� Bits 21-20. These two bits are encoded to indicate what data will be written to the AIB Bus on the second of
two AIB OP's, if the first of the two AIB OP's is a read.

 WR1 WRð

 --- ---

ð ð -- Write the value of AIB_OP2 Data Register

ð 1 -- Write the value that was read on first OP

1 ð -- Write the complement of value read on first OP

1 1 -- Write the value that was read on first OP masked

by the value of AIB_OP2 Data Register

VolantPCI DMA Controller — Page 25 of 98

� Bit 19. AIB OP #2, read or write. This bit is coupled with bits 16 and 17. It defines the second I/O operation
to the AIB Bus after a chain event to be a read or write. If the operation is a write, the data written is defined
by bits 20 and 21 of the CCR. If the operation is a read, the data will be stored in memory.

– 0 = Read, 1 = Write

� Bit 18. AIB OP #1, read or write. This bit is coupled with bits 16 and 17. It defines the first I/O operation to
the AIB Bus after a chain event to be a read or write. If the operation is a write, the data written is defined by
bits of the AIB_OP1 register. If the operation is a read, the data will be stored in memory.

– 0 = Read, 1 = Write

� Bits 17-16. Number of I/O operations to AIB Bus upon chain event. These two bits are encoded to provide
the DMA controller with the ability to execute up to 2 discrete I/O operations to the AIB Bus following the
recognition of a chain event. The address to which the first I/O operation occurs is defined by bits 0-15 in the
AIB_ADDR 1/2 register. The address to which the second I/O operation occurs is define by bits 16-31 in the
AIB_ADDR 1/2 register.

Note: AIB OPs are supported only on Receive DMA channels. Write these as '00' for transmit channels.

ðð = No I/O operation upon chain event.

ð1 = One I/O operation upon chain event.

1ð = Two I/O operations upon chain event.

11 = Reserved.

� Bit 15-13. Encoded DMA channel stopping options. Bit 15 is always '0'.

STP1 STP1 STPð Stopping Option

---- ---- ---- ---------------

ð ð ð Do not stop

ð ð 1 TC=ð

ð 1 ð EOP (Receive Channels Only)

ð 1 1 TC=ð "or" EOP

1 X X Reserved

When a channel is stopped, the CCR enable/disable bit is reset. Also, a chaining condition takes precedence
over a stopping condition if both occur at the same time since the chaining condition causes a new CCR
enable/disable bit to be fetched from memory.

Note: When the 'Do not stop' option is selected and the channel is programmed as a transmit channel, the
TCR must be initialized with a value of multiple of 16 bytes.

� Bit 12-10. Encoded DMA interrupt options. Bit 12 is always '0'.

Error interrupts are not separately maskable in the CCR. To eliminate error related DMA interrupts, detection
of the error inputs (PERR and Parity) should be disabled in the appropriate registers.

INT2 INT1 INTð Interrupt Option

---- ---- ---- ----------------

ð ð ð Normal Termination Interrupts disabled

ð ð 1 TC=ð

ð 1 ð EOP (Receive Channels Only)

ð 1 1 TC=ð "or" EOP (Receive Channels Only)

1 X X Reserved

� Bit 9-7. Encoded list chaining enabling options.

Page 26 of 98 — VolantPCI Component Specification

LCH2 LCH1 LCHð Chaining Option

---- ---- ---- ---------------

ð ð ð Disabled

ð ð 1 TC=ð

ð 1 ð EOP (Receive Channels Only)

ð 1 1 TC=ð "or" EOP (Receive Channels Only)

1 ð ð Reserved

1 ð 1 Reserved

1 1 ð Reserved

1 1 1 NOP

The chaining NOP selection only functions when it is chained in. AIB OPS will not occur for a NOP.

VolantPCI will not chain if the CPR register for the channel points to 00000000h.

� Bit 6-5. Reserve. Always write this to 0.

Note: These bits were used in the Vero chip. Bits '6-5' set the Port Size for the DMA transfer. VolantPCI
has a fixed 8-bit port size for all DMA channels.

� Bit 4. This bit, when '0', enables the EOP(TC) as an output pin. This is the normal mode for Tx channels.
When set to '1', the pin is an input. This mode should be used for Tx channels when the user does not want a
TC indication to the external device. This mode ('1') must be used for all Rx channels (EOP detection can be
disabled using other CCR bits).

� Bit 3-2. Reserve. Always write this to 0.

Note: These bits were used in the Vero chip. Bit '3' enabled the Asynchronous EOP option. Bit '2' enabled
the Asynchronous DMA option. These Vero options are not supported in the VolantPCI chip.

� Bit 1. +Transmit/-Receive indicator. This bit indicates if the DMA channel is a Transmit Channel "1", or a
Receive Channel "0". For receive channels, data transfer is from AIB Bus to Local Bus. For transmit chan-
nels, data transfer is from Local Bus to AIB Bus.

Previous Vero based ARTIC cards allocated the channels as follows:

 TRANSMIT CHANNELS: 2,3,6,7

RECEIVE CHANNELS: ð,1,4,5

 � Bit 0. +Enable/-disable channel.

– 0 = DMA Channel Disabled
– 1 = DMA Channel Enabled

This bit reflects the status of the DMA channel. When enabled, the DMA channel can be stopped by writing
this bit to a '0', however, this operation is dangerous because the other CCR bits will also be written. The
DMA channel should be stopped by writing to the DCCR (see 2.3.2, “DMA Channel Command Registers
(DCCR)” on page 26).

This bit is updated during list chaining.

Note: This bit will not read back '0' unitl the DMA channel has actually stopped.

The dummy CDB along with bit 31 of the CCR used to determine the DMA channel's status (running,
chaining, etc.) for Vero is no longer required to ensure that the channel is stopped.

 2.3.1.5 Reset Conditions
CHIP RESET: Uððð ðððð ððUU UUUU ðððð ðððð ððð1 ððUð

DMA RESET: Sððð ðððð ððSS SSSS ðSSð SSSS SððS ððSð

VolantPCI DMA Controller — Page 27 of 98

2.3.2 DMA Channel Command Registers (DCCR)

 2.3.2.1 Description:
The DCCR supports three commands. One allows for the bit manipulation of the CCR enable/disable bit. This bit
allows CCR bit 0 to be set/reset without affecting the other CCR bits. A second command allows internal logic to
be reset to a known state if an error condition causes a channel to stop before completion. Also, a third command
is available for receive DMA channels only. This command forces the receive fifos to be flushed to local bus
memory. A separate command register exists to control each DMA channel.

The command to enable a channel should not be issued with the same write that releases the channel from a reset
command.

 2.3.2.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð2ðh (read/write)

 1 +ð1ð2ðh (read/write)

 2 +ð2ð2ðh (read/write)

 3 +ð3ð2ðh (read/write)

 4 +ð4ð2ðh (read/write)

 5 +ð5ð2ðh (read/write)

 6 +ð6ð2ðh (read/write)

 7 +ð7ð2ðh (read/write)

 2.3.2.3 Register Format
31 3 2 1 ð

─── ─── ─── ───┐

 Reserved FRF RES DIS

───┴───┴───┴───┘

 2.3.2.4 Bit Descriptions

� Bit 31-3. Reserved. Always write these bits to '0'.

� Bit 2. Flush Receive Fifo. (Receive Channels Only)

Setting this bit to a '1' forces the residual bytes held in the receive DMA channel's fifo to be flushed to local
bus memory. When the bytes are flushed, the FRF bit will reset back to '0'. The FRF command is only valid
for receive channels when the channel is stopped. Writes to this bit are blocked when the DIS bit = '1'
(channel is running). Users should stop the channel by writing to the DIS bit and verify that the channel is
stopped (DIS = '0') before flushing the fifo.

� Bit 1. Reset channel command. Setting this bit to '1' causes a channel to be reset as shown by the Reset
Command for each register. The channel is held in the reset state until the bit is set back to '0'.

 – 1 = Reset Active
 – 0 = Reset Inactive

Page 28 of 98 — VolantPCI Component Specification

� Bit 0. Disable channel command. Bit 0 = '0' defines the command to disable the channel. Bit 0 = '1' defines
the command to enable the channel. Bit 0 of the CCR, if read, will reflect an enable or disable command if it
is issued through the DCCR.

– 1 = DMA Channel Enable
– 0 = DMA Channel Disable

Note: When stopping the channel, a write to this bit causes the DMA channel to complete any pending oper-
ations and then stop. This bit should be read to verify that the channel is stopped since there may be a
delay between the writing of this bit to stop the channel, and when the DMA channel actually stops.

 2.3.2.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

DMA RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ððSð

2.3.3 Memory Pointer Register (MPR)

 2.3.3.1 Description:
The MPR contains the 32-bit Local Bus address of the next data byte to be DMA'ed. There are no alignment
restrictions on the address programmed into this register.

Note: This register must be written before the TCR is written when directly programming a DMA transfer.

 2.3.3.2 Register Addressing
 DMA Channel Address Offset

 ð +ððððCh (read/write)

 1 +ð1ððCh (read/write)

 2 +ð2ððCh (read/write)

 3 +ð3ððCh (read/write)

 4 +ð4ððCh (read/write)

 5 +ð5ððCh (read/write)

 6 +ð6ððCh (read/write)

 7 +ð7ððCh (read/write)

 2.3.3.3 Register Format
 31 ð

───┐

 Memory Pointer

───┘

 2.3.3.4 Bit Descriptions

� Bits 31-0. PCI Bus Address.

 2.3.3.5 Reset Conditions

CHIP RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU

DMA RESET: SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS

VolantPCI DMA Controller — Page 29 of 98

2.3.4 Transfer Count Register (TCR)

 2.3.4.1 Description:
Bits 0-15 contain the current DMA transfer count in bytes. Values from 0000h to FFFFh can be programmed.
This allows DMA transfers of from '1' (0001h) to '64KB' (0000h) to be transferred. This register is automatically
saved into memory when a chain event occurs. This is shown in Figure 2 on page 35.

The Terminal Count (TC) condition occurs when the Transfer Count decrements to zero.

 2.3.4.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð1ðh (read/write)

 1 +ð1ð1ðh (read/write)

 2 +ð2ð1ðh (read/write)

 3 +ð3ð1ðh (read/write)

 4 +ð4ð1ðh (read/write)

 5 +ð5ð1ðh (read/write)

 6 +ð6ð1ðh (read/write)

 7 +ð7ð1ðh (read/write)

 2.3.4.3 Register Format
 31 16 15 ð

───────────────────────────────────── ─────────────────────────┐

 Reserved DMA Byte Count

─────────────────────────────────────┴─────────────────────────┘

 2.3.4.4 Bit Descriptions

� Bits 31-16. Reserved. Always write these bits to '0'.

Note: Vero compatible code may write these bit to a non-zero value. All new code should write these bits as
'0'.

� Bits 15-0. Transfer count in bytes (1 to 64K).

Note: A zero value equals a count of 64k. For future compatibility it is suggested that the value of
00010000h be used for 64k transfers.

 2.3.4.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð UUUU UUUU UUUU UUUU

DMA RESET: ðððð ðððð ðððð ðððð SSSS SSSS SSSS SSSS

Page 30 of 98 — VolantPCI Component Specification

2.3.5 Chain Pointer Register (CPR)

 2.3.5.1 Description:
The CPR contains the 32-bit address pointer that points to the memory location where the DMA controller will
fetch the CDB for the next buffer when a chain event occurs. The lower 2 bits of this register will always read '00'
forcing the chain pointer to be 4 byte aligned. The following two conditions define a chaining event.

1. terminal count has been reached and list chaining for terminal count is enabled in the CCR,
2. an End-Of-Process condition has occurred and list chaining for end-of-process is enabled in the CCR.

When writing this register, if a '1' is written to bit 0 and the channel is stopped, the channel will start and imme-
diately chain from the address written. This allows the DMA to be started with a single write. If the channel is
running, the CPR will be replaced.The CPR must only be written if the channel is stopped or this register
currently contains 00000000h. Also, software should never start a chain to address 0 by writing 00000001h
to this register. See 2.4.2, “Linked List Chaining/Stopping” on page 36.

 2.3.5.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð14h (read/write)

 1 +ð1ð14h (read/write)

 2 +ð2ð14h (read/write)

 3 +ð3ð14h (read/write)

 4 +ð4ð14h (read/write)

 5 +ð5ð14h (read/write)

 6 +ð6ð14h (read/write)

 7 +ð7ð14h (read/write)

 2.3.5.3 Register Format
31 2 1 ð

─── ── ──┐

 Chain Pointer ð ST

───┴──┴──┘

 2.3.5.4 Bit Descriptions

� Bits 31-2. Chain Pointer Address

� Bit 1. Reserved. This bit always reads '0'.

� Bit 0. Chain and start. If when writing the CPR this bit is written as a '1' and the channel is stopped, the
channel will immediately chain to the address written. If the channel is running this bit is ignored. This bit
always reads '0'.

 2.3.5.5 Reset Conditions
CHIP RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUðð

DMA RESET: SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSðð

VolantPCI DMA Controller — Page 31 of 98

2.3.6 AIB Address 1/2 Register (AIB_ADDR 1/2)

 2.3.6.1 Description:
The AIB_ADDR 1/2 register contains two separate 16-bit address fields. Bits 0-15 defines the first AIB address of
two possible I/O operations that the hardware will perform when a chain event occurs on receive DMA channels.
Bits 16-31 defines the second AIB address of two possible I/O operations that the hardware will perform when a
chain event occurs. The first operation (read or write) is directed at the address defined by bits 0-15 of this reg-
ister. For a write operation, the data is defined by the value in the AIB_OP1 DATA register. For read operations,
the data read is stored in memory. See 2.4.1, “Modes of List Chaining” on page 35 for more information. The
second operation (read or write) is directed at the address defined by bits 16-31 of this register. This operation is
the same as the first except that the data written to the AIB is that contained in the AIB_OP2 DATA register or as
defined in CCR bits 20-21.

Note: VolantPCI only supports AIB OPs on receive channels. The Vero chip supported AIB OPs on receive and
transmit channels.

 2.3.6.2 Register Addressing
 DMA Channel Address Offset

 ð +ðððððh (read/write)

 1 +ð1ðððh (read/write)

 2 +ð2ðððh (read/write)

 3 +ð3ðððh (read/write)

 4 +ð4ðððh (read/write)

 5 +ð5ðððh (read/write)

 6 +ð6ðððh (read/write)

 7 +ð7ðððh (read/write)

 2.3.6.3 Register Format
 31 16 15 ð

─────────────────────────────── ───────────────────────────────┐

2nd AIB_OP Address 1st AIB_OP Address

───────────────────────────────┴───────────────────────────────┘

 2.3.6.4 Bit Descriptions

� Bits 31-16. AIB OP Address for 2nd AIB Chain Operation

� Bits 15-0. AIB OP Address for 1st AIB Chain Operation

 2.3.6.5 Reset Conditions
CHIP RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU

DMA RESET: SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS

Page 32 of 98 — VolantPCI Component Specification

2.3.7 AIB_OP1 DATA Register (AIB_OP1)

 2.3.7.1 Description:
The AIB_OP1 register contains the data field of the first of two operations upon a chain event for receive DMA
channels. When a chain event occurs, the DMA controller can be programmed to perform up to two I/O operations
to any AIB Bus address in the 64K of the AIB address space. The first operation (read or write) is directed at the
address defined by bits 0-15 of the AIB_ADDR 1/2 register. For a write operation, the data is defined by this
register. For reads, the data is placed in this register.

Note: VolantPCI only supports AIB OPs on receive channels. The Vero chip supported AIB OPs on receive and
transmit channels.

 2.3.7.2 Register Addressing
 DMA Channel Address Offset

 ð +ðððð4h (read/write)

 1 +ð1ðð4h (read/write)

 2 +ð2ðð4h (read/write)

 3 +ð3ðð4h (read/write)

 4 +ð4ðð4h (read/write)

 5 +ð5ðð4h (read/write)

 6 +ð6ðð4h (read/write)

 7 +ð7ðð4h (read/write)

 2.3.7.3 Register Format
 31 8 7 ð

── ────────────────────┐

 Reserved 1st AIB_OP Data

──┴────────────────────┘

 2.3.7.4 Bit Descriptions

� Bits 31-8. Reserved. Always write these bits to 0.

� Bits 7-0. Data for 1st. AIB Chain Operation

 2.3.7.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð UUUU UUUU

DMA RESET: ðððð ðððð ðððð ðððð ðððð ðððð SSSS SSSS

VolantPCI DMA Controller — Page 33 of 98

2.3.8 AIB_OP2 DATA Register (AIB_OP2)

 2.3.8.1 Description:
The AIB_OP2 register contains the data field of the second of two operations upon a chain event of a receive DMA
channel. When a chain event occurs, the DMA controller can be programmed to perform up to two I/O operations
to any AIB Bus address in the 64K of the AIB address space. The second operation (read or write) is directed at
the address defined by bits 16-31 of the AIB_ADDR 1/2 register. For a write operation, the data is defined by this
register or may be defined by bits 20-21 of the CCR. For reads, the data is placed in this register.

Note: VolantPCI only supports AIB OPs on receive channels. The Vero chip supported AIB OPs on receive and
transmit channels.

 2.3.8.2 Register Addressing
 DMA Channel Address Offset

 ð +ðððð8h (read/write)

 1 +ð1ðð8h (read/write)

 2 +ð2ðð8h (read/write)

 3 +ð3ðð8h (read/write)

 4 +ð4ðð8h (read/write)

 5 +ð5ðð8h (read/write)

 6 +ð6ðð8h (read/write)

 7 +ð7ðð8h (read/write)

 2.3.8.3 Register Format
 31 8 7 ð

── ────────────────────┐

 Reserved 2nd AIB_OP Data

──┴────────────────────┘

 2.3.8.4 Bit Descriptions

� Bits 31-8. Reserved. Always write these bits to 0.

� Bits 7-0. Data for 2nd. AIB Chain Operation

 2.3.8.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð UUUU UUUU

DMA RESET: ðððð ðððð ðððð ðððð ðððð ðððð SSSS SSSS

Page 34 of 98 — VolantPCI Component Specification

2.3.9 DMA Interrupt Status Registers (DISR)

 2.3.9.1 Description:
Each DMA channel has a DMA Interrupt Status register (DISR) associated with it. This status register is cleared
when read. The EOP and TC status will also clear during a list chain operation if the previous CDB did not have
interrupts enabled (the EOP/TC status can be checked in the CDB). If interrupts are enabled then status bits will
accumulate until cleared by a read.

Since many different conditions can cause the interrupt, this means that it is possible for multiple conditions to be
present when the status register is read. However, since the register is cleared by the read, only one interrupt will
be presented. Therefore, the interrupt service routine must be capable of servicing all of the pending status bits.

 2.3.9.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð28h (read only)

 1 +ð1ð28h (read only)

 2 +ð2ð28h (read only)

 3 +ð3ð28h (read only)

 4 +ð4ð28h (read only)

 5 +ð5ð28h (read only)

 6 +ð6ð28h (read only)

 7 +ð7ð28h (read only)

 2.3.9.3 Register Format
31 8 7 6 5 4 3 2 1 ð

─────────────────────────── ─── ─── ─── ─── ─────── ─── ───┐

 Reserved TAB MAB LPR LEX Reserve EOP TCð

───────────────────────────┴───┴───┴───┴───┴───────┴───┴───┘

 2.3.9.4 Bit Descriptions

� Bit 31 - 8. Reserved.

� Bit 7. Target Abort. This bit, when set, indicates a Target Abort has been detected while the channel was a
master on the PCI Bus.

� Bit 6. Master Abort. This bit, when set, indicates a Master Abort occurred while the channel was a master on
the PCI Bus.

� Bit 5. LPR. This bit, when set, indicates a Local Bus parity error has been detected when the DMA channel
was reading data from the Local Bus. In this case, the channel is automatically stopped.

� Bit 4. LEX. This bit, when set, indicates a PERR# exception occurred. This happens when a Local Bus target
drives the PERR# signal while VolantPCI is the Local Bus master. In this case, the VolantPCI DMA channel
is automatically stopped.

 � Bits 3-2. Reserved.

� Bit 1. EOP. This bit, when set, indicates the EOP signal was received during a receive DMA on this channel.
This bit is set upon detecting an EOP regardless of the state of its corresponding interrupt enable bit.

� Bit 0. TC0. This bit, when set, indicates a terminal count (byte count changed to zero, see 2.3.4, “Transfer
Count Register (TCR)” on page 28) condition has been reached for the DMA channel. This bit is set upon
detecting a TC regardless of the state of its corresponding interrupt enable bit.

 2.3.9.5 Reset Conditions

VolantPCI DMA Controller — Page 35 of 98

CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

DMA RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

2.3.10 Enhanced Status Pointer Register (ESP)

 2.3.10.1 Description:
The ESP register contains the address where status will be written for a DMA channel if the chip is operating with
Enhanced Status reporting enabled. This address is determined by VolantPCI during a chain event. After a CDB is
read into the chip, the the value of the old CPR +1Ch is saved in this register. The ESP must always be 4-byte
aligned (ie. bits 0,1 = 00).

 2.3.10.2 Register Addressing
 DMA Channel Address Offset

 ð +ððð38h (read/write)

 1 +ð1ð38h (read/write)

 2 +ð2ð38h (read/write)

 3 +ð3ð38h (read/write)

 4 +ð4ð38h (read/write)

 5 +ð5ð38h (read/write)

 6 +ð6ð38h (read/write)

 7 +ð7ð38h (read/write)

 2.3.10.3 Register Format
31 2 1 ð

─── ── ──┐

Enhanced Status Pointer ð ð

───┴──┴──┘

 2.3.10.4 Bit Descriptions

� Bits 31-2. Enhanced Status Pointer

� Bits 1-0. Reserved. These bits always read '0'.

 2.3.10.5 Reset Conditions
CHIP RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUðð

DMA RESET: SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSðð

Page 36 of 98 — VolantPCI Component Specification

2.4 Linked List Chaining (LLC)
The VolantPCI DMA controller supports a feature known as Linked List Chaining (LLC), sometimes called
scatter/gather DMA. This feature allows the programmer to create, in memory, lists of different data buffer areas
and buffer counts (CDB's) that can be automatically reloaded to the CDT after a terminal count or end-of-process
condition for the present data buffer has occurred. The channel can optionally interrupt or not interrupt a local
processor when any of these conditions has occurred. Also, the DMA channel can independently be stopped or not
stopped at this point. In addition certain control information for the channel can be changed during the chaining
operation.

2.4.1 Modes of List Chaining
VolantPCI supports two different list chaining modes configured by the ESM (Enhanced Status Mode) bit in the
CFGR (see 6.1.1, “Configuration Register (CFGR)” on page 69) These two modes are:Compatibility Mode List
Chaining and Enhanced Status Mode List Chaining.

For both modes the hardware will always perform the three memory writes regardless of whether the DMA channel
is transmit or receive, and regardless of the AIB OP settings in the CCR. If the option to do reads from the AIB is
not chosen for a receive DMA channel, the two AIB_OP data words written will be indeterminate.

2.4.1.1 Compatibility Mode List Chaining

Within the CDT, a 32-bit address pointer (CPR) is maintained. This points to a CDB in memory. At the time of
terminal count for a transmit channel or end-of-process detection for a receive channel, if linked list chaining is
enabled, the hardware will do three memory writes followed by seven memory reads starting at this chain pointer
address. The three writes store into memory: the present DMA transfer byte count and status in the first word, the
AIB_OP1 data for the second word, and the AIB_OP2 data for the third word. (Note that for transmit channels, the
AIB_OP data is always the same as the data last loaded into these registers either via list chain or direct register
write.) The hardware then fetches seven new words of CDB information as detailed below. At the end of this
operation, the CPR in the CDT will be the CPR value that was just read from the CDB in memory. This address is
the starting address of the next CDB in the chain. This provides a mechanism to off-load the processor from
processing DMA terminal count or end-of-process interrupts. In theory, this list of buffers could occupy any
amount of free memory. This concept is detailed in Figure 2 on page 35.

 31 MEMORY ð

 . .

 . .

 ├─────────────┤

CPR + <24h> ---------> ---<Channel control>

 ├─ ─┤

 ---<Chain pointer>

 ├─ ─┤

---<DMA byte count>

 ├─ Next ─┤

 Buffer's ---<Memory pointer>

 ├─ CDB ─┤

 ---<AIB_OP2 data>

 ├─ ─┤

 ---<AIB_OP1 data>

 ├─ ─┤

CPR + <ðCh> ---------> ---<AIB_ADDR 2/1>

 ├─────────────┤

---<AIB_OP2 read data>

├─ Current ─┤

Buffer's ---<AIB_OP1 read data>

 ├─ Status ─┤

CPR + <ððh> ---------> ---<DMA byte count >

 ├─────────────┤

 . .

Figure 2. Linked List Chaining: Vero Compatibility Mode

VolantPCI DMA Controller — Page 37 of 98

2.4.1.2 Enhanced Status Mode List Chaining

When VolantPCI is set for Enhanced Status Mode List Chaining, list chaining operates as described above in the
Vero compatibility mode except that the 3 writes (byte count, termination status, and AIB OPs for receive channels
and, byte count and termination status for transmit channels) that occur prior to the CDB read will be written into
the CDB block area that is associated with the actual CDT rather than the next link's CDB block. This concept is
detailed in Figure 3 on page 37. Note also, that the DMA channel termination status is now stored along with the
byte count and that the status is stored at the memory addresses that follow the CDB as opposed to preceding it.

In Enhanced Status Mode List Chaining, status will be written only when the list chain condition is met. In other
words if an error occurs or a 'stop condition' is reached before a 'list chain condition' the status for that CDB will
not be written to memory. If the user would like status for the last CDB in a chain, they should use
CPR=00000000h to stop the channel instead of CCR(0)='0', using a 'stop' condition or not using a 'chain' condition.

The advantages of using Enhanced Status Mode List Chaining are:

AIB OP Data and Byte Count are stored with associated CDB
A Dummy CDB is no longer required to store the last CDB's status
Termination Status (EOP and/or TC indication) is written along with the byte count in the format shown below
(Status is also stored with the Byte Count in Compatibility Mode, in Vero these bits were reserved.)

 31 26 25 24 23 16 15 ð

 ───── ─── ── ──────── ─────────────────────┐

 Rsvd. EOP TC Reserved Byte Count

 ─────┴───┴──┴────────┴─────────────────────┘

2.4.2 Linked List Chaining/Stopping
The CCR provides many different options for linked list chaining and stopping DMA channels (see 2.3.1, “Channel
Control Register (CCR)” on page 23). The chaining options and the stopping options must be looked at together to
determine the action a DMA channel takes when these conditions are encountered during DMA channel execution.

If chaining is disabled, the DMA channel is stopped by the programmed option.
If chaining is enabled, the stop programming options are ignored unless the programmed stop option is different
from the programmed chaining option.
If both a chain and stop option are reached simultaneously, the channel will chain.

The state of the CCR enable bit in a memory CDB determines whether a DMA channel remains enabled or disabled
after the chaining operation occurs.

2.4.3 Adding CDB's to a Chain
The following method should be used for creating CDB chains:

1. Create the CDB in memory. One of the chain operations (CCR9:7) should be selected. This CDB's CPR
should be 00000000h.

2. Write the CDB's address to the CPR of the previous CDB.

3. Read the CPR register in VolantPCI.

� If its value is 00000000h then write the address of this CDB OR'ed with 00000001h to the CPR register.

� otherwise you are done.

When it is known that the channel is stopped (i.e. first CDB, channel reset, etc.) software can do step 1 and then
write the address of this CDB OR'ed with 00000001h to the CPR register.

Page 38 of 98 — VolantPCI Component Specification

 MEMORY

 31 ð

 . .

 . .

 ├─────────────┤

---<AIB_OP2 read data>

 ├─ Next ─┤

Buffer's ---<AIB_OP1 read data>

next ESP = ├─ Status ─┤

CPR + <1Ch> ---------> ---<DMA byte count and Termination Status>

 ├─────────────┤

 ---<Channel control>

 ├─ ─┤

 ---<Chain pointer>

 ├─ ─┤

---<DMA byte count>

 ├─ Next ─┤

 Buffer's ---<Memory pointer>

 ├─ CDB ─┤

 ---<AIB_OP2 data>

 ├─ ─┤

 ---<AIB_OP1 data>

 ├─ ─┤

current CPR ---------> ---<AIB_ADDR 2/1>

 ├─────────────┤

 . .

 . .

 . .

 ├─────────────┤

---<AIB_OP2 read data>

├─ Current ─┤

Buffer's ---<AIB_OP1 read data>

 ├─ Status ─┤

current ESP ---------> ---<DMA byte count and Termination Status>

 ├─────────────┤

 ---<Channel control>

├── ─ ─ ─ ─ ─┤

Next Buff CPR ---<Chain pointer>

├─ ─ ─ ─ ─ ─ ─┤

---<DMA byte count>

├─ Current ─┤

 Buffer's ---<Memory pointer>

 ├─ CDB ─┤

 ---<AIB_OP2 data>

 ├─ ─┤

 ---<AIB_OP1 data>

 ├─ ─┤

previous CPR---------> ---<AIB_ADDR 2/1>

 ├─────────────┤

 . .

 . .

Figure 3. Linked List Chaining: VolantPCI Enhanced Status Mode List Chaining

2.5 DMA Miscellaneous Registers

2.5.1 AIB Bus Global DMA Command Register (GDCR)

 2.5.1.1 Description:
The GDCR allows two commands to be issued globally to all DMA channels at once for a given AIB bus. It
allows all DMA channels to be 'stopped' with one command or all DMA channels to be reset with one command.
The 'stopped' state of each channel is reflected in the EN/DIS bit of the CCR.

The command to re-start all channels should not be issued with the same write that releases all channels from a
reset command.

 2.5.1.2 Register Addressing

VolantPCI DMA Controller — Page 39 of 98

 Address Offset

 +ð8ðððh (read/write)

 2.5.1.3 Register Format

 31 2 1 ð

─── ─── ───┐

 Reserved RES STP

───┴───┴───┘

 2.5.1.4 Bit Descriptions

� Bits 31-2. Reserved. Always write these bits to '0'.

� Bit 1. Reset all channels command. Setting this bit to '1' causes all the channels to be reset as shown by the
Reset Command for each register. All channels are held in the reset state until the bit is set back to '0'.

� Bit 0. Stop all channels command. If written to a '1' all channels are stopped. If written to a '0' all channels
are re-started.

When a channel is 'stopped', all internally pending operations are performed before the channel stops servicing
DMA requests.

 2.5.1.5 Reset Conditions

CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

DMA RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ððSð

Page 40 of 98 — VolantPCI Component Specification

2.5.2 DMA FIFO Residual Count registers (DFRC)

 2.5.2.1 Description:
The DFRC register can be read when a DMA channel is stopped or known to be inactive to determine how many
bytes of data are in the FIFO.

Note: This register is for debug purposes only. Its contents may not be compatible with future versions of this
chip. This register will not be documented in the Hardware Technical Reference.

 2.5.2.2 Register Addressing

 DMA Channel Address Offset

 ð +ððð2Ch (read only)

 1 +ð1ð2Ch (read only)

 2 +ð2ð2Ch (read only)

 3 +ð3ð2Ch (read only)

 4 +ð4ð2Ch (read only)

 5 +ð5ð2Ch (read only)

 6 +ð6ð2Ch (read only)

 7 +ð7ð2Ch (read only)

 2.5.2.3 Register Format
31 29 28 27 24 23 21 2ð 16 15 ð

────── ──── ────── ────── ────────── ────────────┐

 Rsvd Last Pointr Rsvd FIFO count Reserved

──────┴────┴──────┴──────┴──────────┴────────────┘

 2.5.2.4 Bit Descriptions

� Bits 31-29. Reserved. Always read as 0.

� Bits 28. This is the Last Buffer Indicator. When set, indicates that this is the last buffer needed to complete
this DMA.

� Bits 27-24. Buffer Pointer indicates the next location in the buffer to be filled (Rx) or flushed (Tx).

� Bits 23-21. Reserved. Always read as 0.

� Bits 20-16. FIFO Count indicates the number of bytes left in the FIFO to flush (Tx) or number of bytes that
may be filled (Rx).

� Bits 15-0. Reserved. Always read as 0.

 2.5.2.5 Reset Conditions

CHIP RESET: ðððU UUUU ðððU UUUU ðððð ðððð ðððð ðððð

DMA RESET: ðððU UUUU ðððU UUUU ðððð ðððð ðððð ðððð

VolantPCI DMA Controller — Page 41 of 98

2.5.3 DMA Buffer Data registers (DBD)

 2.5.3.1 Description:
The DBD registers can be read/written when a DMA channel is stopped or known to be inactive to view, initialize
or change the data in the buffer.

Note: These registers are for debug purposes only. Their contents may not be compatible with future versions of
this chip. This register will not be documented in the Hardware Technical Reference.

 2.5.3.2 Register Addressing
 Address Offsets

 DMA Channel

ð +ðð1ððh +ðð1ð4h +ðð1ð8h +ðð1ðCh (read/write)

1 +ð11ððh +ð11ð4h +ð11ð8h +ð11ðCh (read/write)

2 +ð21ððh +ð21ð4h +ð21ð8h +ð21ðCh (read/write)

3 +ð31ððh +ð31ð4h +ð31ð8h +ð31ðCh (read/write)

4 +ð41ððh +ð41ð4h +ð41ð8h +ð41ðCh (read/write)

5 +ð51ððh +ð51ð4h +ð51ð8h +ð51ðCh (read/write)

6 +ð61ððh +ð61ð4h +ð61ð8h +ð61ðCh (read/write)

7 +ð71ððh +ð71ð4h +ð71ð8h +ð71ðCh (read/write)

 2.5.3.3 Register Format

 31 24 23 16 15 8 7 ð

────────── ────────── ────────── ────────────┐

 Byte F Byte E Byte D Byte C ðCh

├──────────┼──────────┼──────────┼────────────┤

 Byte B Byte A Byte 9 Byte 8 ð8h

├──────────┼──────────┼──────────┼────────────┤

 Byte 7 Byte 6 Byte 5 Byte 4 ð4h

├──────────┼──────────┼──────────┼────────────┤

 Byte 3 Byte 2 Byte 1 Byte ð ððh

──────────┴──────────┴──────────┴────────────┘

 2.5.3.4 Bit Descriptions

� Each byte location corresponds to a data byte location in the internal data buffer. The validity of each byte
depends on several factors including number of bytes transfered, Transfer count (TCR), Memory pointer (MPR)
and whether the channel is Tx or Rx.

 2.5.3.5 Reset Conditions

CHIP RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU

DMA RESET: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU

Page 42 of 98 — VolantPCI Component Specification

 3.0 VolantPCI Interrupts

 3.1 General
VolantPCI provides an 8-bit interrupt vector register which can be read from the PCI Bus side of the chip. This
vector indicates the highest priority interrupt currently pending. The values used for this register are the same as
the vectors the Vero presented on its XINT bus.

The AIB side of VolantPCI can support up to 4 interrupts with up to two defined as vectored interrupt. In direct
mode, the INT(3-0) signals correspond to specific local bus vector numbers. In vectored mode, the INT(1-0) and
INTACK(1-0) signals are used in conjunction with an interrupt vector supplied by the interrupting device on the
AIB bus. In addition to the vectored and direct interrupt support for each AIB bus, the AIB ERROR signal causes
a high priority interrupt to occur.

 3.2 Interrupt Sources
Interrupts are sourced from the AIB Bus in either Direct or Vectored mode, from the DMA Channels, from the AIB
ERROR signal and from the PIO's. VolantPCI internally manages the prioritization of interrupt input signals and
translates those inputs into specific interrupt vectors which are placed in the internal interrupt vector register.

Each of the DMA channels has several possible sources of interrupts. Of these, two are classified as 'normal
termination' interrupts and the rest are classified as 'error' interrupts.

Each DMA channel has an interrupt status register (see 2.3.9, “DMA Interrupt Status Registers (DISR)” on
page 33) associated with it that is read during the interrupt subroutine to determine the pending interrupt status bits
for that channel. Reading the DISR clears all active status bits.

 3.2.1 DMA Interrupts
Each DMA channel has a fixed interrupt vector assigned to it. These are shown in Table 13 on page 42.

 3.2.2 AIB Interrupts
AIB sourced interrupts can be either direct or vectored. Vectored/Direct modes of interrupting are selected via the
IIR (Interrupt Initialization Register, see 3.3.1, “Interrupt Initialization register (IIR)”)

 3.2.2.1 Direct Mode
Table 13 on page 42 shows the corresponding interrupt vector for each of the direct mode input pins.

 3.2.2.2 Vectored Mode
In vectored mode, the INT/INTACK signals provide the handshake for the interrupting device to deliver an 8-bit
vector across the D(7-0) bus. There are two INT/INTACK pairs on the AIB bus. The vector received from the
device will be readable in the IVR if it is the highest priority interrupt. Regardless of vector, INT0 is always higher
priority than INT1. A vector of FF will be ignored by VolantPCI.

3.2.3 AIB ERROR Interrupt
The -AIB_ERROR signal provides a way for the AIB board to signal the processor with a high priority interrupt. It
is level sensitive.

 3.2.4 PIO Interrupts
Some of the PIO pins can be enabled to interrupt on the detection of a change in state of the pin. There is one
interrupt vector per port.

VolantPCI Interrupts — Page 43 of 98

 3.2.5 Interrupt Priorities
The following table shows all VolantPCI interrupts and their corresponding vectors and priorities. The highest
priority interrupt is at the top of the table.

Table 13. VolantPCI DMA Channel Vector Assignment

Interrupt Name Interrupt Vector #
(Decimal / hex)

Priority

AIB_ERROR 232 / E8h highest

Vector mode INT(0) (external)

Vector mode INT(1) (external)

Direct mode INT(2) 120 / 78h

Direct mode INT(3) 112 / 70h

PIO port 0 111 / 6Fh

PIO port 1 110 / 6Eh

PIO port 2 109 / 6Dh

PIO port 3 108 / 6Ch

Direct mode INT(1) 83 / 53h

Direct mode INT(0) 82 / 52h

DMA Channel 0 71 / 47h

DMA Channel 1 70 / 46h

DMA Channel 2 69 / 45h

DMA Channel 3 68 / 44h

DMA Channel 4 67 / 43h

DMA Channel 5 66 / 42h

DMA Channel 6 65 / 41h

DMA Channel 7 64 / 40h lowest

Page 44 of 98 — VolantPCI Component Specification

 3.3 Programmable Options

3.3.1 Interrupt Initialization register (IIR)

 3.3.1.1 Description

The IIR register controls the initialization parameters for the VolantPCI chip interrupt controller logic. This register
must be programmed before interrupts are generated from the AIB.

 3.3.1.2 Register Addressing

 Address Offset

 +ð8ð1ð

 3.3.1.3 Register Format

15 14 13 12 11 1ð 9 8 7 6 5 4 3 2 1 ð

| interrupt ack 1 control field | interrupt ack ð control field |

| | |

| |control| inactive | active |control|

 ─────────────────────────── ─── ─── ─── ─── ─── ─── ─── ─── ───┐

 Reserved IAC INA INA INA ACK ACK ACK OTP IAC

EN PW2 PW1 PWð PW2 PW1 PWð ACK EN

 ───────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

 3.3.1.4 Bit Descriptions

� Bits 31-16. Reserved. Always write these to 0.

� Bits 15-8. Interrupt level 1 control field.Note that bits 15-9 do not exist and always read '0'. INT1 active,
inactive and number of pulses are the same as defined for INT0.

� Bits 7-0. Interrupt level 0 control field.

Each 8 bit control field defines the interrupt controller operation for that interrupt level. All control fields are
equivalent.

� IAC EN: Interrupt acknowledge enable.

– 0 = Direct Interrupt Mode
– 1 = Interrupt Acknowledge Mode

When set to '0' the INT0 (or INT1) input functions as a direct interrupt input from the AIB. No interrupt
acknowledge cycle will be run. In this mode the INT signals are level sensitive and must be held until soft-
ware services it.

When set to '1' an interrupt will cause an interrupt acknowledge cycle to be run on the AIB Bus. The vector
during the interrupt acknowledge cycle will be presented to the processor. An EOI will be required to enable
detection of the next interrupt. Vector FFh will be ignored by VolantPCI; no interrupt will be reported to the
PCI Bus and no EOI will be needed.

� OTP ACK: One or two pulse interrupt acknowledge signal.

– OTP ACK=0: one pulse.

VolantPCI Interrupts — Page 45 of 98

– OTP ACK=1: two pulses.

Some devices use an 8259 type interrupt acknowledge cycle (two pulse). Others require external logic to
eliminate the first pulse. This bit should reduce or eliminate the need for that external logic.

If two pulses are selected, an idle time is inserted between the two pulses for device recovery, the length of
which is controlled by INA PW2-0.

� ACK PW2-0: Interrupt acknowledge cycle active pulse width.

ACK ACK ACK | INTACK 'low' (active) Pulse Width

PW2 PW1 PWð | N x "Local Bus Clock Period in ns."

ð ð ð | N = 3

ð ð 1 | N = 4

ð 1 ð | N = 5

ð 1 1 | N = 6

1 ð ð | N = 7

1 ð 1 | N = 8

1 1 ð | N = 9

1 1 1 | N = 1ð

These three bits provide eight options for the interrupt acknowledge cycle active length. Some devices respond
slower than others and therefore would require external logic to insert wait states into the interrupt acknowl-
edge cycle. These bits should eliminate the need for this external logic.

� INA PW2-0: Interrupt acknowledge recovery (inactive) width. INA PW2 is hardwired to '0'.

INA INA INA | INTACK 'high' (inactive) Pulse Width

PW2 PW1 PWð | N x "Local Bus Clock Period in ns."

ð ð ð | N = 1

ð ð 1 | N = 2

ð 1 ð | N = 3

ð 1 1 | N = 4

1 X X | reserved

These three bits provide options for the interrupt acknowledge recovery length. Some devices are slower than
others to release (float) data signals on the AIB Bus, and thus require a certain amount of bus idle time after
the interrupt acknowledge cycle is completed.

If the OTP ACK bit ='1' (two pulses), both interrupts acknowledge pulses will be the length set by ACK
PW2-0, with an inactive time between and after them determined by INA PW2-0.

 3.3.1.5 Reset Conditions

CHIP RESET: ðððð ðððð ðððð ðððð UUUU UUUð UUUU UUUð

Page 46 of 98 — VolantPCI Component Specification

3.3.2 Interrupt Mask register (IMR)

 3.3.2.1 Description:
The IMR allows the four AIB interrupt inputs to be enabled and disabled from causing interrupts to the processor
without programming the interrupting device directly. This allows for a point of synchronization between the
processor and the interrupting device. Typically, devices contain their own interrupt enable functions. However,
these are sometimes not usable on a real time basis since spurious interrupts can result if an interrupt is disabled
within a device immediately after its interrupt output has been asserted. This register prevents the possibility of
these spurious interrupts if the device takes no precautions to do this.

 3.3.2.2 Register Addressing

 Address Offset

 +ð8ð14

 3.3.2.3 Register Format

31 7 6 5 4 3 2 1 ð

───────────────────────────────────── ─── ───── ─── ─── ─── ───┐

 Reserved AER Rsvd. AI3 AI2 AI1 AIð

─────────────────────────────────────┴───┴─────┴───┴───┴───┴───┘

 3.3.2.4 Bit Descriptions

� Bit 31-7. Reserved. Always write these as 0.

� Bit 6. AIB_ERROR input mask. This is an alternate access to the same bit in the EIMR. See 3.3.4, “AIB
Error Interrupt Mask register (EIMR).”

� Bit 5-4. Reserved. Always write these as 0.

� Bits 3-0. AIB_INT3-0 mask bits.

– 1 = AIB Interrupt Enabled
– 0 = AIB Interrupt Disabled

These bits can individually mask the 4 AIB interrupt inputs from generating an interrupt to the processor. The
disabling of these bits is synchronized with the interrupt input signal to prevent spurious interrupts when disa-
bling.

 3.3.2.5 Reset Conditions

CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

VolantPCI Interrupts — Page 47 of 98

3.3.3 Interrupt Status register (ISR)

 3.3.3.1 Description:
The ISR allows all VolantPCI interrupt input sources associated with the AIB bus to be read in a single status
register.

 3.3.3.2 Register Addressing

 Address Offset

 +ð8ð18

 3.3.3.3 Register Format

 31 ð

───┐

Pending Interrupt Status

───┘

 3.3.3.4 Bit Descriptions

 � Bits 31-24. Reserved.

� Bits 23-20. AIB_INT 3-0 status bits. (direct-mode only)

� Bit 19. AIB error input status bit.

� Bits 18-8. Reserved.

� Bits 7-0. VolantPCI DMA Channels 7-0.

 3.3.3.5 Reset Conditions

Not applicable

Page 48 of 98 — VolantPCI Component Specification

3.3.4 AIB Error Interrupt Mask register (EIMR)

 3.3.4.1 Description:
The EIMR allows the AIB Error input to be enabled and disabled from causing interrupts without programming the
interrupting device directly.

 3.3.4.2 Register Addressing

 Address Offset

 +ð8ð1C

 3.3.4.3 Register Format

 31 7 6 5 ð

── ─── ─────────┐

 Reserved AER

──┴───┴─────────┘

 3.3.4.4 Bit Descriptions

� Bit 31-7. Reserved. Always write these as 0.

� Bits 6. AIB_ERROR input mask bit.

– 1 = AIB Error Interrupt Enabled
– 0 = AIB Error Interrupt Disabled

This bit can mask the AIB_ERROR input signal from generating an interrupt to the processor. The disabling
of this bit is synchronized with the interrupt input signal to prevent spurious interrupts when disabling. This bit
is also accessible in the IMR (3.3.2, “Interrupt Mask register (IMR)” on page 45)

� Bit 5-0. Reserved. Always write these as 0.

 3.3.4.5 Reset Conditions

CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

VolantPCI Interrupts — Page 49 of 98

 3.4 Interrupt Commands
End of Interrupt (EOI) commands must be issued for INT0 and INT1 when these signals are used in interrupt
acknowledge mode. The EOI command is actually a write (of any data) or read to the corresponding interrupt's
EOI register. When an interrupt occurs, that interrupt signal is disabled. The EOI command is used to inform
VolantPCI that the interrupt source on the AIB bus has been cleared and to re-enable the receiver for a new inter-
rupt. The EIO command will be 'retried' by VolantPCI until any pending AIB bus write operations from the PCI
Bus has completed.

3.4.1 AIB INT0/1 End-of-Interrupt (EOI0/1) commands

 3.4.1.1 Description:
The EOI0/1 commands are used to inform the interrupt controller that the processor has cleared the AIB INT0/1
source. These commands must be issued for all interrupting AIB devices that use the Interrupt Acknowledge option
in 3.3.1, “Interrupt Initialization register (IIR)” on page 43. These commands should be issued after the command
that goes directly to the AIB to clear the interrupting condition.

Since writes to the AIB bus are posted in VolantPCI, the hardware does not accept EOI commands while a posted
AIB access is pending. This is done to prevent the EOI command from occuring before an interrupt clearing write
completes on the AIB bus. This is done by using the PCI retry mechanism.

The "read EOI" is recommended over the "write EOI" because writes on the PCI Bus can be posted and therefore
the timing of when the interrupt actually clears cannot be controlled.

 3.4.1.2 Register Addressing
 Address Offset

 +ð9ððð EOIð

 +ðAððð EOI1

 3.4.1.3 Command Format

� Bits 31-1. Reserved. Write data is "don't care". Read is always '0'.
� Bit 0. Write data is "don't care". When read as '1', this bit indicates the EOI was needed to allow further

interupts. When '0', it indicates VolantPCI was already enabled for further interrupts. Any write or read to this
register will clear this bit.

 3.4.1.4 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

Page 50 of 98 — VolantPCI Component Specification

3.4.2 Interrupt Vector Register (IVR)

 3.4.2.1 Description:
This register is used to indicate the highest priority interrupt currently pending in the VolantPCI chip. The vector
numbers it returns are compatible with the interrupt vectors used with the Vero chip.

Upon receiving a VolantPCI interrupt, the first level handler should read this location to determine which interrupt
needs service.

 3.4.2.2 Register Addressing

 Address Offset

 +ðFððð (read)

 3.4.2.3 Register Format

31 9 8 7 ð

────────────────────── ─── ───────────────┐

Reserved IP Pending Vector

──────────────────────┴───┴───────────────┘

 3.4.2.4 Bit Descriptions

 � Bits 31-9. Reserved.

 � Bit 8. Interrupt Pending.

This bit, when '1', indicates that an interrupt is waiting to be serviced in VolantPCI (i.e. the INTA# pin is
active).

� Bits 7-0. Pending Vector Number (read only)

These bits will return the vector of the highest priority interrupt currently pending in VolantPCI.

 3.4.2.5 Reset Conditions

CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

VolantPCI Interrupts — Page 51 of 98

Page 52 of 98 — VolantPCI Component Specification

4.0 VolantPCI AIB Bus Interface

 4.1 General
The VolantPCI module provides for a separate I/O bus (AIB Bus) that is split from the PCI Bus. This allows the
DMA controller to only access the Local Bus when one of its 16 byte data buffers is empty (transmit) or full
(receive). In this manner, only low speed non-bursted data movement occurs on the AIB bus, and only bursted data
movement occurs on the Local Bus. This describes the nature of most data movement (DMA controlled) that
occurs between the AIB bus and base adapter.

The AIB Bus supports target devices. Target devices can be directly accessed by the processor for initialization and
status operations, and will typically use the VolantPCI DMA controller to move data from the device to memory.
The AIB Bus supports a 256k byte address space within the PCI Bus address space which is mapped to 64k for
addressing target devices on the AIB. The AIB addresses match the PCI addresses for easy conversion. Only byte
accesses to 4-byte aligned PCI addresses are supported.

The following address map describes the mapping of each AIB bus onto the PCI Bus address space.

 PCI Address AIB Address

 Space Space

 AIBBAR+3FFFCh├────────┤3FFFCh

 AIBBAR+ðððððh├────────┤ðððððh

Figure 4. PCI Bus Address to AIB Address Map

Within the 256kB AIB bus region, four separate regions (chip selects) can be defined with each having a program-
mable number of wait states.

 4.1.1 AIB Arbiter
Contained within the VolantPCI chip is the arbitration logic that determines which requesting master gains control
of the AIB Bus to run its cycle. There are three requesting masters for the AIB Bus.

1. Local Bus master cycle to AIB

2. VolantPCI DMA channel cycle to AIB including AIB OPs

3. Interrupt Acknowledge cycle to AIB

The prioritization scheme is the order shown above. The Local Bus master will always be given highest priority.
If another cycle is currently active on the AIB the Local Bus master will be granted the next cycle. Therefore, the
maximum latency for the Local Bus master to begin its cycle is the maximum cycle time of a DMA channel cycle
or interrupt acknowledge cycle or two AIBOP cycles.

The DMA channels also arbitrate amongst themselves. A DMA channel whose input -DREQ signal is held active
will continue to be granted the AIB bus ahead of other DMA channels and interrupt acknowledge requests until its
request is sampled inactive at the end of a DMA cycle, or until its DMA channel buffer inside VolantPCI becomes
full (for a receive channel) or empty (for a transmit channel). As stated above, a Local Bus master request for the

VolantPCI AIB Bus Interface — Page 53 of 98

AIB will interrupt this process and be granted immediately. Service priority among these groups is fixed with
channel 0 being the highest priority and channel 7 being the lowest priority. Arbitration is in a round-robin fashion
(CH0-CH1-CH2...CH7-CH0-etc).

The interrupt acknowledge cycle request is the lowest priority in the arbitration scheme. In order for this cycle
request to be granted, both Local Bus master and DMA cycle requests must be inactive for at least one clock cycle.
This can lead to extended servicing latencies based upon such things as the size of AIB device DMA fifos and AIB
device DMA cycle time. If a more predictable interrupt response is needed (perhaps due to a heavy DMA environ-
ment) direct interrupt inputs from the AIB should be used.

Page 54 of 98 — VolantPCI Component Specification

4.2 AIB Initialization registers
Prior to accessing devices on the AIB buses, the VolantPCI AIB initialization registers must be programmed with
the proper AIB bus setup information. The AIB bus initialization registers create a flexible AIB interface that allow
devices to be connected to the AIB bus with minimal additional circuitry.

4.2.1 Chip Select Definition registers (CSD0-3)

 4.2.1.1 Description:
Each of the chip select signals can be programmed for a base starting address on any 8KB boundary within the
256KB address space of the AIB bus. Each of the chip select signals can be programmed to decode a range of
addresses from 8KB to 64KB. Also, each of the chip select signals can be programmed to run a variable cycle
based on the local bus clock frequency in increments of the clock period. In addition, both active and inactive
(restore) portions of the cycle can be varied. This should be suitable to accommodate most devices. There is a
separate CSD register for each chip select signal.

 4.2.1.2 Register Addressing

 Chip Select Address Offset

 ð +ðBððð

 1 +ðBðð4

 2 +ðBðð8

 3 +ðBððC

 4.2.1.3 Register Format
31 21 2ð 19 18 17 16

─────────────────────────────────────── ─── ─── ─── ─── ─── ───┐

 Reserved A17 A16 A15 A14 A13 RSV

───────────────────────────────────────┴───┴───┴───┴───┴───┴───┘

 15 14 13 12 11 1ð 9 8 6 5 4 3 2 1 ð

─── ─── ─── ─── ─── ─── ─── ─────────── ─── ─── ─── ─── ─── ───┐

RSV AC2 AC1 ACð RSV IC1 ICð Reserved RG1 RGð X DS1 DSð ENA

───┴───┴───┴───┴───┴───┴───┴───────────┴───┴───┴───┴───┴───┴───┘

4.2.1.4 CSD Register Bit Descriptions

� Bits 31-22. Reserved. Always write these to 0.

� Bits 21-17. Chip select base address. These bits determine the base address of the chip select address range.
Starting addresses can be on any 8KB boundary (based on the chip select range, see bits 4 and 5) of the 256kB
AIB address space. These bits can be thought of as replacing bits 17-13 of the physical PCI Bus address. The
actual bits replaced is dependent on the bits 5-4.

� Bits 16-15. Reserved. Always write to 0.

� Bits 14-12. Active cycle time. These bits determine the active cycle time for a particular chip select. Active
time is defined as the time when the -A_CS signal is low (0 volts).

VolantPCI AIB Bus Interface — Page 55 of 98

CS 'low' (active) Pulse Width

AC2 AC1 ACð N x "Local Bus Clock Period in ns."

--- --- --- -----------------

ð ð ð N = 3

ð ð 1 N = 4

ð 1 ð N = 5

ð 1 1 N = 6

1 ð ð N = 7

1 ð 1 N = 8

1 1 ð N = 9

1 1 1 N = 1ð

� Bits 11. Reserved. Always write to 0.

� Bits 10-9. Inactive cycle time. These bits determine the inactive cycle time for a particular chip select. Inac-
tive time is defined as the time when the -A_CS signal is high (5 volts).

CS 'high' (inactive) Pulse Width

IC1 ICð N x "Local Bus Clock Period in ns."

 --- --- --------------------

ð ð N = 2

ð 1 N = 3

1 ð N = 4

1 1 N = 5

� Bits 8-6. Reserved. Always write these to 0.

� Bits 5-4. Chip select address range bits. These bits are binary encoded to provide the range of addresses that
are decoded for each chip select signal. There are four possible address ranges: 8K, 16K, 32K, 64k. There is a
restriction that the base starting address selected in bits 20-17 must be on a boundary that is equal to the
decode range selected by bits 6-4. For instance, if a decode range of 8K is selected the base starting address
can be any 8K boundary.

 Chip Select

 RG1 RGð Decode Range

 --- --- ------------

 ð ð 8K

 ð 1 16K

 1 ð 32K

 1 1 64K

� Bits 3-1. Reserved. Always write to 0. Bit 2-1 were the device size bits in Vero. Since only 8-bit devices
are supported for VolantPCI these bits are hard-wired to '00'.

 DS1 DSð Device size

 --- --- -----------

 ð ð 8-bit

 ð 1 Reserved

 1 ð Reserved

 1 1 Reserved

� Bit 0. Chip select enable. This bit when set to '0' disables this chip select and when set to '1' enables the chip
select.

 4.2.1.5 Reset Conditions

Page 56 of 98 — VolantPCI Component Specification

CHIP RESET: ðððð ðððð ððUU UUUð UUUU ðUUð ððUU ðððð

VolantPCI AIB Bus Interface — Page 57 of 98

4.2.2 DMA Acknowledge Pulse Width Registers (DAPW)

 4.2.2.1 Description:
The DAPW register is used to program the pulse width of the DMA acknowledge (DACK) signal that the
VolantPCI chip sends to the DMA requesting device. There is one DAPW register for Rx channels, one for Tx
channels. This register allows the DACK cycle to be optimized relative to specific DMA devices.

 4.2.2.2 Register Addressing
 Address Offset

+ðBð3ð -- receive channels

+ðBð38 -- transmit channels

 4.2.2.3 Register Format
31 8 7 6 5 4 3 2 1 ð

─────────────────────────────── ─── ─── ─── ─── ─── ─── ─── ───┐

Reserved RSV LP2 LP1 LPð X RSV HP1 HPð

───────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┘

 4.2.2.4 Bit Descriptions

 � Bits 31-7. Reserved.

� Bits 6-4. DACK 'low' pulse width. These bits are binary encoded to provide the options for setting the dura-
tion that the DACK signal will be 'low' (0 volts).

DACK 'low' (active) Pulse Width

LP2 LP1 LPð N x "Local Bus Clock Period in ns."

--- --- --- --------------------

ð ð ð N = 2

ð ð 1 N = 3

ð 1 ð N = 4

ð 1 1 N = 5

1 ð ð N = 6

1 ð 1 N = 7

1 1 ð N = 8

1 1 1 N = 9

� Bits 3-2. Reserved. Always program this bit to a '0'.

� Bits 1-0. DACK 'high' pulse width. These bits are binary encoded to provide the options for setting the
duration that the DACK signal will be 'high'.

DACK 'high' (inactive) Pulse Width

HP1 HPð N x "Local Bus Clock Period in ns."

 --- --- ----------------------

ð ð N = 1

ð 1 N = 2

1 ð N = 3

1 1 N = 4

 4.2.2.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðUUU ððUU

Page 58 of 98 — VolantPCI Component Specification

4.2.3 AIB Bus Configuration Register (ACR)

 4.2.3.1 Description:
The ACR provides program control of the AIB Reset signal, and the AIB CLK signal. On power up, the AIB CLK
driver is enabled. The clock driver should be disabled if the clock is not required on the AIB.

Note: The Vero chip supported AIB bus parity and a checking disable bit in the ACR. This feature is not sup-
ported in VolantPCI

 4.2.3.2 Register Addressing
 Address Offset

 +ðCððð

 4.2.3.3 Register Format
 31 2 1 ð

──────────────────────── ─── ───┐

 Reserved CLK RST

────────────────────────┴───┴───┘

 4.2.3.4 Bit Descriptions

� Bits 31-2. Reserved. Always write these to 0.

� Bit 1. AIB Bus Clock Enable. This enables/disables the A_CLK output which is a buffered version of the
CLK input. Note that its reset state is enabled.

– 0 = Enable the AIB CLK Driver
– 1 = Disable the AIB CLK Driver

� Bit 0. AIB Bus Reset.

– 1 = AIB Bus Reset Active
– 0 = AIB Bus Reset Inactive

Note: The AIB Bus reset also is active when the RST# signal is active on the PCI Bus.

 4.2.3.5 Reset Conditions
CHIP RESET: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

VolantPCI AIB Bus Interface — Page 59 of 98

Page 60 of 98 — VolantPCI Component Specification

5.0 PCI Bus Interface

5.1 PCI Bus Operation

VolantPCI is both a PCI bus master and a PCI bus target.

5.2 PCI Bus target

Only non-burst accesses are supported. Any attempt to burst multiple words will result in VolantPCI disconnecting
the cycle.

5.2.1 AIB bus access
Writes to the AIB bus from masters on the PCI bus may be posted (stored in a register) within the VolantPCI chip.
The posted write data will be forwarded to the AIB bus a soon as the bus is free. An EOI command will be
'retried' until any pending AIB write has completed. (This ensures a write to the AIB device to clear the pending
interrupt condition has completed.) For more information on the EOI command see 3.4, “Interrupt Commands” on
page 48.

Reads from the AIB bus by masters on the PCI bus will be delayed using PCI Bus retry until the data can be
fetched from the AIB.

5.2.2 Internal Registers Accesses
Writes to internal registers may be posted. Accesses to interrupt clearing registers will cause the interrupt being
cleared to clear within three clocks of the acceptance of the access. All registers between offset +0000h and
+BFFFh will be accessed in a delayed manner using write posting and PCI delayed reads.

5.3 PCI Bus Master

VolantPCI is a bursting PCI bus master capable of supporting zero wait state PCI Bus cycles.

VolantPCI becomes a PCI bus master for DMA data transfers, posting status and DMA list chain operations. For
data transfers, VolantPCI will transfer a maximum of one full internal buffer under a single PCI bus ownership
period. Therefore, a maximum of 16 bytes will be transferred for one VolantPCI request/grant on the local bus.
All byte enable signals will be asserted on 'read' operations regardless of the number of bytes required. For status,
a burst write of three words will be performed. For DMA list chain operations, a burst read of seven words will be
performed.

5.3.1 Internal Arbitration for the PCI Bus
All DMA channels arbitrate for ownership of the PCI Bus internal to the VolantPCI chip in a round-robin fashion
similar to the DREQ priorities.

PCI Bus Interface — Page 61 of 98

5.3.2 Multiple VolantPCI Chips on the PCI Bus

The PCI Bus handles multiple copies of the same chip on the same bus as part of its architecture.

When using a defined PCI Bus expansion board (such as the PMC) there is a limit of one chip attached to the bus.
This limit was set to allow the base card designers to have a consistent model of the loading of the daughter card.
Because of this limit there is generally only one REQ# and GNT# signal on the connector. VolantPCI contains
logic to allow multiple VolantPCI chips to share a single REQ#/GNT# pair. This will generally result in a violation
of the expansion board's loading limits. Given a known motherboard, however, this violation may not be a
problem. This can result in cost savings, space savings and performance gains (vs. PCI Bus bridge).

Figure 5 on page 60 shows how two VolantPCI chips would be connected to share a single request/grant signal
pair.

 #1 #2

 ───────────────────────────────┐

 ─────────┐ ─────────┐

 ─┤MMI ───┤MMI

 MMO├──┘ MMO├──┘

IDSEL├──┐ IDSEL├──────AD signal available

for usage as IDSEL

 REQ# GNT# REQ# GNT#

 ─ ───── ─┘ ─ ───── ─┘

 REQ#─────┴────────────────┘

 GNT#───────────┴────────────────┘

 ────────────────────IDSEL

Figure 5. Connecting two VolantPCI chips using Multi-Master

In Figure 5 on page 60, all other PCI signals would be connected normally (i.e. both devices AD(1) signals would
be connected to PCI bus AD(1)). The REQ# signals would together be connected to the request line. Similarly for
the GNT# signal. The IDSEL of the second chip needs to be connected to an AD signal that can be used for
IDSEL selection (usually AD31-AD16) that is not used for the IDSEL for any other device (including the first
chip).

The board designer needs to be aware of the following considerations:

� The PCI Bus must not be parked to chips sharing a request/grant pair.

� The added capacitance on the PCI Bus must be looked at.

� The added capacitance on the REQ# and GNT# lines must be looked at.

� The connection of the IDSEL line may need to be resistively coupled.

Page 62 of 98 — VolantPCI Component Specification

5.4 PCI Bus Configuration Registers
Note: According to PCI specification, care should be taken to deal correctly with registers that have reserved bits.

On reads, software must use appropriate masks to extract defined bits, and may not rely on reserved bits
being any particular value. On writes, software must ensure that the values of the reserved bit positions are
preserved, by first reading the values of these bits and writing these values back when writing the new
values of other bit positions.

5.4.1 Device/Vendor ID (DEVID)

Description. The Device/Vendor ID Register identifies IBM as the manufacturer of VolantPCI. This register is
read only from the PCI Bus.

 Register Format

(PCI Config Offset = ðð h) 32-bit read only

 31 16 15 ð

 ─────────────────────── ───────────────────────┐

 Device ID Vendor ID

 ðð48h 1ð14h

 ───────────────────────┴───────────────────────┘

 Bit Descriptions

� Bits 31-16: Device ID. This read only field identifies the device as VolantPCI. Its value is X'0048'.

� Bits 15-0: Vendor ID. This read only field identifies the manufacturer as IBM. Its value is X'1014'.

 Reset Conditions

RST#: ðððð ðððð ð1ðð 1ððð ððð1 ðððð ððð1 ð1ðð

PCI Bus Interface — Page 63 of 98

5.4.2 Host Status/Command Register (HSCR)

Description. The Host Status/Command Register provides the control and status of the PCI interface in
VolantPCI. Bits in the status field can be reset from '1' to '0' by writing a '1' to the corresponding bit position.

 Register Format

(PCI Config Offset = ð4 h) 32-bit rd/wr

 31 3ð 29 28 27 26 25 24 23 22 1ð 9 8 7 6 5 3 2 1 ð

 ─── ─── ─── ─── ─── ─────── ─── ─── ────── ─── ─── ─── ─── ──── ─── ─── ───┐

DPE SSE SMA RTA STA DST DPD FBC RSVD FBE SDE RSV PER RSVD BME MSE IOS

 ───┴───┴───┴───┴───┴───────┴───┴───┴──────┴───┴───┴───┴───┴────┴───┴───┴───┘

 Bit Descriptions

� Bit 31: Detected Parity Error. This bit is set to '1' when VolantPCI detects a PCI Bus parity error, regardless
of the state of the Parity Error Response Bit (Bit 6). A system configuration write of '1' to this bit will reset it
to '0'.

� Bit 30: Signalled System Error. This bit is set to '1' whenever VolantPCI signals SERR#. A system configura-
tion write of '1' to this bit will reset it to '0'.

� Bit 29: Signalled Master Abort. This bit is set to '1' whenever VolantPCI terminates a PCI Bus master cycle
with a master abort. A system configuration write of '1' to this bit will reset it to '0'.

� Bit 28: Received Target Abort. This bit is set to '1' whenever VolantPCI receives a target abort as a PCI Bus
initiator. A system configuration write of '1' to this bit will reset it to '0'.

� Bit 27: Signalled Target Abort Bit. VolantPCI never signals a target abort, therefore this bit always reads '0'.
� Bit 26-25: DEVSEL Timing Bits. This read-only field indicates the slowest DEVSEL timing of VolantPCI on

the PCI bus. DEVSEL timing is set at medium, or '01'b.
� Bit 24: Data Parity Detected. VolantPCI sets this bit to '1' when all of the following conditions are met: 1)

VolantPCI asserted or observed -PERR active; 2) VolantPCI is the PCI Bus Master when the error occurs, and
3) the Parity Error Response bit (Bit 6) is set to '1'. A system configuration write of '1' to this bit will reset it
to zero.

� Bit 23: Fast Back-to-Back Capable. VolantPCI supports this function, therefore, this bit always reads back a
'1'.

� Bits 22-10: Reserved. Always read back as '0'.
� Bit 9: Fast Back-to-Back Enable. This capability is not implemented in VolantPCI, therefore, this bit always

reads back a zero.
� Bit 8: -SERR Enable. This bit, when set, enables VolantPCI to drive SERR# on the PCI Bus.
� Bit 7: Wait Cycle Control. VolantPCI does not implement address/data stepping, therefore this bit is always '0'.
� Bit 6: Parity Error Response. When set to '1', VolantPCI is enabled to check parity during system PCI Bus

Master and target transactions. When reset to '0', parity errors are ignored. Note that the Detected Parity Error
bit (Bit 31) is set independent of the state of this bit.

� Bit 5: VGA Palette Snoop. This function is not implemented, therefore, this bit always reads zero.
� Bit 4: Memory Write and Invalidate. This function is not implemented. This bit always reads zero.
� Bit 3: Special Cycles. This function is not implemented, therefore, this bit always reads zero.
� Bit 2: Bus Master Enable. When set to '1'. VolantPCI is enabled to become a PCI Bus Master.
� Bit 1: Memory Space Enable. When set to '1', VolantPCI is enabled to respond to PCI Bus memory space

accesses.
� Bit 0: I/O Space Enable. VolantPCI does not use I/O space, therefore, this bit is always '0'.

 Reset Conditions

RST#: ðððð ðð1ð 1ððð ðððð ðððð ðððð ðððð ðððð

Page 64 of 98 — VolantPCI Component Specification

5.4.3 Class Code/Revision ID Register (CCRID)

Description. The Class Code/Revision ID Register defines the general function and implementation level of the
VolantPCI chip. This register is read-only.

 Register Format

(PCI Config Offset = ð8 h) 32-bit read only

 31 8 7 ð

 ─────────────────────────────── ───────────────┐

 Class Code Revision ID

ð78ðððh ððh

 ───────────────────────────────┴───────────────┘

 Bit Descriptions

� Bits 31-8: Class Code. This field specifies the general function of the VolantPCI chip. The value is 078000
h, representing a Base Class=Communication Controller, SubClass=other, Programming Interface=not defined.

� Bits 7-0: Revision ID. This field specifies the revision level of the VolantPCI chip.

 Reset Conditions

RST# : ðððð ð111 1ððð ðððð ðððð ðððð ðððð ðððð

5.4.4 Host Miscellaneous Functions Register (HMFR)

Description. This register is used to set the PCI bus latency timer in the VolantPCI chip.

 Register Format

(PCI Config Offset = ðC h) 32-bit rd/wr

 31 24 23 16 15 8 7 ð

 ─────────── ─────────── ─────────── ───────────┐

 Rsvd Header Timer Rsvd

 ───────────┴───────────┴───────────┴───────────┘

 Bit Descriptions

� Bits 31-24: Reserved. This field is reserved for Built-In Self Test (BIST) support. Always read as zeros.

� Bits 23-16: This read-only field specifies the configuration space layout. This field reads back all zeroes.

� Bits 15-8: This read/write field specifies the latency timer value in units of PCI bus clocks. Only the upper
five bits of this field are programmable, the other bits read back all zeroes. This field is reset to all zeroes by
-RST.

� Bits 7-0: Reserved. This field is reserved for setting the cache line size. This field reads back all zeroes.

 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

PCI Bus Interface — Page 65 of 98

5.4.5 Register Base Address Register (REGBAR)

Description. This register defines the 64kB window location of the VolantPCI registers. In Vero, these registers
were located at 1FF80000h.

 Register Format

(PCI Config Offset = 1ð h) 32-bit rd/wr

31 16 15 4 3 2 1 ð

 ─────────────────────────────── ─────── ── ── ── ──┐

 Base Address ð ð ð ð

 ───────────────────────────────┴───────┴──┴──┴──┴──┘

 Bit Descriptions

� Bits 31-16: Base Address. This read/write field specifies the starting PCI bus address for the VolantPCI reg-
ister space.

� Bits 15-4: These bits always read zero. They are used by the system configuration routine to determine the
size of the window requested.

� Bit 3-1: These bits always reads '0'.

� Bit 0: Window Type. '0' indicates that this window is located in memory address space (vs. I/O space).

 Reset Conditions

RST# : uuuu uuuu uuuu uuuu ðððð ðððð ðððð ðððð

Page 66 of 98 — VolantPCI Component Specification

5.4.6 AIB Base Address Register (AIBBAR)

Description. This register defines the 256kB window location in VolantPCI which maps to the AIB bus address
space. In Vero, this window was at location 1FF00000h. (Note: Vero defined a 512kB window to the AIB.)

 Register Format

(PCI Config Offset = 14 h) 32-bit rd/wr

31 18 17 4 3 2 1 ð

 ───────────────────── ───────────── ── ── ── ──┐

AIB Base Addr ðð.....ðð ð ð ð ð

 ─────────────────────┴─────────────┴──┴──┴──┴──┘

 Bit Descriptions

� Bits 31-18: AIB Base Address. This read/write field specifies the starting PCI bus memory address.

� Bits 17-4: These bits always read zero. They are used by the system configuration routine to determine the
size of the window requested.

� Bit 3-1: These bits always reads '0'.

� Bit 0: Window Type. This bit is always '0' indicating a memory window.

 Reset Conditions

Power Up Reset: uuuu uuuu uuuu uuðð ðððð ðððð ðððð ðððð

PCI Bus Interface — Page 67 of 98

5.4.7 Subsystem ID (SSID)

Description. The Subsystem ID Register identifies the manufacturer and function of the subsystem using
VolantPCI. The Subsystem Vendor ID is assigned by the PCI Special Interest Group. This register is read only.
The value of this register is loaded from a serial ROM. If there is no serial ROM present, the value will remain at
its reset value of '0000 0000 h', indicating the Subsystem ID function is not implemented.

This register is used by the device driver to identify what type of VolantPCI based adapter the card is. It is
possible to have multiple VolantPCI based cards installed in a system, each requiring a different device driver.

 Register Format

(PCI Config Offset = 2C h) 32-bit read only

 31 16 15 ð

 ─────────────────────── ───────────────────────┐

Subsystem ID Subsystem Vendor ID

 ───────────────────────┴───────────────────────┘

 Bit Descriptions

� Bits 31-16: Subsystem ID. This read only field identifies the board level implementation using the VolantPCI
chip. Its value powers up to 0000h and is loaded from a serial ROM.

� Bits 15-0: Subsystem Vendor ID. This read only field identifies the manufacturer of the subsystem. Its value
powers up to 0000h and is loaded from a serial ROM.

 Reset Conditions

RST# : ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

(Note: loaded from serial ROM after RST#)

Page 68 of 98 — VolantPCI Component Specification

5.4.8 Latency/Grant/Interrupt Register (LGIR)

Description. The Latency/Grant/Interrupt Register is used to specify the maximum latency, minimum grant time,
and interrupt information of the VolantPCI chip PCI Bus.

 Register Format

(PCI Config Offset = 3Ch) 32-bit rd/wr

 31 24 23 16 15 8 7 ð

 ─────────── ─────────── ─────────── ───────────┐

Max Latency Min Grant Int Pin Int Line

 ───────────┴───────────┴───────────┴───────────┘

 Bit Descriptions

� Bits 31-24: Maximum Latency. This read-only field defaults to 0x00 but can be loaded from SEPROM.

� Bits 23-16: Minimum Grant. This read-only field defaults to 0x00 but the least significant 2 bits can be loaded
from SEPROM.

� Bits 15-8: Interrupt Pin. This read-only field defaults to X'01', indicating connection to -INTA on the PCI Bus.

� Bits 7-0. Interrupt Line. This read/write field is used for PCI interrupt priority and vector information. Values
in this field are system architecture specific.

 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ððð1 ðððð ðððð

(Note: loaded from serial ROM after RST#)

PCI Bus Interface — Page 69 of 98

Page 70 of 98 — VolantPCI Component Specification

6.0 VolantPCI Miscellaneous Registers

6.1.1 Configuration Register (CFGR)

 6.1.1.1 Description:
The CFGR is used to enable/disable various features in the VolantPCI chip.

 6.1.1.2 Register Addressing

 Address Offset

 +ðDðð8

 6.1.1.3 Register Format

 31 9 8 7 ð

─── ──── ────────────┐

Reserved ESM Reserved

───┴────┴────────────┘

 6.1.1.4 Bit Descriptions

� Bits 31-9. Reserved. Always write to 0.

� Bit 8. Enhanced Status Mode enable. When '1', VolantPCI will run in Enhanced Status Mode List Chaining.
When '0', it will run in a mode which is highly compatible with Vero.

� Bits 7-0. Reserved. Always write to 0.

 6.1.1.5 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

VolantPCI Miscellaneous Registers — Page 71 of 98

6.1.2 LED Enable Register (LER)

 6.1.2.1 Description:
The LER is used to allow an external LED to be enabled and disabled with a write operation by the processor. It
could also be used as a general purpose output.

 6.1.2.2 Register Addressing

 Address Offset

 +ðDðð4

 6.1.2.3 Register Format

 31 1 ð

─── ───┐

 Reserved LED

───┴───┘

 6.1.2.4 Bit Descriptions

� Bits 31-1. Reserved. Always write to 0.

� Bit 0. LED enable. (4mA Drive)

– 1 = -LED_EN Signal at "low" voltage
– 0 = -LED_EN Signal at "high" voltage

 6.1.2.5 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

Page 72 of 98 — VolantPCI Component Specification

6.1.3 Clock Timer Register (CTR)

 6.1.3.1 Description:
This register can be used to determine the clock speed of the PCI bus. Two counters are run simultaneously, one
using the PCI clock and the other using the REFCLK input. When either one reaches its maximum count, both
counters stop. While running, the REFCLK counter will read 0 and the PCI clock counter will increment. If the
pci count is read as the same value twice by software then the PCI clock speed can be determined using this
formula:

If (PCI count) > (Reference count) then

(REFCLK frequency) \ (PCI count)

PCI clock frequency = ────────────────────────────────

(reference count - 2)

else if (PCI count) < (Reference count) then

(REFCLK frequency) \ (PCI count - 2)

PCI clock frequency = ────────────────────────────────────

 reference count

else

PCI clock frequency = REFCLK frequency

The accuracy will be within 0.5% when one clock is not more than 4 times faster than the other.

The register will start counting after the RST# signal is released. It can be cleared and restarted by writing this
register with any value (byte enables are ignored).

 6.1.3.2 Register Addressing

 Address Offset

 +ðDððC

 6.1.3.3 Register Format

 31 16 15 ð

─────────────────────────── ─────────────────────────────┐

 Reference count PCI count

───────────────────────────┴─────────────────────────────┘

 6.1.3.4 Bit Descriptions

� Bits 31-16. Represents the number of REFCLK cycles counted. This value is only valid when PCI count is
stopped.

� Bits 15-0. Represents the number of PCI clock cycles counted. When this value is read as the same value
twice by software, both it and the Reference count are valid.

 6.1.3.5 Reset Conditions
RST#: UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU

VolantPCI Miscellaneous Registers — Page 73 of 98

6.2 Programmable I/O Control Registers

There are four programmable I/O (PIO) ports consisting of eight physical pins each. Of these eight pins, four are
'output-only' and four are programmable as either input or output. All have programmable polarity selection.
Inputs can be programmed to interrupt on a change of state to the input.

6.2.1 PIO Configuration Registers (PIOCFG)

The PIOCFG registers set the configuration for each PIO pin. Each PIOCFG is a byte register located in the
VolantPCI register space. Multiple PIOCFG's are located in a single 32-bit word. They may be accessed individ-
ually (by byte) or in any combination of bytes. The general naming convention is PIOCFGx_y, where x is the port
number and y specifies which pin of the port.

 6.2.1.1 Register Addresses
Pin Pin Pin Pin Pin Pin Pin Pin

PIO Port ð 1 2 3 4 5 6 7

--

ð +D1ððh +D1ð1h +D1ð2h +D1ð3h +D1ð4h +D1ð5h +D1ð6h +D1ð7h

1 +D11ðh +D111h +D112h +D113h +D114h +D115h +D116h +D117h

2 +D12ðh +D121h +D122h +D123h +D124h +D125h +D126h +D127h

3 +D13ðh +D131h +D132h +D133h +D134h +D135h +D136h +D137h

 6.2.1.2 Register Format
7 6 5 4 3 2 1 ð

─── ─────── ─────── ─── ─── ───┐

Out REFCLK Rsvd. Int Pol I/O

Mod divide En

───┴───────┴───────┴───┴───┴───┘

 6.2.1.3 Bit Descriptions

� Bit 7. Output mode (pin 4 ONLY)

– 0 = normal mode (output is based on value written in PIOSTAT)
– 1 = clock mode (output is divided version of REFCLK, see bits 5-6)

� Bit 6-5. Clock mode divider (pin 4 ONLY)

– 00 = in clock mode, output is REFCLK ÷ 2
– 01 = in clock mode, output is REFCLK ÷ 4
– 10 = in clock mode, output is REFCLK ÷ 6
– 11 = in clock mode, output is REFCLK ÷ 8

 � Bit 4-3. Reserved

� Bit 2. PIO Interrupt Enable

– 0 = interrupt is disabled
– 1 = interrupt is generated when a state change to the pin is detected

Note: This bit is only available on pins 0-3.

 � Bit 1. PIO Polarity

– 0 = input or output is not inverted
– 1 = input or output is inverted

 � Bit 0. PIO I/O

Page 74 of 98 — VolantPCI Component Specification

– 0 = this pin functions as an input
– 1 = this pin functions as an output

Note: Only pins 0-3 can function as inputs. For pins 4-7, '0' means the output is tri-stated.

 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð

6.2.2 PIO Status Registers (PIOSTAT)

The PIOSTAT registers contain status information for each PIO and also allow the state of the output to be set.
Each PIOSTAT is a byte register located in the VolantPCI register space. Multiple PIOSTAT's are located in a
single 32-bit word. They may be accessed individually (by byte) or in any combination of bytes. The general
naming convention is PIOSTATx_y, where x is the port number and y specifies which pin of the port.

 6.2.2.1 Register Addresses
Pin Pin Pin Pin Pin Pin Pin Pin

PIO Port ð 1 2 3 4 5 6 7

--

ð +D2ððh +D2ð1h +D2ð2h +D2ð3h +D2ð4h +D2ð5h +D2ð6h +D2ð7h

1 +D21ðh +D211h +D212h +D213h +D214h +D215h +D216h +D217h

2 +D22ðh +D221h +D222h +D223h +D224h +D225h +D226h +D227h

3 +D23ðh +D231h +D232h +D233h +D234h +D235h +D236h +D237h

 6.2.2.2 Register Format

7 6 5 4 3 2 1 ð

─────────────────────── ─── ───┐

 Reserved Int Pin

 Pnd Val

───────────────────────┴───┴───┘

 6.2.2.3 Bit Descriptions

 � Bit 7-2. Reserved

� Bit 1. PIO Interrupt Pending

– 0 = no interrupt pending
– 1 = interrupt pending (clears on read)

Note: This bit is only available on pins 0-3.

� Bit 0. PIO pin value

This bit allows the state of the PIO pin to be read or written. For pins 0-3, the actual value of the pin is
indicated (adjusted for polarity). For pin 4-7, the value comes directly from the register.

 Reset Conditions

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððU (pins ð-3)

RST#: ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð (pins 4-7)

VolantPCI Miscellaneous Registers — Page 75 of 98

6.2.3 Serial EPROM Register (SER)

This register is used to access the Serial EPROM. Usage generally is as follows:

1. Write SER with 0x01300000 to enable write.
2. Read SER until Busy bit (Bit 24) is clear.
3. Write SER with start bit, command, address and data (for write commands). This can be a single 32-bit write.
4. Read SER until Busy bit (Bit 24) is clear.
5. If detect bit is clear (Bit 25) then no SEPROM was detected and command did not complete. Data will be

garbage.
6. If detect bit is set then command is complete. For reads, the data is in Bits 15-0.

The SEPROM should be programmed as follows:

 Address Data

 ------- --------

 ð reserved

1 SSID low 16 bits

2 SSID high 16 bits

3 LGIR 31:24, b'ðððððð', LGIR 17:16

 4-7 reserved

 >=8 user area

 6.2.3.1 Register Address
 Address Offset

 +ðF1ððh

 6.2.3.2 Register Format
31 26 25 24 23 22 21 16 15 ð

 ──────────── ─── ─── ───── ──────── ───────────┐

 Reserved SD BS CMD ADDR DATA

 ────────────┴───┴───┴─────┴────────┴───────────┘

 6.2.3.3 Bit Descriptions

� Bits 31-26: Reserved.
� Bit 25: Serial EPROM Detect. This read-only bit indicates whether VolantPCI detected ('1') or did not detect

('0') a serial EPROM connected. This bit is only valid when Busy/Start (bit 24) is clear ('0').
� Bit 24: Busy/Start. This read/write bit serves two functions. When written to a '1', VolantPCI will start the

specified transaction. The bit will read back '1' while VolantPCI is busy performing the transaction. During
this time, writes to the SER are discarded. The bit reads '0' when the transaction is complete and another
transaction can be initiated.

� Bits 23-22: Serial EPROM Command. These bits contain the serial EPROM command. The following are
the commands for the SGS ST93C06:
– 10 - Read
– 01 - Write
– 11 - Erase Location
– 00 - Command dependent on A5-4 as:

— 00 - Erase/Write disable
— 11 - Erase/Write enable
— 01 - Write all with data
— 10 - Erase all

� Bits 21-16: Serial EPROM Address. These bits contain the serial EPROM address A5-0.

Page 76 of 98 — VolantPCI Component Specification

� Bits 15-0: Serial EPROM Data. These bits contain the serial EPROM data. Data for writes should be written
here. Data returned from reads will be valid here when the Busy bit (bit 24) is clear ('0').

RST# : ðððð ððUU UUUU UUUU UUUU UUUU UUUU UUUU

VolantPCI Miscellaneous Registers — Page 77 of 98

Page 78 of 98 — VolantPCI Component Specification

Appendix A. VolantPCI Pin Name/Number Cross
Reference

 # Name

 001 nc
 002 vss
 003 AD(31)
 004 AD(30)
 005 AD(29)

 006 vss
 007 vdd
 008 AD(28)
 009 AD(27)
 010 AD(26)

 011 vss
 012 AD(25)
 013 AD(24)
 014 CBE(3)#
 015 vss

 016 vdd
 017 IDSEL
 018 AD(23)
 019 AD(22)
 020 vss

 021 AD(21)
 022 AD(20)
 023 AD(19)
 024 vss
 025 vdd

 026 AD(18)
 027 AD(17)
 028 AD(16)
 029 vssc
 030 vddc

 031 vss
 032 CBE(2)#
 033 FRAME#
 034 IRDY#
 035 vss

 036 vdd
 037 CLK
 038 vss
 039 TRDY#
 040 DEVSEL#

 041 STOP#
 042 vss
 043 PERR#
 044 SERR#
 045 PAR

 046 vss
 047 vdd
 048 CBE(1)#
 049 AD(15)
 050 AD(14)

 # Name

 051 AD(13)
 052 nc
 053 vss
 054 AD(12)
 055 AD(11)

 056 AD(10)
 057 vss
 058 vdd
 059 AD(9)
 060 AD(8)

 061 CBE(0)#
 062 AD(7)
 063 AD(6)
 064 AD(5)
 065 vss

 066 vdd
 067 AD(4)
 068 AD(3)
 069 AD(2)
 070 AD(1)

 071 AD(0)
 072 vss
 073 vdd
 074 MMI
 075 MMO

 076 SECS
 077 SECLK
 078 SED
 079 -ADREQ(7)
 080 -ADACK(7)

 081 -ADREQ(6)
 082 -ADACK(6)
 083 vdd
 084 vss
 085 -ADREQ(5)

 086 -ADACK(5)
 087 -ADREQ(4)
 088 -ADACK(4)
 089 vssc
 090 vddc

 091 -ADREQ(3)
 092 -ADACK(3)
 093 -ADREQ(2)
 094 -ADACK(2)
 095 vss

 096 -ADREQ(1)
 097 -ADACK(1)
 098 -ADREQ(0)
 099 -ADACK(0)
 100 vss

 # Name

 101 vdd
 102 -AINTACK(1)
 103 -AINTACK(0)
 104 -AEOPTC
 105 -ACS(0)

 106 -ACS(1)
 107 -ACS(2)
 108 -ACS(3)
 109 vss
 110 A_D(0)

 111 A_D(1)
 112 A_D(2)
 113 A_D(3)
 114 vss
 115 vdd

 116 A_D(4)
 117 A_D(5)
 118 A_D(6)
 119 A_D(7)
 120 -AWR

 121 -ARD
 122 A_A(2)
 123 A_A(3)
 124 A_A(4)
 125 A_A(5)

 126 A_A(6)
 127 A_A(7)
 128 A_A(8)
 129 A_A(9)
 130 vss

 131 vdd
 132 A_A(10)
 133 A_A(11)
 134 A_A(12)
 135 A_A(13)

 136 A_A(14)
 137 A_A(15)
 138 A_A(16)
 139 A_A(17)
 140 vddc

 141 vssc
 142 REFCLK
 143 vss
 144 PIO0(0)
 145 PIO0(1)

 146 PIO0(2)
 147 PIO0(3)
 148 vss
 149 vdd
 150 PIO0(4)

 # Name

 151 PIO0(5)
 152 PIO0(6)
 153 PIO0(7)
 154 PIO1(0)
 155 PIO1(1)

 156 PIO1(2)
 157 PIO1(3)
 158 PIO1(4)
 159 PIO1(5)
 160 PIO1(6)

 161 PIO1(7)
 162 PIO2(0)
 163 PIO2(1)
 164 PIO2(2)
 165 PIO2(3)

 166 vss
 167 vdd
 168 PIO2(4)
 169 PIO2(5)
 170 PIO2(6)

 171 PIO2(7)
 172 PIO3(0)
 173 PIO3(1)
 174 PIO3(2)
 175 PIO3(3)

 176 PIO3(4)
 177 PIO3(5)
 178 PIO3(6)
 179 PIO3(7)
 180 -LED_EN

 181 -ARESET
 182 PTSTOUT
 183 vssc
 184 vddc
 185 IDDTST

 186 ScanTstEn#
 187 ScanMuxSel#
 188 vss
 189 ACLK
 190 vss

 191 vdd
 192 JTAG-TD0
 193 JTAG-MOD
 194 JTAG-RST
 195 JTAG-TCK

 196 JTAG-TDI
 197 vss
 198 -AERROR
 199 -AINT(0)
 200 -AINT(1)

Appendix A. VolantPCI Pin Name/Number Cross Reference — Page 79 of 98

 # Name

 201 -AINT(2)
 202 -AINT(3)
 203 INTA#
 204 vdd
 205 vss

 206 RST#
 207 GNT#
 208 REQ#

Page 80 of 98 — VolantPCI Component Specification

Name #

ACLK 189
-ACS(0) 105
-ACS(1) 106
-ACS(2) 107
-ACS(3) 108

AD(0) 071
AD(1) 070
AD(10) 056
AD(11) 055
AD(12) 054

AD(13) 051
AD(14) 050
AD(15) 049
AD(16) 028
AD(17) 027

AD(18) 026
AD(19) 023
AD(2) 069
AD(20) 022
AD(21) 021

AD(22) 019
AD(23) 018
AD(24) 013
AD(25) 012
AD(26) 010

AD(27) 009
AD(28) 008
AD(29) 005
AD(3) 068
AD(30) 004

AD(31) 003
AD(4) 067
AD(5) 064
AD(6) 063
AD(7) 062

AD(8) 060
AD(9) 059
-ADACK(0) 099
-ADACK(1) 097
-ADACK(2) 094

-ADACK(3) 092
-ADACK(4) 088
-ADACK(5) 086
-ADACK(6) 082
-ADACK(7) 080

-ADREQ(0) 098
-ADREQ(1) 096
-ADREQ(2) 093
-ADREQ(3) 091
-ADREQ(4) 087

-ADREQ(5) 085
-ADREQ(6) 081
-ADREQ(7) 079
-AEOPTC 104
-AERROR 198

-AINT(0) 199
-AINT(1) 200
-AINT(2) 201
-AINT(3) 202
-AINTACK(0) 103

Name #

-AINTACK(1) 102
-ARD 121
-ARESET 181
-AWR 120
A_A(10) 132

A_A(11) 133
A_A(12) 134
A_A(13) 135
A_A(14) 136
A_A(15) 137

A_A(16) 138
A_A(17) 139
A_A(2) 122
A_A(3) 123
A_A(4) 124

A_A(5) 125
A_A(6) 126
A_A(7) 127
A_A(8) 128
A_A(9) 129

A_D(0) 110
A_D(1) 111
A_D(2) 112
A_D(3) 113
A_D(4) 116

A_D(5) 117
A_D(6) 118
A_D(7) 119
CBE(0)# 061
CBE(1)# 048

CBE(2)# 032
CBE(3)# 014
CLK 037
DEVSEL# 040
FRAME# 033

GNT# 207
IDDTST 185
IDSEL 017
INTA# 203
IRDY# 034

JTAG-MOD 193
JTAG-RST 194
JTAG-TCK 195
JTAG-TD0 192
JTAG-TDI 196

-LED_EN 180
MMI 074
MMO 075
PAR 045
PERR# 043

PIO0(0) 144
PIO0(1) 145
PIO0(2) 146
PIO0(3) 147
PIO0(4) 150

PIO0(5) 151
PIO0(6) 152
PIO0(7) 153
PIO1(0) 154
PIO1(1) 155

Name #

PIO1(2) 156
PIO1(3) 157
PIO1(4) 158
PIO1(5) 159
PIO1(6) 160

PIO1(7) 161
PIO2(0) 162
PIO2(1) 163
PIO2(2) 164
PIO2(3) 165

PIO2(4) 168
PIO2(5) 169
PIO2(6) 170
PIO2(7) 171
PIO3(0) 172

PIO3(1) 173
PIO3(2) 174
PIO3(3) 175
PIO3(4) 176
PIO3(5) 177

PIO3(6) 178
PIO3(7) 179
PTSTOUT 182
REFCLK 142
REQ# 208

RST# 206
SECLK 077
SECS 076
SED 078
SERR# 044

STOP# 041
ScanMuxSel# 187
ScanTstEn# 186
TRDY# 039
nc 001

nc 052
vdd 007
vdd 016
vdd 025
vdd 036

vdd 047
vdd 058
vdd 066
vdd 073
vdd 083

vdd 101
vdd 115
vdd 131
vdd 149
vdd 167

vdd 191
vdd 204
vddc 030
vddc 090
vddc 140

vddc 184
vss 002
vss 006
vss 011
vss 015

Name #

vss 020
vss 024
vss 031
vss 035
vss 038

vss 042
vss 046
vss 053
vss 057
vss 065

vss 072
vss 084
vss 095
vss 100
vss 109

vss 114
vss 130
vss 143
vss 148
vss 166

vss 188
vss 190
vss 197
vss 205
vssc 029

vssc 089
vssc 141
vssc 183

Appendix A. VolantPCI Pin Name/Number Cross Reference — Page 81 of 98

Page 82 of 98 — VolantPCI Component Specification

Appendix B. PIO Functional Diagrams

The following diagrams are simplified, functional level drawings of the PIO circuitry.

 PIOCFG

 ────────┐

2 Int En ├───┐

 ├────────┤

 ð Out/-In ├────────────────────┐

 ├────────┤

 1 Polarity├─┐

 ────────┘ ────┐ ─┴──┐

 ├──────┤XOR ├────┤drvr├─ ──>pin

PIOSTAT ───┤ ────┘

────────┐ ────┘ ────┐

 ð value ├────┘ ┤rcvr├──┐

 ────────┘ ────┘

 ────────────────────────────┘

 ────────┐ ─┴────┐

deglitch├─────┐change detected Intr. PIOSTAT(1) read

 ──┤and chng ─────────────────┤logic ├───

 detect ├──┐ ──────┘

────────┘ data ────┐

──────┤XOR ├──PIOSTAT(ð) read

 ─────────────────────────┤

 ────┘

Figure 6. Input/Output PIO

 PIOCFG

 ────────┐

 ð Out/-In ├───────────────────────┐

 ├────────┤

 1 Polarity├────┐

 ────────┘ ────┐ ─┴──┐

 ───┤XOR ├───────┤drvr├────>pin

 PIOSTAT ───┤ ────┘

 ────────┐ ────┘

 ð value ├────┤

 ────────┘

 ──────────────────────────PIOSTAT(ð) read

Figure 7. Output-Only PIO

Appendix B. PIO Functional Diagrams — Page 83 of 98

 ─────────────────────────┐

 PIOCFG ────┐

 ────────┐ REFCLK/2─┤ðð

 7 Out Mode├──┘ REFCLK/4─┤ð1

 ├────────┤ REFCLK/6─┤1ð ├──┐

6 REFCLK REFCLK/8─┤11

├ divide ┼──┐ ── ─┘

5 select 2

 ├────────┤ ──────/────────┘

 ð Out/-In ├─────────────────────── ──── ───────────┐

 ├────────┤

 1 Polarity├────┐ ──┴─┐

 ────────┘ ────┐ ─┤1Mux ─┴──┐

 ───┤XOR ├───────────┤ð ├───────┤drvr├────>pin

 PIOSTAT ───┤ ────┘ ────┘

 ────────┐ ────┘

 ð value ├────┤

 ────────┘

 ──────────────────────────PIOSTAT(ð) read

Figure 8. Output-Only w/clock PIO

Page 84 of 98 — VolantPCI Component Specification

Appendix C. VolantPCI Electrical Specifications

Note: ALL INFORMATION PROVIDED IN THE FOLLOWING SECTIONS IS PRELIMINARY .

C.1 Absolute Maximum Ratings

Note: Except for ScanMuxSel and ScanTestEn, all VolantPCI inputs are "5 volt tolerant".

 C.2 Operating Conditions

 C.3 Recommended Connections

Consult the PCI Bus specification V2.1 for detailed information regarding the PCI bus signals.

 C.3.1 Decoupling
The following is recommended minimum VDD to VSS decoupling of the VolantPCI chip:

� 1 - 1000pF Capacitor near the clock input pins for CLK and REFCLK.

� 5 - 0.01µF Capacitors. One cap. near each side of the chip (two on PCI side).

� 2 - 22µF Capacitor for bulk decoupling. One cap on each side of the chip.

Table 14. VolantPCI Maximum Ratings (referenced to Vss)

Parameter Maximum Rating

Storage Temperature -40°C to +125°C

Case Temperature Under Bias -40°C to +110°C

Supply Voltage -0.3v to +3.9v

Voltage on ScanMuxSel, ScanTestEn -1.0v to 3.6v

Voltage on Other Pins -1.0v to 6.5v

Table 15. VolantPCI Operating Conditions

Parameter Min Max Units

Supply Voltage 3 3.6 V

Case Temperature Under Bias 0 75 °C

Input Clock Freq CLK 0 33 MHz

Input Clock Freq REFCLK 0 25 MHz

Supply Current - 150mA mA

Appendix C. VolantPCI Electrical Specifications — Page 85 of 98

C.4 Specifications for the PCI Bus Interface
VolantPCI meets PCI Local Bus Specification, Rev. 2.1 requirements for both 3.3v and 5v signalling environments.
VolantPCI's PCI inputs are "5 volt tolerant".

More detailed information can be supplied upon request.

 C.5 DC Specifications

C.5.1 DC Specifications for the AIB Bus and Misc. Signals

DC parameters include miscellaneous signals such as JTAG and Serial ROM

Table 16. VolantPCI AIB Bus and Misc. Signals

Symbol Description Min Max Units Notes

Vil Input Low Voltage Vss-0.5 0.8 v

Vih Input High Voltage 2.0 VDD+0.3 v

Vol Output Low Voltage - 0.40 v Iol= 4.0 mA

Voh Output High Voltage 2.4 Vdd v Ioh= -4.0 mA

Ci Input and Bidirectional Pin
Capacitance

3 8 pF

Co Output Pin Capacitance 3 8 pF

Page 86 of 98 — VolantPCI Component Specification

C.6 AC Timing Specifications

The following sections provide the AC timing specifications for the VolantPCI chip.

C.6.1 PCI Bus Timings
VolantPCI meets the PCI Bus timings for a 33MHz device as specified in the PCI Local Bus Specification, Rev.
2.1. The user is referred to this document for more information.

C.6.2 AIB Bus Timings
The following timing diagrams show AIB Bus timings for the various types of cycles that run on the AIB interface.
All timings are specified with 50pf load capacitance.

 C.6.2.1 DMA Cycles
───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ─

 AIB CLK ─┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘

 ─┐ ────────────────

 -DREQ ───//───┘

 |<-----T1------>|<-T2-->| |<-T3->|

─────────────────┐ ───────┐ ───────

 -DACK ───────────────┘ ───────────────┘

 |<-T5->|

 -->| |<--T6

 /─────────\ /───────\

 READ DATA ,──────────────────────────| |────────────| |─────

 -A_EOP \─────────/ \───────/

 T7-->| |<-- |<-T8->|

/──────────────────\ /\ /──────────────────\

 WRITE DATA,────────────────────| X X |─

 -A_TC \──────────────────/ \/ \──────────────────/

C.6.2.2 AIB Target Cycles
───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ─

 AIB CLK ─┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘

 |<----------T9--------->|<-----T1ð----->|<----------T9--------->|

-A_CS ────────────┐ ───────────────┐ ─────────

 ───────────────────────┘ ───────────────────────┘

 |<--T11->| -->| |<--T11 -->| |<--T11

─\ /─────────────────────────────────────\ /─────────────────────────────────────\

A_A X ADDRESS X ADDRESS X

─/ \─────────────────────────────────────/ \─────────────────────────────────────/

 /─────────\ /────────────────────\

A_D ─────────────────────────| DATA IN |──────────────────────| DATA OUT |──

 \─────────/ \────────────────────/

 |<-T14->| |<-T12-->| |<--T13 -->| |<--T15

-A_RD ────────────────────┐ ──

 ───────────────┘

 |<-T14->| -->| |<--T16

-A_WR ──┐ ──────────

 ───────────────┘

C.6.2.3 AIB Interrupt Acknowledge Cycle
───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ───┐ ─

 AIB CLK ─┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘ ───┘

 |<----------T17-------->|<-T18->|<----------T17-------->|

-A_INTA ────────────┐ ───────┐ ─────────

 ───────────────────────┘ ───────────────────────┘

 /─────────\ /─────────\

A_D ─────────────────────────| |───────────────────| DATA IN |───────

 \─────────/ \─────────/

 |<-T19-->|

 -->| |<--T2ð

Appendix C. VolantPCI Electrical Specifications — Page 87 of 98

Table 17. Timings

Description Min Max Units Notes

T1 -DACK active pulse width da*clk-5 da*clk+5 ns 1,2

T2 -DACK inactive pulse width di*clk-5 di*clk+5 ns 1,2

T3 -DREQ inactive to -DACK inactive 30 - ns 3

T5 read data setup to -DACK inactive 20 - ns

T5 -A_EOP setup to -DACK inactive 25 - ns

T6 input hold time from -DACK inactive 0 di*clk ns 1,2,4

T7 -DACK active to outputs valid 0 10 ns

T8 outputs hold from -DACK inactive clk-7 clk ns 1

T9 -A_CS active pulse width ca*clk-5 ca*clk-5 ns 1,5

T10 -A_CS inactive pulse width ci*clk-5 ci*clk-5 ns 1,5

T11 A_A valid to -A_CS active clk-5 clk+5 ns 1

T12 A_D setup to -A_RD inactive 20 - ns

T13 A_D hold from -A_RD inactive 0 ci*clk ns 1,4,5

T14 -A_CS active to -A_RD or -A_WR active clk-5 clk+5 ns 1

T15 A_D valid from -A_WR active - 5 ns

T16 A_D hold from -A_WR inactive clk-10 - ns 1

T17 -A_INTA active pulse width ia*clk-5 ia*clk-5 ns 1,6

T18 -A_INTA inactive pulse width ii*clk-5 ii*clk-5 ns 1,6

T19 A_D setup to -A_INTA inactive 20 - ns

T20 A_D hold from -A_INTA inactive 0 ii*clk ns 1,4,6

Notes:

1) 'clk' represents the period of the input CLK.
2) 'da' and 'di' represent the programmed active and inactive DACK pulse widths, respectively.
3) This timing must be met to ensure VolantPCI does not begin another DACK cycle for this DREQ.
4) The max timing ensures there is no driver conflict between this read and a subsequent write by
VolantPCI.
5) 'ca' and 'ci' represent the programmed active and inactive Chip Select pulse widths, respectively.
6) 'ia' and 'ii' represent the programmed active and inactive Interrupt Acknowledge pulse widths, respec-
tively.

Page 88 of 98 — VolantPCI Component Specification

C.6.3 VolantPCI Serial EPROM Interface Timing

This section documents the Serial EPROM Interface Timing.

Note: Although the serial EPROMs provide separate Data In (DI) and Data Out (DO) pins, VolantPCI uses a
single bi-directional pin, that is tri-stated for data in. A pull-up holds the value at '1'. This makes it possible to use
a single pin for data without driver conflicts, and allows VolantPCI to automatically detect the presence (or
absence) of a SEPROM by checking the dummy bit that is returned by the SEPROM for each read access.

 ───

RST# ───┘

 detection──↓

─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐ ─┐{...} ─┐ ─┐ ─┐

SCLK ─────┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ ─┘ {...}┘ ─┘ ─┘ ─

 ───┐ ─

SCS ───────┘ ───┘

 ┐ ───────┐ ─── ──┐ ─── ─{...}─ ───── ┐

SD ┴┴┴┴┴┴┴┴───┘ ───────────────────┴───┴──┴───┴───┴─{...}─┴─────┴┴┴┴─

|sb |op1|op2|a5 |a4 |a3 |a2 |a1 |að|dum|d15|d14..d1|do

Figure 9. SEPROM read timing

C.6.3.1 SEPROM Auto-Initialization Description

� When RST# is asserted: SCLK stays LOW, SCS stays LOW, SD will float HIGH (it is pulled-up).

� About 20 clocks after RST# is deasserted, SCLK starts (see Figure 9).

� SCS goes HIGH. SD is driven LOW for one SCLK for compatibility with SGS-Thomson parts.

� SD is driven HIGH. This is the 'start' bit (sb).

� The next two SCLKs contain the opcode, driven by VolantPCI which is always b'10' (read command).

� The next six SCLKs are the address bits, driven by VolantPCI. The first address is b'000001'.

� The next bit is the 'dummy' bit which is a '0' output by the SEPROM. If the '0' is detected then the next 16
cycles are data read cycles. If the '0' is not detected, then it is assumed no SEPROM is installed, SCLK goes
LOW, SCS goes low and the state machine stops. The SER will indicate no SEPROM was found.

� After the sixteenth data bit is read SCS goes low for one SCLK.

� VolantPCI performs four read operations. After the fourth read, SCLK goes LOW, SCS goes low.

C.6.3.2 Other SEPROM Operations
Refer to the the SER register (6.2.3, “Serial EPROM Register (SER)” on page 74) and the specific SEPROM's
documentation for more information on SEPROM programming.

Appendix C. VolantPCI Electrical Specifications — Page 89 of 98

 >| |<-Tckh

 >| |<-Tckl

────┐ ────┐ ─

SCLK

──┘ ────┘ ────┘

 >||<-ToutCS

 ──────── ───────── ──────

SCS

 ────────┴─────────┴──────

 >| |<-ToutD

 ────────── ───────── ────

SD(out)

 ─────────┴─────────┴────

 >| |<-Tis

 >| |<-Tih

 ───── ───── ────

SD(in) ├┼┼┼┤ ├┼┼┼┤

 ─────┴┴┴┴┴─────┴┴┴┴┴────

Figure 10. SCLK, SCS, SD timing

Table 18. VolantPCI Serial EPROM Interface Timings

Symbol Description Min (ns) Max (ns) Notes

Tckh Clock High 17*n-10 17*n+10 1,2

Tckl Clock Low 17*n-10 17*n+10 1,2

ToutCS SCLK low to SCS output -20 20

ToutD SCLK low to SD output n-20 n+20 1,2

Tis input setup 20

Tih input hold 0

Notes:

1. n = PCI clock period
2. SCLK(freq) = PCI Clock(freq) ÷ 34

Page 90 of 98 — VolantPCI Component Specification

Appendix D. VolantPCI Test Information

Using multiplexed and dedicated test pins and a JTAG Tap Controller, VolantPCI provides the following testability
features for both on and off-card component testing:

� Full Chip Internal Scan Testing

� Internal Ram Isolation

 � Driver Tri-State

 � Boundary Scan

Although some of these features are used only by the chip manufacturer, they are shown here for documentation
purposes and general information.

D.1 JTAG TAP Controller Features

VolantPCI provides a JTAG compliant tap controller and JTAG tap interface. The chip has full JTAG boundary
scan implementation. The JTAG ring has 268 total elements in the chain. The following table lists the JTAG
Interface Pins.

The following table lists the supported JTAG instructions and their respective instruction codes.

 D.1.1 Boundary Scan

The following is the BSDL description of VolantPCI.

Table 19. VolantPCI JTAG Interface

JTAG PIN VolantPCI Pin #

JTAG-TCK 195

JTAG-MOD 193

JTAG-RST# 194

JTAG-TDO 192

JTAG-TDI 196

Table 20. VolantPCI JTAG Interface

JTAG Instruction Code

EXTEST 000

SAMPLE/PRELOAD 001

CLAMP 011

HIGHZ 100

RamTest (internal Ram) 101

BYPASS 111

Appendix D. VolantPCI Test Information — Page 91 of 98

--note: signals with names of the type xxxx# or -xxxx

-- have been changed to n_xxxx in this file

-- also the PIO pins have added "High" or "Low" suffixes

entity vpcichip is

generic (PHYSICAL_PIN_MAP : string := "LSI_PACKAGE");

port (

 n_aERROR : in bit ;

n_aINT : in bit_vector (ð to 3);

 N_IntA : inout bit ;

 N_RST : in bit ;

 n_GNT : in bit ;

 n_REQ : inout bit ;

 IDSEL : in bit ;

 n_FRAME : inout bit ;

 n_IRDY : inout bit ;

 CLK : in bit ;

 n_TRDY : inout bit ;

 n_DEVSEL : inout bit ;

 n_STOP : inout bit ;

 n_PERR : inout bit ;

 n_SERR : inout bit ;

 PAR : inout bit ;

n_CBE : inout bit_vector (ð to 3);

AD : inout bit_vector (ð to 31);

 MMI : in bit ;

 MMO : buffer bit ;

 SECS : buffer bit ;

 SECLK : buffer bit ;

 SED : inout bit ;

n_aDREQ : in bit_vector (ð to 7);

n_aDACK : buffer bit_vector (ð to 7);

n_aINTACK : buffer bit_vector (ð to 1);

 n_aEOPTC : inout bit ;

n_aCS : buffer bit_vector (ð to 3);

a_D : inout bit_vector (ð to 7);

 n_aWR : buffer bit ;

 n_aRD : buffer bit ;

a_A : buffer bit_vector (2 to 17);

 REFCLK : in bit ;

PIOðLow : inout bit_vector (ð to 3);

 PIOðHigh : out bit_vector (4 to 7);

PIO1Low : inout bit_vector (ð to 3);

 PIO1High : out bit_vector (4 to 7);

PIO2Low : inout bit_vector (ð to 3);

 PIO2High : out bit_vector (4 to 7);

PIO3Low : inout bit_vector (ð to 3);

 PIO3High : out bit_vector (4 to 7);

 n_LED_EN : buffer bit ;

 n_aRESET : buffer bit ;

 PTSTOut : out bit ;

 IDDTST : in bit ;

 n_ScanTestEn : in bit ;

 n_ScanMuxSel : in bit ;

 aCLK : out bit ;

vss : linkage bit_vector (ð to 31);

vdd : linkage bit_vector (ð to 19);

 jtag_tdo : out bit ;

 jtag_mod : in bit ;

 jtag_rst : in bit ;

 jtag_tck : in bit ;

 jtag_tdi : in bit

) ;

use STD_1149_1_199ð.all;

attribute PIN_MAP of vpcichip : entity is PHYSICAL_PIN_MAP ;

constant pr36 : PIN_MAP_STRING :=

"jtag_tdi : 196, jtag_tck : 195, jtag_rst : 194, " &

"jtag_mod : 193, jtag_tdo : 192, vdd : (7, 16, 25, 3ð, 36, 47, 58, 66, 73, " &

"83, 9ð, 1ð1, 115, 131, 14ð, 149, 167, 184, 191, 2ð4)," &

"vss : (2, 6, 11, 15, 2ð, 24, 29, 31, 35, " &

"38, 42, 46, 53, 57, 65, 72, 84, 89, 95, " &

"1ðð, 1ð9, 114, 13ð, 141, 143, 148, 166, 183, 188, " &

"19ð, 197, 2ð5),aCLK : 189, n_ScanMuxSel : 187, " &

"n_ScanTestEn : 186, IDDTST : 185, PTSTOut : 182, " &

"n_aRESET : 181, n_LED_EN : 18ð, PIO3High : (176, 177, 178, 179)," &

"PIO3Low : (172, 173, 174, 175),PIO2High : (168, 169, 17ð, 171),PIO2Low : (162, 163, 164, 165)," &

"PIO1High : (158, 159, 16ð, 161),PIO1Low : (154, 155, 156, 157),PIOðHigh : (15ð, 151, 152, 153)," &

"PIOðLow : (144, 145, 146, 147),REFCLK : 142, a_A : (122, 123, 124, 125, 126, 127, 128, 129, 132, " &

Page 92 of 98 — VolantPCI Component Specification

"133, 134, 135, 136, 137, 138, 139)," &

"n_aRD : 121, n_aWR : 12ð, a_D : (11ð, 111, 112, 113, 116, 117, 118, 119)," &

"n_aCS : (1ð5, 1ð6, 1ð7, 1ð8),n_aEOPTC : 1ð4, n_aINTACK : (1ð3, 1ð2)," &

"n_aDACK : (99, 97, 94, 92, 88, 86, 82, 8ð),n_aDREQ : (98, 96, 93, 91, 87, 85, 81, 79),SED : 78, " &

"SECLK : 77, SECS : 76, MMO : 75, " &

"MMI : 74, AD : (71, 7ð, 69, 68, 67, 64, 63, 62, 6ð, " &

"59, 56, 55, 54, 51, 5ð, 49, 28, 27, 26, " &

"23, 22, 21, 19, 18, 13, 12, 1ð, 9, 8, " &

"5, 4, 3),n_CBE : (61, 48, 32, 14)," &

"PAR : 45, n_SERR : 44, n_PERR : 43, " &

"n_STOP : 41, n_DEVSEL : 4ð, n_TRDY : 39, " &

"CLK : 37, n_IRDY : 34, n_FRAME : 33, " &

"IDSEL : 17, n_REQ : 2ð8, n_GNT : 2ð7, " &

"N_RST : 2ð6, N_IntA : 2ð3, n_aINT : (199, 2ðð, 2ð1, 2ð2)," &

"n_aERROR : 198 ";

attribute TAP_SCAN_IN of jtag_tdi : signal is true;

attribute TAP_SCAN_OUT of jtag_tdo : signal is true;

attribute TAP_SCAN_MODE of jtag_mod : signal is true;

attribute TAP_SCAN_RESET of jtag_rst : signal is true;

attribute TAP_SCAN_CLOCK of jtag_tck : signal is (1.2ðððððe+ð7, BOTH);

attribute INSTRUCTION_LENGTH of vpcichip : entity is 3;

attribute INSTRUCTION_OPCODE of vpcichip : entity is

"SAMPLE (ðð1)," &

"BYPASS (111)," &

"EXTEST (ððð)," &

"highz (1ðð)," &

"clamp (ð11)," &

"ramtst (1ð1)" ;

attribute INSTRUCTION_CAPTURE of vpcichip : entity is "ðð1";

attribute INSTRUCTION_DISABLE of vpcichip : entity is "HIGHZ";

attribute INSTRUCTION_GUARD of vpcichip : entity is "CLAMP";

attribute INSTRUCTION_PRIVATE of vpcichip : entity is "ramtst";

attribute REGISTER_ACCESS of vpcichip : entity is

"BOUNDARY (SAMPLE, EXTEST)," &

"BYPASS (CLAMP, HIGHZ, BYPASS)" ;

attribute BOUNDARY_CELLS of vpcichip : entity is "BC_2, BC_4, BC_1";

attribute BOUNDARY_LENGTH of vpcichip : entity is 268;

attribute BOUNDARY_REGISTER of vpcichip : entity is

-- num cell port function safe fflccell disval rslt“

"ð (BC_1, \, controlr, 1) ," &

"1 (BC_1, \, controlr, 1) ," &

"2 (BC_1, \, controlr, 1) ," &

"3 (BC_1, \, controlr, 1) ," &

"4 (BC_1, \, controlr, 1) ," &

"5 (BC_1, \, controlr, 1) ," &

"6 (BC_1, \, controlr, 1) ," &

"7 (BC_1, \, controlr, 1) ," &

"8 (BC_1, \, controlr, 1) ," &

"9 (BC_1, \, controlr, 1) ," &

"1ð (BC_1, \, controlr, 1) ," &

"11 (BC_1, \, controlr, 1) ," &

"12 (BC_1, \, controlr, 1) ," &

"13 (BC_1, \, controlr, 1) ," &

"14 (BC_1, \, controlr, 1) ," &

"15 (BC_1, \, controlr, 1) ," &

"16 (BC_1, \, controlr, 1) ," &

"17 (BC_1, \, controlr, 1) ," &

"18 (BC_1, \, controlr, 1) ," &

"19 (BC_1, \, controlr, 1) ," &

"2ð (BC_1, \, controlr, 1) ," &

"21 (BC_1, \, controlr, 1) ," &

"22 (BC_1, \, controlr, 1) ," &

Appendix D. VolantPCI Test Information — Page 93 of 98

"23 (BC_1, \, controlr, 1) ," &

"24 (BC_1, \, controlr, 1) ," &

"25 (BC_1, \, controlr, 1) ," &

"26 (BC_1, \, controlr, 1) ," &

"27 (BC_1, \, controlr, 1) ," &

"28 (BC_1, \, controlr, 1) ," &

"29 (BC_1, \, controlr, 1) ," &

"3ð (BC_1, \, controlr, 1) ," &

"31 (BC_1, \, controlr, 1) ," &

"32 (BC_1, \, controlr, 1) ," &

"33 (BC_1, \, controlr, 1) ," &

"34 (BC_1, \, controlr, 1) ," &

"35 (BC_1, \, controlr, 1) ," &

"36 (BC_1, \, controlr, 1) ," &

"37 (BC_1, \, controlr, 1) ," &

"38 (BC_1, \, controlr, 1) ," &

"39 (BC_1, \, controlr, 1) ," &

"4ð (BC_1, \, controlr, 1) ," &

"41 (BC_1, \, controlr, 1) ," &

"42 (BC_1, \, controlr, 1) ," &

"43 (BC_1, \, controlr, 1) ," &

"44 (BC_1, \, controlr, 1) ," &

"45 (BC_1, \, controlr, 1) ," &

"46 (BC_1, \, controlr, 1) ," &

"47 (BC_1, \, controlr, 1) ," &

"48 (BC_1, \, controlr, 1) ," &

"49 (BC_4, n_aERROR, clock, X) ," &

"5ð (BC_4, n_aINT(ð), clock, X) ," &

"51 (BC_4, n_aINT(1), clock, X) ," &

"52 (BC_4, n_aINT(2), clock, X) ," &

"53 (BC_4, n_aINT(3), clock, X) ," &

"54 (BC_1, N_IntA, output3, X , 47, 1, Z)," &

"55 (BC_2, N_IntA, input, X) ," &

"56 (BC_4, N_RST, clock, X) ," &

"57 (BC_4, n_GNT, clock, X) ," &

"58 (BC_1, n_REQ, output3, X , 44, 1, Z)," &

"59 (BC_2, n_REQ, input, X) ," &

"6ð (BC_1, AD(31), output3, X , 4, 1, Z)," &

"61 (BC_2, AD(31), input, X) ," &

"62 (BC_1, AD(3ð), output3, X , 4, 1, Z)," &

"63 (BC_2, AD(3ð), input, X) ," &

"64 (BC_1, AD(29), output3, X , 4, 1, Z)," &

"65 (BC_2, AD(29), input, X) ," &

"66 (BC_1, AD(28), output3, X , 4, 1, Z)," &

"67 (BC_2, AD(28), input, X) ," &

"68 (BC_1, AD(27), output3, X , 4, 1, Z)," &

"69 (BC_2, AD(27), input, X) ," &

"7ð (BC_1, AD(26), output3, X , 4, 1, Z)," &

"71 (BC_2, AD(26), input, X) ," &

"72 (BC_1, AD(25), output3, X , 4, 1, Z)," &

"73 (BC_2, AD(25), input, X) ," &

"74 (BC_1, AD(24), output3, X , 4, 1, Z)," &

"75 (BC_2, AD(24), input, X) ," &

"76 (BC_1, n_CBE(3), output3, X , 5, 1, Z)," &

"77 (BC_2, n_CBE(3), input, X) ," &

"78 (BC_4, IDSEL, clock, X) ," &

"79 (BC_1, AD(23), output3, X , 3, 1, Z)," &

"8ð (BC_2, AD(23), input, X) ," &

"81 (BC_1, AD(22), output3, X , 3, 1, Z)," &

"82 (BC_2, AD(22), input, X) ," &

"83 (BC_1, AD(21), output3, X , 3, 1, Z)," &

"84 (BC_2, AD(21), input, X) ," &

"85 (BC_1, AD(2ð), output3, X , 3, 1, Z)," &

"86 (BC_2, AD(2ð), input, X) ," &

"87 (BC_1, AD(19), output3, X , 3, 1, Z)," &

"88 (BC_2, AD(19), input, X) ," &

"89 (BC_1, AD(18), output3, X , 3, 1, Z)," &

"9ð (BC_2, AD(18), input, X) ," &

"91 (BC_1, AD(17), output3, X , 3, 1, Z)," &

"92 (BC_2, AD(17), input, X) ," &

"93 (BC_1, AD(16), output3, X , 3, 1, Z)," &

"94 (BC_2, AD(16), input, X) ," &

"95 (BC_1, n_CBE(2), output3, X , 5, 1, Z)," &

"96 (BC_2, n_CBE(2), input, X) ," &

"97 (BC_1, n_FRAME, output3, X , 41, 1, Z)," &

"98 (BC_2, n_FRAME, input, X) ," &

"99 (BC_1, n_IRDY, output3, X , 42, 1, Z)," &

"1ðð (BC_2, n_IRDY, input, X) ," &

"1ð1 (BC_4, CLK, clock, X) ," &

"1ð2 (BC_1, n_TRDY, output3, X , 43, 1, Z)," &

"1ð3 (BC_2, n_TRDY, input, X) ," &

"1ð4 (BC_1, n_DEVSEL, output3, X , 43, 1, Z)," &

"1ð5 (BC_2, n_DEVSEL, input, X) ," &

Page 94 of 98 — VolantPCI Component Specification

"1ð6 (BC_1, n_STOP, output3, X , 43, 1, Z)," &

"1ð7 (BC_2, n_STOP, input, X) ," &

"1ð8 (BC_1, n_PERR, output3, X , 45, 1, Z)," &

"1ð9 (BC_2, n_PERR, input, X) ," &

"11ð (BC_1, n_SERR, output3, X , 46, 1, Z)," &

"111 (BC_2, n_SERR, input, X) ," &

"112 (BC_1, PAR, output3, X , 4ð, 1, Z)," &

"113 (BC_2, PAR, input, X) ," &

"114 (BC_1, n_CBE(1), output3, X , 5, 1, Z)," &

"115 (BC_2, n_CBE(1), input, X) ," &

"116 (BC_1, AD(15), output3, X , 2, 1, Z)," &

"117 (BC_2, AD(15), input, X) ," &

"118 (BC_1, AD(14), output3, X , 2, 1, Z)," &

"119 (BC_2, AD(14), input, X) ," &

"12ð (BC_1, AD(13), output3, X , 2, 1, Z)," &

"121 (BC_2, AD(13), input, X) ," &

"122 (BC_1, AD(12), output3, X , 2, 1, Z)," &

"123 (BC_2, AD(12), input, X) ," &

"124 (BC_1, AD(11), output3, X , 2, 1, Z)," &

"125 (BC_2, AD(11), input, X) ," &

"126 (BC_1, AD(1ð), output3, X , 2, 1, Z)," &

"127 (BC_2, AD(1ð), input, X) ," &

"128 (BC_1, AD(9), output3, X , 2, 1, Z)," &

"129 (BC_2, AD(9), input, X) ," &

"13ð (BC_1, AD(8), output3, X , 2, 1, Z)," &

"131 (BC_2, AD(8), input, X) ," &

"132 (BC_1, n_CBE(ð), output3, X , 5, 1, Z)," &

"133 (BC_2, n_CBE(ð), input, X) ," &

"134 (BC_1, AD(7), output3, X , 1, 1, Z)," &

"135 (BC_2, AD(7), input, X) ," &

"136 (BC_1, AD(6), output3, X , 1, 1, Z)," &

"137 (BC_2, AD(6), input, X) ," &

"138 (BC_1, AD(5), output3, X , 1, 1, Z)," &

"139 (BC_2, AD(5), input, X) ," &

"14ð (BC_1, AD(4), output3, X , 1, 1, Z)," &

"141 (BC_2, AD(4), input, X) ," &

"142 (BC_1, AD(3), output3, X , 1, 1, Z)," &

"143 (BC_2, AD(3), input, X) ," &

"144 (BC_1, AD(2), output3, X , 1, 1, Z)," &

"145 (BC_2, AD(2), input, X) ," &

"146 (BC_1, AD(1), output3, X , 1, 1, Z)," &

"147 (BC_2, AD(1), input, X) ," &

"148 (BC_1, AD(ð), output3, X , 1, 1, Z)," &

"149 (BC_2, AD(ð), input, X) ," &

"15ð (BC_4, MMI, clock, X) ," &

"151 (BC_1, MMO, output2, X) ," &

"152 (BC_1, SECS, output2, X) ," &

"153 (BC_1, SECLK, output2, X) ," &

"154 (BC_1, SED, output3, X , 48, 1, Z)," &

"155 (BC_2, SED, input, X) ," &

"156 (BC_4, n_aDREQ(7), clock, X) ," &

"157 (BC_1, n_aDACK(7), output2, X) ," &

"158 (BC_4, n_aDREQ(6), clock, X) ," &

"159 (BC_1, n_aDACK(6), output2, X) ," &

"16ð (BC_4, n_aDREQ(5), clock, X) ," &

"161 (BC_1, n_aDACK(5), output2, X) ," &

"162 (BC_4, n_aDREQ(4), clock, X) ," &

"163 (BC_1, n_aDACK(4), output2, X) ," &

"164 (BC_4, n_aDREQ(3), clock, X) ," &

"165 (BC_1, n_aDACK(3), output2, X) ," &

"166 (BC_4, n_aDREQ(2), clock, X) ," &

"167 (BC_1, n_aDACK(2), output2, X) ," &

"168 (BC_4, n_aDREQ(1), clock, X) ," &

"169 (BC_1, n_aDACK(1), output2, X) ," &

"17ð (BC_4, n_aDREQ(ð), clock, X) ," &

"171 (BC_1, n_aDACK(ð), output2, X) ," &

"172 (BC_1, n_aINTACK(1), output2, X) ," &

"173 (BC_1, n_aINTACK(ð), output2, X) ," &

"174 (BC_1, n_aEOPTC, output3, X , 39, 1, Z)," &

"175 (BC_2, n_aEOPTC, input, X) ," &

"176 (BC_1, n_aCS(ð), output2, X) ," &

"177 (BC_1, n_aCS(1), output2, X) ," &

"178 (BC_1, n_aCS(2), output2, X) ," &

"179 (BC_1, n_aCS(3), output2, X) ," &

"18ð (BC_1, a_D(ð), output3, X , ð, 1, Z)," &

"181 (BC_2, a_D(ð), input, X) ," &

"182 (BC_1, a_D(1), output3, X , ð, 1, Z)," &

"183 (BC_2, a_D(1), input, X) ," &

"184 (BC_1, a_D(2), output3, X , ð, 1, Z)," &

"185 (BC_2, a_D(2), input, X) ," &

"186 (BC_1, a_D(3), output3, X , ð, 1, Z)," &

"187 (BC_2, a_D(3), input, X) ," &

"188 (BC_1, a_D(4), output3, X , ð, 1, Z)," &

Appendix D. VolantPCI Test Information — Page 95 of 98

"189 (BC_2, a_D(4), input, X) ," &

"19ð (BC_1, a_D(5), output3, X , ð, 1, Z)," &

"191 (BC_2, a_D(5), input, X) ," &

"192 (BC_1, a_D(6), output3, X , ð, 1, Z)," &

"193 (BC_2, a_D(6), input, X) ," &

"194 (BC_1, a_D(7), output3, X , ð, 1, Z)," &

"195 (BC_2, a_D(7), input, X) ," &

"196 (BC_1, n_aWR, output2, X) ," &

"197 (BC_1, n_aRD, output2, X) ," &

"198 (BC_1, a_A(2), output2, X) ," &

"199 (BC_1, a_A(3), output2, X) ," &

"2ðð (BC_1, a_A(4), output2, X) ," &

"2ð1 (BC_1, a_A(5), output2, X) ," &

"2ð2 (BC_1, a_A(6), output2, X) ," &

"2ð3 (BC_1, a_A(7), output2, X) ," &

"2ð4 (BC_1, a_A(8), output2, X) ," &

"2ð5 (BC_1, a_A(9), output2, X) ," &

"2ð6 (BC_1, a_A(1ð), output2, X) ," &

"2ð7 (BC_1, a_A(11), output2, X) ," &

"2ð8 (BC_1, a_A(12), output2, X) ," &

"2ð9 (BC_1, a_A(13), output2, X) ," &

"21ð (BC_1, a_A(14), output2, X) ," &

"211 (BC_1, a_A(15), output2, X) ," &

"212 (BC_1, a_A(16), output2, X) ," &

"213 (BC_1, a_A(17), output2, X) ," &

"214 (BC_4, REFCLK, clock, X) ," &

"215 (BC_1, PIOðLow(ð), output3, X , 1ð, 1, Z)," &

"216 (BC_2, PIOðLow(ð), input, X) ," &

"217 (BC_1, PIOðLow(1), output3, X , 11, 1, Z)," &

"218 (BC_2, PIOðLow(1), input, X) ," &

"219 (BC_1, PIOðLow(2), output3, X , 12, 1, Z)," &

"22ð (BC_2, PIOðLow(2), input, X) ," &

"221 (BC_1, PIOðLow(3), output3, X , 13, 1, Z)," &

"222 (BC_2, PIOðLow(3), input, X) ," &

"223 (BC_1, PIOðHigh(4), output3, X , 6, 1, Z)," &

"224 (BC_1, PIOðHigh(5), output3, X , 7, 1, Z)," &

"225 (BC_1, PIOðHigh(6), output3, X , 8, 1, Z)," &

"226 (BC_1, PIOðHigh(7), output3, X , 9, 1, Z)," &

"227 (BC_1, PIO1Low(ð), output3, X , 18, 1, Z)," &

"228 (BC_2, PIO1Low(ð), input, X) ," &

"229 (BC_1, PIO1Low(1), output3, X , 19, 1, Z)," &

"23ð (BC_2, PIO1Low(1), input, X) ," &

"231 (BC_1, PIO1Low(2), output3, X , 2ð, 1, Z)," &

"232 (BC_2, PIO1Low(2), input, X) ," &

"233 (BC_1, PIO1Low(3), output3, X , 21, 1, Z)," &

"234 (BC_2, PIO1Low(3), input, X) ," &

"235 (BC_1, PIO1High(4), output3, X , 14, 1, Z)," &

"236 (BC_1, PIO1High(5), output3, X , 15, 1, Z)," &

"237 (BC_1, PIO1High(6), output3, X , 16, 1, Z)," &

"238 (BC_1, PIO1High(7), output3, X , 17, 1, Z)," &

"239 (BC_1, PIO2Low(ð), output3, X , 26, 1, Z)," &

"24ð (BC_2, PIO2Low(ð), input, X) ," &

"241 (BC_1, PIO2Low(1), output3, X , 27, 1, Z)," &

"242 (BC_2, PIO2Low(1), input, X) ," &

"243 (BC_1, PIO2Low(2), output3, X , 28, 1, Z)," &

"244 (BC_2, PIO2Low(2), input, X) ," &

"245 (BC_1, PIO2Low(3), output3, X , 29, 1, Z)," &

"246 (BC_2, PIO2Low(3), input, X) ," &

"247 (BC_1, PIO2High(4), output3, X , 22, 1, Z)," &

"248 (BC_1, PIO2High(5), output3, X , 23, 1, Z)," &

"249 (BC_1, PIO2High(6), output3, X , 24, 1, Z)," &

"25ð (BC_1, PIO2High(7), output3, X , 25, 1, Z)," &

"251 (BC_1, PIO3Low(ð), output3, X , 34, 1, Z)," &

"252 (BC_2, PIO3Low(ð), input, X) ," &

"253 (BC_1, PIO3Low(1), output3, X , 35, 1, Z)," &

"254 (BC_2, PIO3Low(1), input, X) ," &

"255 (BC_1, PIO3Low(2), output3, X , 36, 1, Z)," &

"256 (BC_2, PIO3Low(2), input, X) ," &

"257 (BC_1, PIO3Low(3), output3, X , 37, 1, Z)," &

"258 (BC_2, PIO3Low(3), input, X) ," &

"259 (BC_1, PIO3High(4), output3, X , 3ð, 1, Z)," &

"26ð (BC_1, PIO3High(5), output3, X , 31, 1, Z)," &

"261 (BC_1, PIO3High(6), output3, X , 32, 1, Z)," &

"262 (BC_1, PIO3High(7), output3, X , 33, 1, Z)," &

"263 (BC_1, n_LED_EN, output2, X) ," &

"264 (BC_1, n_aRESET, output2, X) ," &

"265 (BC_4, n_ScanTestEn, clock, X) ," &

"266 (BC_4, n_ScanMuxSel, clock, X) ," &

"267 (BC_1, aCLK, output3, X , 38, 1, Z)";

end vpcichip;

Page 96 of 98 — VolantPCI Component Specification

 D.2 Scan Testing

VolantPCI utilizes a full-scan testing methodology with 4 independent scan chains. The scan chain inputs and
outputs are depicted in the following table.

Note: Scan chain #3 is clocked by REFCLK. The others are clocked by CLK.

The following additional pins are used to perform Scan Testing.

ScanTstEn# (pin 186) is used to enable scan testing of the chip. This signal should be pulled up to Vdd
during normal chip operation.

ScanMuxSel# (pin 187) is used to shift the serial patterns through the scan chains. This signal should be
pulled up to Vdd during normal chip operation.

D.3 RAM Isolation Testing

Through the JTAG RamTest instruction, VolantPCI's internal RAM can be isolated directly to primary I/Os for
testing. The following table shows the relationship between the RAM Test signals (ie. Address, Data, ..) and the
pin names.

Table 21. VolantPCI Scan Chains

Chain # Scan Input Pin # Scan Output Pin # # ff's in Chain

1 A_DREQ(7) pin 79 SCS pin 76 908

2 A_INT(3) pin 202 -LEDEN pin 180 879

3 -AIB_ERROR pin 198 -A_RESET pin 181 21

4 MMI pin 74 MMO pin 75 235

Table 22. RAM Testing

RAM Test Signal VolantPCI Pin Name

RamAddress(5:0) A_D(5:0)

RamWrStrobe A_D(6)

RamWrData(31:0) AD(31:0)

RamRdData(31:16) A_A(17:2)

RamRdData(15:8) -A_DACK(7:0)

RamRdData(7) -A_WR

RamRdData(6) -A_RD

RamRdData(5:4) -A_INTACK(1:0)

RamRdData(3:0) -A_CS(3:0)

Appendix D. VolantPCI Test Information — Page 97 of 98

 D.4 Driver Tri-State

In addition to using the JTAG "highZ" command, VolantPCI's drivers can be placed into Tri-State mode by driving
the IDDTST pin 'high'. This will tri-state all output drivers except SCS, -LEDEN, -A_RESET, MMO and
PTSTOUT.

Page 98 of 98 — VolantPCI Component Specification

 Appendix E. Volant Errata

1. The RST# signal when active does not tri-state all of VolantPCI's PCI Bus signals.

The work around for this is to connect the PCI Bus RST# to both the VolantPCI RST# pin and an inverted
version of the signal to the IDDTST pin. This will tri-state all VolantPCI outputs while RST# is active (except
for -A_RESET, -LED_EN, MMO and SCS). The board designer may need to add pull-ups to some signals to
force them to desired values during reset (i.e. -A_CS3:0, -A_RD, -A_WR, -A_INTACK, etc.).

2. Flushing DMA receive fifo causes TC status bit in the DISR to get set.

The work around for this is to read the DISR and discard its value after flushing the DMA receive fifo.

Appendix E. Volant Errata — Page 99 of 98

Page 100 of 98 — VolantPCI Component Specification

