
'· /

... ,.--/ !:~1\'EC
NEC Electronics Inc.
PRELIMINARY INFORMATION

Description
The µPD70108 (V20) is a CMOS 16-bit microprocessor
with internal 16-bit architecture and an 8-bit external
data bus. The µPD70108 instruction set is a superset of
theµPD8086/8088; however, mnemonics and execution
times are different. The µPD70108 additionally has a
powerful instruction set including bit processing,
packed BCD operations, and high-speed multiplication/
division operations. The µPD70108 can also emulate
the functions of an 8080 and comes with a standby
mode that significantly reduces power consumption. It
is software-compatible with the µPD70116 16-bit
microprocessor.
Features
D Minimum instruction execution time:

250 ns (at 8 MHz)
D Maximum addressable memory: 1 Mbytes
D Abundant memory addressing modes
D 14 x 16-bit register set
D 101 instructions
D Instruction set is a superset of µPD8086/8088

instruction set
D Bit, byte, word, and block operations
D Bit field operation instructions
D Packed BCD operation instructions
D Multiplication/division instructions execution time:

4 µs to 6 µs (at 8 MHz)
D High-speed block transfer instructions:

1 Mbytes/s (at 8 MHz)
D High-speed calculation of effective addresses:
. 2 clock cycles in any addressing mode
0 Maskable (INT) and nonmaskable (NMI)

interrupt inputs
D IEEE-796 bus compatible interface
D 8080 emulation functions
D CMOS technology
D Low power consumption
D Standby function
D Single power supply
D 5 MHz or 8 MHz clock
Ordering Information
Part Max Frequency
Number Package Type of Operation

µPD70108C-5 40-pin plastic DIP 5 MHz
µPD70108C-8 40-pin plastic DIP 8 MHz

" µPD70108D-5 40-pin ceramic DIP 5 MHz
µP070108D-8 40-pin ceramic DIP 8 MHz
µPD70.108G-5 52-pin flat pack 5 MHz
µP070108G-8 52-pln flat paclc 8 MHz

\

Pin Configuration +errupt
Ttiis

IC
A14
A13
A12

A11
A,o
Ag
Ao

•:.
AD7

ADs
A04

31 .HLORQ (RQ/AKo) ·•
30 l1LOAK (RQ/AK1)
29 WR (BUSLOCKJ

BUFR/W (BS1)
BUFEN (BSo)

25 ASTB (0So)

24 UN.TAK (CS1)

CLK
GNO

83-000102A

Pin Functions.
Some pins of the µPD70108 have different functions
according to whether the microprocessor'··• .sed in a
small- or large-scale system. Other pins ~ _'. .~tion the
same way in either type of system.
A15 - As [Address· Bus]
For small- and large-scale systems.
The CPU uses these pins to output the middle 8 bits of
the 20-bit address· data. They are three-state output
and become high impedance during hold acknowledge.
AD7 - AD0 [Address/Data Bus]
For small- and large-scale systems. . .
Th't-'CPU uses these pins ae the time-multiplexed
address and data bus. When high, an AD bit is a one;
when low, an AD bit is a zero. This bus contains the
lower 8 bits of the 20-bit address during T1 of the bus
cycle and is used as an 8-bit data bus during T2; T3,
an.~ T 4 ·of the bus cycle.
Sixteen-bit data 1/0 is performed i11 two steps. The low
byte is ·s~t first, followed by the. high byte. The
address/~a bus is a three-state bus and can be at a
high on~vel during standby mode. The bus wiU be high
impedance during hold and interrupt acknowle_dge: .

\ . . .

.am

/- -
_}

NECJ
. --

PS

ss

DSo

DS1

PFP

DP

TEMP
T-State
Control Oo 01

Oz

Cycle
Decision

LC

PC

AW

BW

cw

DW

IX

IV

BP

SP

Queue
Control

Bus
Bulfer

Status
Control

Bus Hold
Control

Interrupt
Control

i.----S/LG
i.----READY
----RESET
i----POLL

i.---NMI

!-.---INT

A1o/PS0 - A19/PS2
A1-A15

AD0-AD7

LSBo
BUFEN [BSo), BUFR/W [BS1)
10/M [BS2)
AST!lOSoJ, INTAK [OS1)
RD, WR [BUSLOCK)

HLDRO [RO/AKo)

HLDAK [RQ/AK1)

Bus
Control
Unit
[BCU)

~- CLK
~

Effective Address
Generator

TC

TA 1-------- Shiller
TB

.. :,
Ill
~
cl
!:
" :, 0

l! ..
Dt
" a: .. e :g ..
2
.!:!
::i;

15 Microinstruction
Storage

Instruction Decoder

Mlcrosequence
Control

Execution
Unit
[EXU)

29 Microinstruction

PSW

Sub Data Bus j16) Main Data Bus [16) 83·0000 72C

2

·f

NEC /] ,--.
µPD70108 (V20)

Pin Identification NMI [Nonmaskable Interrupt]
No. Symbol Direction Function For small- and large-scale systems.

1 IC* Internally connected This pin is used to input nonmaskable interrupt

2-8 A14 · As Out Address bus, middle bits requests. NMI cannot be masked by software. This

9 -16 AD7 · ADo In/Out Address/data bus
input is positive edge triggered and can be sensed
during any clock cycle. Actual interrupt processing

17 NMI In Nonmaskable interrupt begins, however, after completion of the instruction in
input progress.

18 INT In Maskable interrupt input The contents of interrupt vector 2 determine the
19 CLK In Clock input starting address for the interrupt-servicing routine.
20 GND Ground potential Note that a hold request will be accepted even during

21 RESET In Reset input NMI acknowledge.

22 READY In Ready Input This interrupt will cause the µPD70108 to exit the
standby mode.

23 POLL In Poll input INT [Maskable Interrupt]
24 INTAK (OS1) Out Interrupt acknowledge For small- and large-scale systems.

output (queue status bit
This pin is an interrupt request that can be masked by 1 output)

25 ASTB (0So) Out Address strobe output software.

(queue status bit O INT is active high level and is sensed during the last
output) clock of the instruction. The interrupt will be accepted

26 BUFEN (BSo) Out Buffer enable output if the system is in interrupt enable state (if the interrupt
(bus status bit O output) enable flag IE is set). The CPU outputs the INTAK - 27 BUFR/W (BS1) Out Buffer read/write output signal to inform external devices that the interrupt

((bus status bit 1 output) request has been granted.
28 10/M (BS2) Out Access is 1/0 or memory If NMI and INT interrupts occur at the same time, NMI

(bus status bit 2 output) has higher priority than INT and INT cannot be
29 WR (BUSLOCK) Out Write strobe output (bus accepted. A hold request will be accepted during INT

lock output) acknowledge.
30 HLDAK (RO/ AK1) Out Hold acknowledge output, This interrupt causes the µPD70108 to exit the standby

(In/Out) (bus hold request input/ mode.
acknowledge output 1) CLK [Clock]

31 HLDRQ (RQ/ AKo) In Hold request input (bus For small- and large-scale systems. (In/Out) hold request input/
acknowledge output 0) This pin is used for external clock input.

32 RD Out Read strobe output RESET [Reset]
33 S/LG In Small-scale/large-scale For small- and large-scale·systems.

system input This pin is used for the CPU reset signal. It is an active
34 LBSo (HIGH) Out Latched bus status output high level. Input of this signal has priority over all other

0 (always high in operations. After the reset signal input returns to a low
large-scale systems) level, the CPU begins execution of the program starting

35 -38 A19/PS3 · Out Address bus, high bits or at address FFFFOH.
A15/PS0 processor status output In addition to causing normal CPU start, RESET input

39 A15 Out Address bus, bit 15 will cause the µPD70108 to exit the standby mode.
40 Voo Power supply READY [Ready]

Notes: * IC should be connected to ground. For small- and large-scale systems.

Where pins have different functions in small- and large- When the memory or 1/0 device being accessed
scale systems, the large-scale system pin symbol and cannot complete data read or write within the CPU
function are in parentheses. basic access time, it can generate a CPU wait state
Unused input pins should be tied to ground or V00 to (Tw) by setting this signal to inactive (low level) and
mlnlmlze power dissipation and prevent the flow of poten- requesting a read/write cycle delay. tially harmful currents.

If the READY signal is active (high level) during either
the T3 or Tw state.' the CPU will not generate a wait
state.

3

,·1

µPD70108 (V20) ·._r NEC
POLL [Poll]
For small- and large-scale systems.
The CPU checks this input upon execution of the POLL
instruction. If the input is low, then execution continues.
If the input is high, the CPU will check the POLL input
every five clock cycles until the input becomes low
again.
The POLL and READY functions are used to syn­
chronize CPU program execution with the operation of
external devices.
RD [Read Strobe]
For small- and large-scale systems.
The CPU outputs this strobe signal during data read
from an 1/0 device or memory. The 10/M signal is used
to select between 1/0 and memory. The signal's output
is three state and becomes high impedance during
hold acknowledge.
S/LG [Small/Large]
For small- and large-scale systems.
This signal determines the operation mode of the CPU.
This signal is fixed at either a high or low level. When
this signal is a high level, the CPU will operate in small-

--.... scale system mode, and when low, in the large-scale
system mode. A small-scale system will have at most
one bus master such as a DMA controller device on the
bus. A large-scale system can have more than one bus
master accessing the bus as well as the CPU.
Pins 24 to 31 and pin 34 function differently depending
on the operating mode of the CPU. Separate nomencla­
ture is adopted for these signals in the two operation
modes.

Function

Pin No. S/L6-hlgh S/L6-low

24 INTAK OS1
25 ASTB 0So
26 BUFEN BSo
27 BUFR/W BS1
28 10/M BS2
29 WR BUSLOCK
30 HLDAK RQ/AK1
31 HLDRO RO/AKo
34 LBSo Always high

4

INTAK [Interrupt Acknowledge]
For small-scale systems.
The CPU generates the INTAK signal low when it
accepts an INT signal.
The interrupting device synchronizes with this signal and
outputs the interrupt vector to the CPU via the data bus
(ADrADo).
ASTB [Address Strobe]
For small-scale systems.
The CPU outputs this strobe signal to latch address
information at an external latch.:
BUFEN [Buffer Enable]
For small-scale systems.
This is used as the output enable signal for an external
bidirectional buffer. The CPU generates this signal during
data transfer operations with external memory or
1/0 devices or during input of an interrupt vector.
BUFR/W [Buffer Read/Write]
For small-scale systems.
The output of this signal determines the direction of
data transfer with an external bidirectional buffer. A
high output causes transmission from the CPU to the
external device; a low signal causes data transfer
from the external device to the CPU.
10/M [IQ/Memory]
For small-scale systems.
The CPU generates this signal to specify either 1/0
access or memory access. A high-level output specifies
1/0 and a low-level signal specifies memory.
10/M's output is three state and becomes high
impedance during hold acknowledge.
WR [Write Strobe]
For small-scale systems.
The CPU generates this strobe signal during data write
to an 1/0 device or memory. Selection of either 1/0 or
memory is performed by the 10/M signal.
WR's output is three state and becomes high impedance
during hold acknowledge.
HLDAK [Hold Acknowledge]
For small-scale systems.
The HLDAK signal is used to indicate that the CPU
accepts the hold request signal (HLDRQ). When this
signal is a high level, the address bus, address/data
bus, and the control lines become high impedance.
HLDRQ [Hold Request] ;.
For small-scale systems. ;\ •
This input signal is used by external devices to request
the CPU to release the address bus, address/data bus,
and the control bus.

tt,/EC µPD70108 (V20)

LBSo [Latched Bus Status OJ
For small-scale systems.
The CPU uses this signal along with the 10/M and
BUFR/W signals to inform an external device what the
current bus cycle is.

10/M BUFR/W LBSo Bus Cycle

0 0 Program fetch
0 1 Memory read

0 Memory write
1 Passive state
0 0 Interrupt acknowledge
0 1 1/0 read

0 1/0 write
Halt

0

0

0

0

A1g/PS3-A1s/PS0 [Address Bus/Processor Status]
For small- and large-scale systems.
These pins are time multiplexed to operate as an
address bus and as processor status s_ignals.

__ When used as the address bus, these pins are the high 4
bits of the 20-bit memory address. During 1/0 access,
all 4 bits output data 0.
The processor status signals are provided for both
memory and 1/0 use. PS3 is always O in the native mode
and 1 in 8080 emulation mode. The interrupt enable
flag (IE) is pin on pin PS2. Pins PS1 and PS0indicatewhich
memory segment is being accessed.

A17/PS1 A1s/PS0 Segment
0 0 Data segment 1
0 1 Stack segment

0 Program segment
1 Data segment O

The output of these pins is three state and becomes
high impedance during hold acknowledge.
QS1, OSo [Queue Status]
For large-scale systems.
The CPU uses these signals to allow external devices,
such as the floating-point arithmetic processor chip,
(µPD72091) to monitor the status of the internal CPU
instruction queue.

OS1 0So Instruction Queue Status

0 0 NOP (queue does not change)
0 First byte of instruction

0 Flush queue
1 Subsequent bytes of instruction

The instruction queue status indicated by these signals
is the status when the execution unit (EXU) accesses
the instruction queue. The data output from these pins
is therefore valid only for one clock cycle immediately
following queue access. These status signals are
provided so that the floating-point processor chip can
monitor the CPU's program execution status and
synchronize its operation with the CPU when control is
passed to it by the FPO (Floating Point Operation)
instructions.
BS2 - BSo [Bus Status]
For large-scale systems.
The CPU uses these status signals to allow an external
bus controller to monitor what the current bus cycle is.
The external bus controller decodes these signals and
generates the control signals required to perform
access of the memory or 1/0 device.

BS2 BS1 BSo Bus Cycle

0 0 0 Interrupt acknowledge
0 0 1 1/0 read
0 1 0 1/0 write
0 1 Halt
1 0 0 Program fetch
1 0 1 Memory read

1 0 Memory write
1 Passive state

The output of these signals is three state and becomes
high impedance during hold acknowledge.
BUSLOCK [Bus Lock]
For large-scale systems.
The CPU uses this signal to secure the bus while
executing the instruction immediately following the
BUSLOCK prefix instruction. It is a status signal to the
other bus masters in a multiprocessor system inhibiting
them from using the system bus during this time.
The output of this signal is three state and becomes
high impedance during hold acknowledge. BUS LOCK
is high during standby mode except if the HALT
instruction has a BUSLOCK prefix.

RQ/AK1, RQ/AKo [Hold Request/Acknowledge]
For large-scale systems.
These pins function as bus hold request inpu~(RQ)
and as bus hold acknowledge outputs (AK). RQ/AK0
has a higher priority than RQ/AK1.

These pins have three-state outpJts with on-chip pull­
up resistors which keep the pin at a high level when the
output is high impedance.

5

·- .--~------

µPD70108 (V20) NEC
Voo [Power Supply] DC Characteristics

c·,
For small- and large-scale systems. µPD70108-5, TA =-40°C to +85°C, Voe = +5 V ± 10%

This pin is used for the +5 V power supply.
µPo101oa-a, TA =-10°c to +10°c, v00 = +s v ± 5%

Limits GND [Ground] Test

For small- and large-scale systems. Parameter Symbol Min Typ Max Unit Conditions

This pin is used for ground. Input voltage
V1H 2.2 Voo +0.3 V high

IC [Internally Connected] Input voltage
V1L -0.5 0.8 V This pin is used for tests performed at the factory by low

NEC. The µPD70108 is used with this pin at ground CLK input
potential. voltage high VKH 3.9 Voo+1.0 V

Absolute Maximum Ratings CLK input
VKL -0.5 0.6 V voltage low TA =+2s0c

Power supply voltage, Voo -0.5 V to +7.0 V
Output voltage VoH 0.7x V loH = -400µA high Voo

Power dissipation, PDMAX +0.5W Output voltage
Input voltage, V1 -0.5 V to Voo + 0.3 v low Vol 0.4 V loL = 2.5 mA

CLK input voltage, VK -0.5 V to Voo + 1.0 V Input leakage
luH 10 µA V1 =Voo

Output voltage, Vo -0.5 V to Voo + 0.3 V
current high

Operating temperature, T OPT -40 -c to +85 -c Input leakage
luL -10 µA V1=0V current low

Storage temperature, T STG -65°C to +150°C Output leakage
Comment: Exposing the device to stresses above those listed in current high ILOH 10 µA Vo=Voo

..- Absolute Maximum Ratings could cause permanent damage. The Output leakage device is not meant to be operated under conditions outside the current low ILOL -10 µA Vo=OV
limits described in the operational sections of this specification.
Exposure to absolute maximum rating conditions for extended 30 60 mA Normal
periods may affect device reliability. 70108-5 operation

Supply current loo 5 MHz 5 10 mA Standby mode
Capacitance 45 80 mA Normal TA= +as-c, v00 = o v 70108-8 operation

Limits Test 8 MHz 6 12 mA Standby mode
Parameter Symbol Min Max Unit Conditions

Input capacitance c, 15 pF fc = 1 MHz
Unmeasured pins

1/0 capacitance C10 15 pF returned to O V

.
;

.,

6

t-lEC µPD70108 (V20)

AC Characteristics
µPD701oa-s. TA= 10°c to +as0c. v00 = s v ± 10%
µPo101oa-~. TA= 4o•c to +10°c. v00 = s v ± 5%

µPD70108-5 µ70108-8
Test

Parameter Symbol Min Max Min Max Unit Conditions
Small/Large Scale

Clock cycle tcvK 200 500 125 500 ns
Clock pulse width high tKKH 69 50 ns VKH =3.0V
Clock pulse width low tKKL 90 60 ns VKL = 1.5 V
Clock rise time tKR 10 8 ns 1.5 V to 3.0 V
Clock fall time tKf 10 7 ns 3.0 V to 1.5 V
READY inactive setup to CLKl tsRYLK -8 -8 ns
READY inactive hold after CLKt tHKRYH 30 20 ns
READY active setup to CLKt tsRYHK tKKL -8 tKKL -8 ns
READY active hold after CLKt tHKRYL 30 20 ns
Data setup time to CLK l tsoK 30 20 ns
Data hold time after CLK l tHKD 10 10 ns
NMI, INT, POLL setup time
to CLK t ts1K 30 15 ns
Input rise time (except CLK) tm 20 20 ns 0.8 V to 2.2 V - Input fall time (except CLK) t1F 12 12 ns 2.2 V to 0.8 V

(Output rise ti me toR 20 20 ns 0.8 V to 2.2 V
Output fall time toF 12 12 ns 2.2 V to 0.8 V
Small Scale
Address delay time from CLK toKA 10 90 10 60 ns
Address hold time from CLK tHKA 10 10 ns
PS delay time from CLK l toKP 10 90 10 60 ns
PS float delay time from CLK t tfKP 10 80 10 60 ns
Address setup time to ASTB l tsAST tKKL-60 tKKL -30 ns
Address float delay time from CL= 100 pf
CLK l tFKA tHKA 80 tHKA 60 ns
ASTB t delay time from CLK l toKSTH 80 50 ns
ASTB l delay time from CLK t toKSTL 85 55 ns
ASTB width high tsTST tKKL -20 tKKL -10 ns
Address hold time from ASTB l tHSTA tKKH -10 tKKL -10 ns

7

-;,.

µPD70108 (V20) NEC
r'\ (. AC Characteristics (cont)

µPD7orns-s. TA= 40°C to -as-c, v00 = s v ± 10%
µPD701os-s. TA= 10°c to +10°c, v00 = s v ± 5%

µPD70108-5 µPD70108-8
Test

Parameter Symbol Min Max Min Max Unit Conditions

Smail Scale (cont)
Control delay time from CLK toKCT 10 110 10 65 ns
Address float to RO l IAFRL 0 0 ns
RO l delay time from CLK IDKRL 10 165 10 80 ns
RD t delay time from CLK l toKRH 10 150 10 80 ns
Address delay time from RO t IDRHA tcvK-45 tcvK- 40 ns
RD width low IRA 2tcvK- 75 2tcvK- 50 ns CL= 100 pF
Data output delay time

IDKD 10 90 10 60 ns from CLK l
Data float delay time

lfKo10 80 10 60 ns from CLK l
WR width low tww 2tcvK- 60 2tcvK-40 ns
HLDRO setup time to CLK t tsHOK 35 20 ns
HLDAK delay time from CLK l IDKHA 10 160 10 100 ns
Large Scale
Address delay time from CLK IDKA 10 90 10 60 ns ~
Address hold time from CLK IHKA 10 10 ns
PS delay time from CLK l IDKP 10 90 10 60 ns
PS float delay time from CLK t IFKP 10 80 10 60 ns
Address float delay time

lfKA IHKA 80 IHKA 60 ns from CLK l
Address delay time from RD t loRHA tcvK-45 tcvK- 40 ns
ASTB delay time from BS l toasr 15 15 ns
BS l delay time from CLK t toKBL 10 110 10 60 ns
BS t delay time from CLK l toKBH 10 130 10 65 ns
RD l delay time

toAFRL 0 0 ns CL= 100 pF from address float
RO l delay time from CLK l toKRL 10 165 10 80 ns
RO t delay time from CLK l loKRH 10 150 10 80 ns
RD width low IRA 2tcvK- 75 2tcvK- 50 ns
Data output delay time

loKD 10 90 10 60 ns from CLK l
Data float delay time

IFKD 10 80 10 60 ns from CLK t
AK delay time from CLK l toKAK 70 50 ns
RO setup time to CLK t tsROK 20 10 ns
RO hold time after CLK t IHKRQ 40 30 ns

:;.

) c
.,

8

.... ,

NEC µPD70108 (V20)

Timing Waveforms

AC Test Input Waveform [Except CLK] Clock Timing

2.2V 2.2V
2.4V~p·
0.4V~

0.8V 0.8V

AC Output Test Points
2.2V 2.2V

~
0.8V 0.8V

CLK

49-0002J9A

49-000238A

Wall [Ready] Timing BUSLOCK Output Timing

CLK

Ready

POLL, NMI, INT Input Timing

CLK~

POLL~~
NMl,INT~

49-000240A

9

µPD70108 (V20) NEC
Timing Waveforms (cont) (

Re;td Timing [Small Scale) Write Timing [Small Scale)

CLK

A,,JPS, • +--l..r-+--YJ.--+------#--4.1--11.
A,/J'S0

ASTB

BUFRIW

101M

CLK

A,,JPS, •
A,/PS0

Les0

AD7-AD0

ASTB

BUFRIW

IOIM-V V-- .r«: -------"---
A
15
-A

1
==x.__)E

Read Timing [Large Scale) Write Timing [Large Scale)

CLK

LBSo

ASTB
(71088
Output)

BS2 • BSo

CLK

Program Status

LBSo

AD1-AD0 Data Output

ASTB
(71088
Output)

, e_u_s_s_1a_iu_. __ _,7
OS1 • 0So

A15• Aa ==:x.._ ..,)1..... >E . ·(
.,

10

NEC µPD70108 (V20)

Timing Waveforms (cont)

Interrupt Acknowledge Timing

AD7- AD0

ASTB

CU<

BUFR/W

10,JA

(-=:!.1'FK4
A15-A1 ~).--------------------------------

* : urge Scale Mode Only

Hold Request/Acknowledge Timing [Small Scale]
1 or2

CLK

HLDRQ

HLDAK

*
* : A,/PS1 • A1/PS0, A11 • Aa, AD7 • AD., iffi, LBS0, 10/M, BUFR/W, WR BUFEN

11

µPD70108 {V20) NEC
Timing Waveforms (cont)

Bu_s RequesVAcknowledge Timing [Large Scale)

CLK

RQ/AK

•
----------7-01_08_1-nput------l: ™~O:rr•:,1-----------i

70108 coprceessor

* : A,,f PS, - A,./Ps •• A,. - A,, AD,. AD,, es, - es,. RD, BUSLOCK
J9-0002"68

-~

12

t't(EC µPD70108 (V20)

Register Configuration
Program Counter [PC]
The program counter is a 16-bit binary counter that
contains the segment offset address of the next
instruction which the EXU is to execute.
The PC increments each time the microprogram fetches
an instruction from the instruction queue. A new
location value is loaded into the PC each time a branch,
call, return, or break instruction is executed. At this
time, the contents of the PC are the same as the
Prefetch Pointer (PFP).
Prefetch Pointer [PFP]
The prefetch pointer (PFP) is a 16-bit binary counter
which contains a segment offset which is used to
calculate a program memory address that the bus
control unit (BCU) uses to prefetch the next byte for
the instruction queue. The contents of PFP are an
offset from the PS (Program Segment) register.
The PFP is incremented each time the BCU prefetches
an instruction from the program memory. A new
location will be loaded into the PFP whenever a branch,
call, return, or break instruction is executed. At that

(
. --.. time the contents of the PFP will be the same as those

... of the PC (Program Counter). ·
Segment Registers [PS, SS, DS0, and DS1]

The memory addresses accessed by theµPD70108 are
divided into 64K-byte logical segments. The starting
(base) address of each segment is specified by a
segment register, and the offset from this starting
address is specified by the contents of another register
or by the effective address.
These are the four types of segment registers used.

Segment Register Default Offset

PS (Program Segment) PFP
SS (Stack Segment) SP, effective address
DSo (Data Segment 0) IX, effective address
DS1 (Data Segment 1) IV

General-Purpose Registers [AW, BW, CW, and OW]
There are four 16-bit general-purpose registers. Each
one can be used as one 16-bit register or as two 8-bit
registers by dividing them into their high and low bytes
(AH, AL, BH, BL, CH, CL, DH, DL).
Each register is also used as a default register for

1 ~ processing specific instructions. The default assign­
ments are:
AW: Word multiplication/division, word 1/0, data

conversion

AL: Byte multiplication/division, byte 1/0, BCD
rotation, data conversion, translation

AH: Byte multiplication/division
BW: Translation
CW: Loop control branch, repeat prefix
CL: Shift instructions, rototation instructions,

BCD operations
DW: Word multiplication/division, indirect

addressing 1/0
Pointers [SP, BP] and Index Registers [IX, IY]
These registers serve as base pointers or index registers
when accessing the memory using based addressing,
indexed addressing, or based indexed addressing.
These registers can also be used for data transfer and
arithmetic and logical operations in the same manner
as the general-purpose registers. They cannot be used
as 8-bit registers.
Also, each of these registers acts as a default register
for specific operations. The default assignments are:

SP: Stack operations
IX: Block transfer (source), BCD string operations
I Y: Block transfer (destination), BCD string operations

Program Status Word [PSW]
The program status word consists of the following six
status and four control flags.

Status Flags Control Flags
• V (Overflow) • MD (Mode)
• S (Sign) • DIR (Direction)
• Z (Zero) • IE (Interrupt Enable)
• AC (Auxiliary Carry) • BRK (Break)
• P (Parity)
• CY (Carry)

When the PSW is pushed on the stack, the word images
of the various flags are as shown here.
PSW

15 13 12 11 7 6 5 4 3 2 1 0 14 10 9 8

M
D

1 V S Z O A O P C
C y

D I B
I E R
R K

The status flags are set and reset depending upon the
result of each type of instruction executed.
Instructions are provided to set, reset, and complement
the CY flag directly.
Other instructions set and reset the control flags and
control the operation of the CPU.

13

µPD70108 (V20) NEC
High-Speed Execution of Instructions
This section highlights the major architectural features
that enhance the performance of the µPD70108.
• Dual data bus in EXU
• Effective address generator
• 16/32-bit temporary registers/shifters (TA, TB)
• 16-bit loop counter
• PC and PFP
Dual Data Bus Method
To reduce the number of processing steps for in­
struction execution, the dual data bus method has
been adopted for the µPD70108 (figure 1). The two
data buses (the main data bus and the subdata bus) are
both 16 bits wide. For addition/subtraction and logical
and comparison operations, processing time has been
speeded up some 30% over single-bus systems.

Figure 1. Dual Data Buses

Registers

16 16

~ Subclata bus Main data bus
83--000103A

14

(
Example

ADD AW, BW ; AW+- AW+ BW
Single Bus Dual Bus

Step 1 TA+- AW TA+- AW, TB+- BW
Step2TB+-BW AW+-TA+TB
Step 3 AW -TA+ TB

Effective Address Generator
This circuit (figure 2) performs high-speed processing to
calculate effective addresses for accessing memory.
Calculating an effective address by the microprogram­
ming method normally requires 5 to 12 clock cycles.
This circuit requires only two clock cycles for
addresses to be generated for any addressing mode.
Thus, processing is several times faster.

Figure 2. Effective Address Generator

First and second byte of Instruction

mod rim

EA Generator

Effective address

16/32-Bit Temporary Registers/Shifters [TA, TB]
These 16-bit temporary registers/shifters (TA, TB)
are provided for multiplication/division and shift/
rotation instructions.
These circuits have decreased the execution time of
multiplication/division instructions. In fact, these
instructions can be executed about four times faster
than with the microprogramming method.
TA + TB: 32-bit temporary register/shifter for multi-
plication and division instructions. :

1
TB: 16-bit temporary register/shifter for shift/rotation

' instructions. ;:

.,

NEC µPD70108 (V20)

Loop Counter [LC]
This counter is used to count the number of loops for a
primitive block transfer instruction controlled by a
repeat prefix instruction and the number of shifts that
will be performed for a multiple bit shift/rotation in­
struction.
The processing performed for a multiple bit rotation of
a register is shown below. The average speed is
approximately doubled over the microprogram method.
Example

RORC AW,CL ;CL=5
Microprogram method LC method
8+(4x5)=28clocks 7+5=12clocks

Program Counter and Prefetch Pointer [PC and PFP]
TheµPD70108 microprocessor has a program counter,
(PC) which addresses the program memory location of
the instruction to be executed next, and a prefetch
pointer(PFP), which addresses the program memory
location to be accessed next. Both functions are
provided in hardware. A time saving of several clocks
is realized for branch, call, return, and break instruction
execution, compared with microprocessors that have
only one instruction pointer.
Enhanced Instructions
In addition to the µPD8088/86 instructions, the
µPD70108 has the following enhanced instructions.

Instruction Function

PUSH Imm Pushes immediate data onto stack
PUSH R Pushes 8 general registers onto stack
POP R Pops 8 general registers from stack
MUL imm Executes 16-bit multiply of register or memory contents

by immediate data
SHL imm8
SHR imm8
SHRA imm8
ROL imm8
ROR imm8
ROLC imm8
RORC imm8

Shifts/rotates register or memory by immediate
value

CHKIND Checks array index against designated boundaries
INM Moves a string from an 1/0 port to memory

·-- OUTM Moves a string from memory to an 1/0 port
PREPARE Allocates an area for a stack frame and copies previous

frame pointers
DISPOSE Frees the current stack frame on a procedure exit

Enhanced Stack Operation Instructions
PUSH Imm
This instruction allows immediate data to be _pushed
onto the stack.
PUSH R/POP R
These instructions allow the contents of the eight
general registers to be pushed onto or popped from
the stack with a single instruction.
Enhanced Multiplication Instructions
MUL reg16, imm16/MUL mem16, imm16
These instructions allow the contents of a register or
memory location to be 16-bit multiplied by immediate
data.
Enhanced Shift and Rotate Instructions
SHL reg, imm8/SHR reg, imm8/SHRA reg, lmm8
These instructions allow the contents of a register to be
shifted by the numberof bits defined by the immediate
data.
ROL reg, imm8/ROR reg, imm8/ROLC reg, imm8/
RORC reg, lmmB
These instructions allow the contents of a register to be
rotated by the number of bits defined by the immediate
data.
Check Array Boundary Instruction
CHKIND reg16, mem32
This instruction is used to verify that index values
pointing to the elements of an array data structure are
within the defined range. The lower limit of the array
should be in memory location mem32, the upper limit
in mem32+ 2. lfthe index value in reg16 is not between
these limits when CHKIND is executed, a BAK 5 will
occur. This causes a jump to the location in interrupt
vector 5.
Block 1/0 Instructions
OUTM DW, src-block/lNM dst-block, DW
These instructions are used to output or input a string
to or from memory, when preceded by a repeat prefix.
Stack Frame Instructions
PREPARE lmm16, lmm8
This instruction is used to generate the stack frames
required by block-structured languages, such as
PASCAL and Ada. The stack frame consists of two
areas. One area has a pointer that points to another
frame which has variables that the current frame can
access. The other is a local variable area for the current
procedure.

15

µPD70108 (V20) NEC
DISPOSE
This instruction releases the last stack frame generated
by the PREPARE instruction. It returns the stack and
base pointers to the values they had before the
PREPARE instruction was used to call a procedure.
Unique Instructions
In addition to the µPD8088/86 instructions and the
enhanced instructions, theµPD70108 has the following
unique instructions.

Instruction Function

INS Insert bit field
EXT Extract bit field
ADD4S Adds packed decimal strings
SUB4S Subtracts one packed decimal string from another
CMP4S Compares two packed decimal strings
ROL4 Rotates one BCD digit left through AL lower 4 bits
ROR4 Rotates one BCD digit right through AL lower 4 bits
TEST1 Tests a specified bit and sets/resets Z flag
NOT1 Inverts a specified bit
CLR1 Clears a specified bit
SET1 Sets a specified bit
REPC Repeats next instruction until CY flag is cleared
REPNC Repeats next instruction until CY flag Is set
FP02 Additional floating point processor call

Figure 3. Bit Field Insertion

Variable Length Bit Field Operation Instructions
This category has two instructions: INS (Insert Bit
Field} and EXT (Extract Bit Field}. These instructions
are highly effective for computer graphics and high­
level languages. They can, for example, be used for
data structures such as packed arrays and record type
data used in PASCAL.
INS regs, reg8/INS regs, lmm4
This instruction (figure 3) transfers low bits from the
16-bit AW register (the number of bits is specified by
the second operand) to the memory location specified
by the segment base (DS1 register) plus the byte offset
(IY register). The starting bit position within this byte is
specified as an offset by the lower 4-bits of the first
operand.
After each complete data transfer, the IY register and
the register specified by the first operand are auto­
matically updated to point to the next bit field.
Either immediate data or a register may specify the
number of bits transferred (second operand). Because
the maximum transferable bit length is 16-bits, only the
lower 4-bits of the specified register (OOH to OFH) will
be valid.
Bit field data may overlap the byte boundary of memory.

Bit length

15

AW

Bit offset Byte offset (IY)

Byte boundary

I Memory

t
Segment base (DS1)

83-000106A

16

·•

NEC
r

µPD70108 (V20)

EXT reg8, reg8/EXT reg8, lmm4
This instruction (figure 4) loads to the AW register the
bit field data whose bit length is specified by the
second operand of the instruction from the memory
location that is specified by the DSO segment register
(segment base), the IX index register (byte offset), and
the lower 4-bits of the first operand (bit offset).
After the transfer is complete, the IX register and the
lower 4-bits of the first operand are automatically
updated to point to the next bit field.
Either immediate data or a register may be specified for
the second operand. Because the maximum trans­
ferrable bit length is 16 bits, however, only the lower
4-bits of the specified register (OH to OFH) will be valid.
Bit field data may overlap the byte boundary of memory.
Packed BCD Operation Instructions
The instructions described here process packed BCD
data either as strings (ADD4S, SUB4S, CMP4S) or
byte-format operands (ROR4, ROL4). Packed BCD
strings may be from 1 to 254 digits in length.
When the number of digits is even, the zero and carry
flags wil I be set according to the resu It of the operation.
When the number of digits is odd, the zero and carry
flags may not be set correctly in this case, (CL= odd},
the zero flag will not be set unless the upper 4 bits of the
highest byte are all zero. The carry flag will not be set
unless there is a carry out of the upper 4 bits of the
highest byte. When CL is odd, the contents of the upper
4 bits of the highest byte of the result are undefined.

Figure 4. Bit Field Extraction

ADD4S
This instruction adds the packed BCD string addressed
by the IX index register to ·the packed BCD string
addressed by the IY index register, and stores the
result in the string addressed by the IY register. The
length of the string (number of BCD digits) is specified
by the CL register, and the result of the operation will
affect the overflow flag (V}, the carry flag (CY), and
zero flag (Z).
BCD string (IV, CL) - BCD string (IV, CL) + BCD
string (IX, CL)
SUB4S
This instruction subtracts the packed BCD string
addressed by the IX index register from the packed
BCD string addressed by the IV register, and stores the
result in the string addressed by the IV register. The
length of the string (number of BCD digits) is specified
by the CL register, and the result of the operation will
affect the overflow flag (V), the carry flag (CY), and
zero flag (Z).
BCD string (IV, CL) - BCD string (IY, CL) - BCD
String (IX, CL)
CMP4S.
This instruction performs the same operation as
SUB4S except that the result is not stored and only the
overflow (V}, carry flags (CY) and zero flag (Z) are
affected.
BCD string (IV, CL) - BCD string (IX, CL)

: I--- ----4;-------lt~---'r-L---L-f(J_,___
4

Bltoflse---j--< r-----1~::r----+---I ~ · 1
l ~-- ---

AWr.....__ _o -£-V........__.!/~~
83-000 1076

{

17

µPD70108 (V20) NEC
ROL4
This instruction (figure 5) treats the byte data of the
register or memory directly specified by the instruction
byte as BCD data and uses the lower 4-bits of the AL
regi'Ster (ALL) to rotate that data one BCD digit to the
left

Figure 5. BCD Rotate Left (ROL4)

AL n,g/mem

Upper
4 bits

83·000108A

ROR4
This instruction (figure 6) treats the byte data of the
register or memory directly specified by the instruction
byte as BCD data and uses the lower 4-bits of the AL
register (ALL) to rotate that data one BCD digit to the
right.

Figure 6. BCD Rotate Right (ROR4)

7 AL 0 reg/mem

Upper

I
Lower H Upper Lower

~ ·- ·- 4 bits ·-
83--000109A

Bit Manipulation Instructions
TEST1
This instruction tests a specific bit in a register or
memory location. If the bit is 1, the Z flag is reset to 0. If
the bit is 0, the Z flag is set to 1.
NOT1
This instruction inverts a specific bit in a register or
memory location.
CLR1
This instruction clears a specific bit in a register or
memory location.
SET1
This instruction sets a specific bit in a register or
memory location.
Repeat Prefix Instructions
REPC

,.....-..., This instruction causes the µPD70108 to repeat the
following primitive block transfer instruction until the
CY flag becomes cleared or the CW register becomes
zero.

18

REPNC
This instruction causes the µPD70108 to repeat the
following primitive block transfer instruction until the
CY flag becomes set.
Floating Point Instruction
FP02
This instruction is in addition to the µPD8088/86
floating point instruction, FP01. These instructions
are covered in a later section.
Mode Operation Instructions
The µPD70108 has two operating modes (figure 7).
One is the native mode which executes µPD8088/86,
enhanced and unique instructions. The other is the
8080 emulation mode in which the instruction set of
the µPD8080AF is emulated. A mode flag (MD) is
provided to select between these two modes. Native
mode is selected when MD is 1 and emulation mode
when MD is 0. MD is set and reset, directly and
indirectly, by executing the mode manipulation
instructions.
Two instructions are provided to switch operation
from the native mode to the emulation mode and back:
BRKEM (Break for Emulation), and RETEM (Return
from Emulation).
Two instructions are used to switch from the emulation
mode to the native mode and back: CALLN (Call Native
Routine), and RETI (Return from Interrupt).
The system will return from the 8080 emulation mode
to the native mode when the RESET signal is present,
or when an external interrupt (NMI or INT) is present.

Figure 7. V20 Modes

c

HOLD REO/HOLD ACK

r Standby
- Mode ----- I HOLD ~EO/HOLD ACK

·;

8080 Mode
I ;;

83--000775A

.,

.NEC
µPD70108 (V20)

BRKEM Imme
This is the basic· instruction used to start the 8080
emulation mode. This instruction operates exactly the
same as the BAK instruction, except that BAKEM
resets the mode flag (MD) to 0. PSW, PS, and PC are
saved to the stack. MD is then reset and the interrupt vector
specified by the operand imm8 of this command is
loaded into PS and PC.
The instruction codes of the interrupt processing
routine jumped to are then fetched. Then the CPU
executes these codes as µPD8080AF instructions.
In 8080 emulation mode, registers and flags of the
µPD8080AF are performed by the following registers
and flags of the µPD70108.

Registers:
µPD8080AF µPD70108

A AL
B CH
C CL
D DH
E DL
H BH
L BL
SP BP
PC PC
C CY
z z
s s
p p

AC AC

Flags:

-

In the native mode, SP is used for the stack pointer. In the
8080 emulation mode this function is performed by BP.
This use of independent stack pointers allows indepen­
dent stack areas to be secured for each mode and
keeps the stack of one of the modes from being
destroyed by an erroneous stack operation in the other
mode.
The SP, IX, IV and AH registers and the four segment
registers (PS, SS, DS0, and DS1) used in the native
mode are not affected by operations in 8080 emulation
mode.
In the 8080 emulation mode, the segment register for
instructions is determined by the PS register (set
automatically by the interrupt vector) and the segment
register for data is the DS0 register (set by the
programmer immediately before the 8080 emulation
mode is entered).

RETEM [no operand]
When AETEM is executed in 8080 emulation mode
(interpreted by the CPU as aµPD8080AF instruction),
the CPU restores PS, PC, and PSW (as it would when
returning from an interrupt processing routine), and
returns to the native mode. At the same time, the
contents of the mode flag (MD) which was saved to the
stack by the BR KEM instruction, is restored to MD= 1.
The CPU is set to the native mode.
CALLN lmm8
This instruction makes it possible to call the native
mode subroutines from the 8080 emulation mode. To
return from subroutine to the emulation mode, the
AETI instruction is used.
The processing performed when this instruction is
executed in the 8080 emulation mode (it is interpreted
by the CPU as µPD8080AF instruction), is similar to
that performed when a BAK instruction is executed in the
native mode. The imm8 operand specifies an interrupt
vector type. The contents of PS, PC, and PSW are
pushed on the stack and an MD flag value of O is saved.
The mode flag is set to 1 and the interrupt vector
specified by the operand is loaded into PS and PC.
RETI [no operand]
This is a general-purpose instruction used to return
from interrupt routines entered by the BAK instruction
or by an external interrupt in the native mode. When
this instruction is executed at the end of a subroutine
entered by the execution of the CALLN instruction, the
operation that restores PS, PC, and PSW is exactly the
same as the native mode execution. When PSW is
restored, however, the 8080 emulation mode value of
the mode flag (MD) is restored, the CPU is set in
emulation mode, and all subsequent instructions are
interpreted and executed as µPD8080AF instructions.
AETI is also used to return from an interrupt procedure
initiated by an NMI or INT interrupt in the emulation
mode.
Floating Point Operation Chip
Instructions
FP01 fp-op, mem/FP02 fp-op, mem
These instructions are used for the external floating
point processor. The floating point operation is passed
to the floating point processor when the CPU fetches
one of these instructions. From this point the· CPU
performs only the necessary auxiliary processing
(effective address calculation, generation of physical
addresses, and start-up of the memory read cycle).

19

µPD70108 (V20) NEC
The floating point processor always monitors the
instructions fetched by the CPU. When it interprets one
as an instruction to itself, it performs the appropriate
processing. At this time, the floating point processor
chip uses either the address alone or both the address
and read data of the memory read cycle executed by the
CPU. This difference in the data used depends on
which of these instructions is executed.
Note: During the memory read cycle initiated by the CPU for FP01

or FP02 execution, the CPU does not accept any read data
on the data bus from memory. Although the CPU generates
the memory address, the data is used by the floating point
processor.

Interrupt Operation
The interrupts used in the µPD70108 can be divided
into two types: interrupts generated by external inter­
rupt requests and interrupts generated by software
processing. These are the classifications.
External Interrupts
(a) NMI input (nonmaskable)
(b) INT input (maskable)

Software Processing
--.. As the result of instruction execution
- When a divide error occurs during execution

of the DIV or DIVU instruction
- When a memory-boundary-over error is detected

by the CH KIND instruction
Conditional break instruction
- When V = 1 during execution of the BRKV

instruction
Unconditional break instructions
- 1-byte break instruction: BRK3
- 2-byte break instruction: BRK imm8

Flag processing
- When stack operations are used to set the

BRK flag
8080 Emulation mode instructions
- BRKEM imm8
- CALLN imm8
Interrupt Vectors
Starting addresses for interrupt processing routines
are either determined automatically by a single location
of the interrupt vector table or selected each time
interrupt processing is entered.

20

c The interrupt vector table is shown in figure 8. The
table uses· 1 K bytes of memory addresses OOOH to
3FFH and can store starting address data for a
maximum of 256 vectors (4 bytes per vector).
The corresponding interrupt sources for vectors O
to 5 are predetermined and vectors 6 to 31 are reserved.
These vectors consequently cannot be used for
general applications.
The BR KEM instruction and CALLN instruction (in the
emulation mode) and the INT input are available for
general applications for vectors 32 to 255.
A single interrupt vector is made up of 4 bytes (figure 9).
The 2 bytes in the low addresses of memory are
loaded into PC as the offset, and the high 2 bytes are
loaded into PS as the base address. The bytes are
combined in reverse order. The lower-order bytes in
the vector become the most significant bytes in the PC
and PS, and the higher-order bytes become the least
significant bytes.

Figure 8. Interrupt Vector Table

OOOH
Divide Error

004H
VectorO

Vector1

Vector2

Vector3

Vector4

Vectors

Vector6

Vector31

Vector32

Vector225

OOBH

OOCH

010H

014H

018H

07CH

080H

3FCH

Break Flag

NMI Input
Dedicated

BRK 3 Instruction

BRKV Instruction

CHKIND Instruction

lm=o

}

General Use

• BRK Imme Instruction
• BRKEM Instruction
• INT Input (External)
• CALLN Instruction

83-00011 lA

Figure 9. Interrupt Vector 0

VectorO

000H i
I 001H

002H 003H
I :;

PS +-(003H, 002H)
PC +-(001H, OOOH)

B.'.l-000112A .,

NEC µPD70108 (V20)

Based on this format, the contents of each vector
should be initialized at the beginning of the program.
The basic steps to jump to an interrupt processing
routine are now shown.

(SP - 1, SP - 2) - PSW
(SP - 3, SP - 4) - PS
(SP - 5, SP - 6) - PC
SP-SP-6
IE-O,BRK-O,MD-1
PS - vector high bytes
PC +- vector low bytes

Standby Function
The µPD70108 has a standby mode to reduce power
consumption during program wait states. This mode is
set by the HALT instruction in both the native and the
emulation mode.
In the standby mode, the internal clock is supplied only
to those circuits related to functions required to
release this mode and bus hold control functions. As a
result, power consumption can be reduced to 1/10 the
level of normal operation in either native or emulation
mode.

-.-...., The standby mode is released by inputting a RESET
signal or an external interrupt (NMI, INT).
The bus hold function is effective during standby
mode. The CPU returns to standby mode when the bus
hold request is removed.
During standby mode, all control outputs are disabled
and the addres/data bus will be at either high or low
levels.
Instruction Set
The following tables briefly describe the µPD70108's
instruction set.
D Operation and Operand Types - defines abbrevia­

tions used in the Instruction Set table.
D Flag Operations-defines the sybols used to describe

flag operations.
D Memory Addressing - shows how mem and mod

· combinations specify memory addressing modes.
D Selection of 8- and 16-Bit Registers - shows how

reg and W select a register when mod = 111.
D Selection of Segment Registers - shows how sreg

selects a segment register.
D Instruction Set - shows the instruction mnemonics,

their effect, their operation codes the number of
bytes in the instruction, the number of clocks
required for execution, and the effect on the
µPD70108 flags.

Operation and Operand Types
Identifier Description

reg 8- or 16-bit general-purpose register
reg8 8-bit general-purpose register
reg16 16-bit general-purpose register
dmem 8- or 16-bit direct memory location
mem 8- or 16-bit memory location
mem8 8-bit memory location
mem16 16-bit memory location
mem32 32-bit memory location
imm Constant (0 to FFFFH)

imm16 Constant (0 to FFFFH)
imm8 Constant (0 to FFH)
imm4 Constant (0 to FH)
imm3 Constant (0 to 7)
ace AW or AL register
sreg Segment register
src-table Name of 256-byte translation table

src-block Name of block addressed by the IX register
dst-block Name of block addressed by the IV register
near-proc Procedure within the current program

segment
far-proc Procedure located in another program

segment
near-label Label in the current program segment
short-label Label between -128 and +127 bytes from the

end of instruction
far-label Label in another program segment
memptr16 Word containing the offset of the memory

location within the current program segment
to which control is to be transferred

memptr32 Double word containing the offset and
segment base address of the memory
location to which control is to be transferred

regptr16 16-bit register containing the offset of the
memory location within the program
segment to which control is to be transferred

pop-value Number of bytes of the stack to be discarded
(0 to 64K bytes. usually even addresses)

fp-op Immediate data to identify the instruction
code of the external floating point operation

21

£. ,.

µPD70108 (V20) NEC
Operation and Operand Types (cont) Operation and Operand Types (cont) (
Identifier Description Identifier Description

R Register set tmpcy Temporary carry flag (1 bit)
w ~ Word/byte field (0 to 1) seg Immediate segment data (16 bits)
reg Register field (000 to 111) offset Immediate offset data (16 bits)
mem Memory field (000 to 111) - Transfer direction

mod Mode field (00 to 10) + Addition
S:W When S:W = 01 or 11, data= 16 bits. At all Subtraction

other times, data= 8 bits. X Multiplication
X,XXX, VVV,ZZZ Data to identify the instruction code of the Division external floating point arithmetic chip
AW Accumulator (16 bits) % Modulo

AH Accumulator (high byte) AND Logical product

AL Accumulator (low byte) OR Logical sum

BW BW register (16 bits) XOR Exclusive logical sum

cw CW register (16 bits) XXH Two-digit hexadecimal value

CL CW register (low byte) XXXXH Four-digit hexadecimal value

ow OW register (16 bits) Flag Operations
SP Stack pointer (16 bits)

Identifier Description
PC Program counter (16 bits) (blank) No change

~ PSW Program status word (16 bits) (0 Cleared to 0
IX Index register (source) (16 bits) 1 Set to 1
IV Index register (destination) (16 bits) X Set or cleared according to the result
PS Program segment register (16 bits) u Undefined
ss Stack segment register (16 bits) R Value saved earlier is restored
DSo Data segment O register (16 bits)

DS1 Data segment 1 register (16 bits) Memory Addressing
AC Auxiliary carry flag mod

CY Carry flag mem 00 01 10

p Parity flag 000 BW+IX BW + IX + disp8 BW + IX+ disp16
s Sign flag 001 BW+IV BW + IY + disp8 BW +IV+ disp16
z Zero flag 010 BP+IX BP + IX + disp8 BP+ IX+ disp16
DIR Direction flag 011 BP+IV BP + IV + disp8 BP+ IV+ disp16
IE Interrupt enable flag 100 IX IX+ disp8 IX+ disp16
V Overflow flag 101 IV IV+ disp8 IV+ disp16
BRK Break flag 110 Direct address BP+ disp8 BP+ disp16

MD Mode flag 111 BW BW + disp8 BW +disp16
(...) Values in parentheses are memory contents
disp Displacement (8 or 16 bits)
ext-disp8 16-bit displacement (sign-extension byte ~

+ 8-bit displacement) \

' temp Temporary register (8/16/32 bits)) (
.,

22

NEC
c: Selection ol 8- and 16-Blt Registers (mod 11)

reg W=O W=1

000 AL AW

001 Cl cw
010 Dl ow
011 Bl BW

100 AH SP

101 CH BP
110 DH IX
111 BH IY

µPD70108 (V20)

Selection of Segment Registers
sreg

00
01 PS
10 ss
11 DSo

The table on the following pages shows the instruction
set.
At "No. of Clocks," for instructions referencing memory
operands, the left side of the slash (/) is the number of
clocks for byte operands and the right side is for word
operands. For conditional control transfer instructions,
the left side of the slash (/) is the number of clocks if a
control transfer takes place. The right side is the
number of clocks when no control transfer or branch
occurs. Some instructions show a range of clock
times, separated by a hyphen. The execution time of
these instructions varies from the minimum value to
the maximum, depending on the operands involved.

"No. of Clocks" includes these times:
• Decoding
• Effective address generation
• Operand fetch
• Execution
It assumes that the instruction bytes have been pre­
fetched.

23

I\) Operation Code No. of No. of Flags 1::: "' ,,
Mnemonic Operand Operation 76543210765432 1 0 Clocks Bytes AC c~ V p s z

Data Transfer Instructions C
~

MOV reg, reg reg - reg 1000101W1 1 reg reg 2 2 0
(mem)- reg 1 0 0 0 1 0 O W mod 9/13 2-4

...
mem, reg reg mem 0
reg, mem reg-(mem) 1 000101 W mod reg mem 11/15 2-4 0)
mem, imm (mem)-imm 1 1 O O o 1 1 W mod O O 0 mem 11/15 3-6
reg, imm reg-imm 1 0 1 1W reg 4 2-3 <

~
ace, dmem When W = 0 AL - (dmem) 1 0 1 0 0 0 0 W 10/14 3 0

When W = 1 AH - (dmem + 1), AL - (dmem)
._...

dmen, ace When W = 0 (dmem) - AL 1 0 1 0 0 0 1 W 9/13 3
When W = 1 (dmem + 1) - AH, (dmem) - AL

sreg, reg16 sreg - reg16 sreg : SS, DSO, DS1 1 0 0 0 1 1 1 0 1 1 0 sreg reg 2 2
sreg, mem16 sreg - (mem16) sreg: SS, DSO, DS1 1 0 0 0 1 1 1 0 mod 0 sreg mem 11/15 2-4

reg16, sreg reg16- sreg 1 0 0 0 1 1 0 0 1 1 0 sreg reg 2 2
mem16, sreg (mem16) - sreg 1 0 0 0 1 1 0 0 mod 0 sreg mem 10/14 2-4

DSO, reg16, reg16 - (mem32) 1 1 0 0 0 1 0 1 mod reg mem 18/26 2-4
mem32 DSO - (mem32 + 2) (_, :)·
DS1, reg16, reg16 - (mem32) 1 1 ~ 0/J;;O 1 0 0 mod reg mem 18/26 2-4
mem32 DS1 - (mem32 + 2)
AH, PSW AH +- s. Z, X, AC, X, P, X, CY 1 0 0 1 1 1 1 1 2 1 X X X X X

PSW, AH S, Z, x, AC, x, P, x, CY - AH 1 0 0 1 1 1 1 0 3 1 X X X X X

LDEA reg16, mem16 reg16 - mem16 1 0 0 0 1 1 0 1 mod reg mem 4 2-4
TRANS src-table AL +- (BW + AL) 1 1 0 1 0 1 1 1 9 1

XCH reg, reg reg- reg 1000011W1 1 reg reg 3 2

mem, reg (mem)-reg 1 O O O O 1 1 W mod reg mem 16/26 2-4
or reg, mem
AW, reg16 AW- reg16 1 0 0 1 0 reg 2
or reg16, AW

Repeat Prelixed
REPC While CW#, O, the next byte of the primitive block 0 1 1 0 0 1 0 1 2

transfer instruction is executed and CW is ... decremented (- 1). If there is a waiting interrupt, ~..,,

~

'"'- ~- it is processed. When CY # 1, exit the loop.
REPNC While CW# p, the next byte of the primitive block 0 1 1 0 0 1 0 0 2 1

transfer instruction is executed and CW is
decremented (- 1). If there is a waiting interrupt,
-it is processed. When CY# 0, exit the loop.

~

~

- ____ ..._ ---·- ·-·-·-- ·-· -- ---··---- - ·---- -···-- ·- ------- ·----- .i "-·· ---
~

~ I '

• I

)

Operation Code No.of No.of .flags

~

Mnemonic Operand Operation 765432 10765432 1 0 Clocks Bytes AC CY V P S Z

Repeat Prefixed (cont)

REP While CW# 0, the next byte of the primitive block 1 1 1 1 0 0 1 1 2 1
REPE transfer instruction is executed and CW is

~ REPZ decremented (- 1). If there is a waiting interrupt, it is
processed. If the primitive block transfer instruction
is CMPBK or CMPM and Z # 1, exit the loop.

REPNE While CW# 0, the next byte of the primitive block 1 1 1 1 0 0 1 0 2
REPNZ transfer instruction is executed and CW is

decremented (- 1). If there is a waiting interrupt, it is
processed. If the primitive block transfer instruction
is CMPBK or CMPM and Z # 0, exit the loop.

Primitive Block Transfer Instructions

MOVBK dst-block, When W = 0 (IV) - (IX) 1 0 1 0 0 1 0 W 11 + Sn
src-block DIR= 0: IX - IX+ 1, IV - IV+ 1

DIR= 1: IX - IX -1, IV - IV -1
When W = 1 (IV + 1, IV) - (IX + 1, IX) 11 + 16n

DIR = 0: IX - IX+ 2, IV - IV + 2
DIR = 1: IX - IX - 2, IV +- IV - 2

CMPBK src-block, When W = 0 (IX) - (IV) 1 0 1 0 0 1 1 w 7+ 14n 1 X X X X X X

dst-block DIR = 0: IX +- IX + 1, IV - IV + 1
DIR= 1: IX+- IX -1, IV+- IV -1

When W = 1 (IX + 1, IX} - (IV + 1, IV} 7+22n
DIR= O: IX+- IX+ 2, IV+- IV+ 2
DIR= 1: IX +- IX - 2, IV+- IV - 2

CMPM dst-block When W = 0 AL - (IV} 1 0 1 0 1 1 1 w 7 + 10n 1 X X X X X X
DIR= 0: IV - IV+ 1; DIR= 1: IV+- IV -1

When W = 1 AW - (IV+ 1, IV} 7 + 14n
DIR= 0: IV - IV+ 2; DIR= 1: IV+- IV - 2

LDM src-block When W = 0 AL +- (IX) 1 0 1 0 1 1 0 W 7+9n
DIR= 0: IX+- IX+ 1; DIR= 1: 1x-1x -1

When W = 1 AW+- (IX+ 1, IX} 7 + 13n
DIR= 0: IX+- IX+ 2; DIR= 1: IX+- IX - 2

STM dst-block When W = 0 (IV} +- AL 1 010101 w 7+4n 1 1:::
DIR= 0: IV+- IV+ 1; DIR= 1: IV+- IV -1 ,,

When W = 1 (IV+ 1, IV) +-AW 7+8n a DIR= O: IV+- IV+ 2; DIR= 1: IV+- IV - 2 n: number of transfers
Bit Field Transfer Instructions 0

INS reg8, reg8 16-Bit field +- AW 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 35-133 3 oF 31 ...
1 1 reg reg 0

reg8, imm4 16-Bit field +- AW 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 35-133 4 0~ 3, CD
1 1 0 0 0 reg

......
<
~

I\:> I 0
0,

......

))
I\)

1:: a, Operation Code No.of No. of Flags
Mnemonic Operand Operation 765432 10765432 1 0 Clocks Bytes AC CY V P S Z "O

Bit Field Transfer Instructions (contl a
-iii EXT reg8, reg8 AW -16-Bit field 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 34-59 3 0

1 1 reg reg - reg8, imm4 AW -16-Bit field 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 34-59 4 0
1 1 0 0 0 reg CD

1/0 Instructions
< IN ace, imm8 When W = O AL - (imm8) 1 1 10010W 9/13 2 ~

When W = 1 AH - (imm8 + 1), AL - (imm8) 0
ace, OW When W = 0 AL - (OW) 1 1 1 0 1 1 0 W 8/12

When W = 1 AH - (OW+ 1), AL - (OW)
OUT imm8, ace When W = 0 (imm8) - AL 1 1 1 0 0 1 1 w 8/12 2

When W = 1 (imm8 + 1) - AH, (imm8) - AL
OW, ace When W = 0 (OW) - AL 1 1 1 0 1 1 1 w 8/12

When W= 1 (OW+ 1) -AH, (DW)-AL

Primitive 1/0 Instructions
INM dst-block, OW When W = 0 (IY) - (OW) 0 1 1 0 1 1 0 W 9+8n

DIR= 0: IV - IV+ 1; DIR= 1: IV - IV - 1 (pv/lof>
When W = 1 (IV + 1, IY) - (OW + 1, OW) 9 + 16n

DIR = 0: IV - IV+ 2; DIR= 1: IV - IV - 2
OUTM OW, src-block When W = 0 (OW) - (IX) 0 1 1 0 1 1 1 w 9+8n

DIR= 0: IX - IX+ 1; DIR= 1: IX - IX - 1 ~~/0F When W = 1 (OW+ 1, OW) - (IX+ 1, IX) 9+ 16n
DIR = 0: IX - IX + 2; DIR = 1: IX - IX - 2 n: number of transfers

Addition/Subtraction Instructions
ADD reg, reg reg - reg + reg 0000001 W 1 1 reg reg 2 2 X X X X X X

mem, reg (mem) - (mem) + reg 0 0 0 0 0 0 0 W mod reg mem 16/24 2-4 X X X X X X

reg, mem reg - reg + (mem) 0000001 W mod reg mem 11/15 2-4 X X X X X X

reg, imm reg - reg + imm 100000SW1 1 0 0 0 reg 4 3-4 X X X X X X
mem, imm (mem)-(mem)+imm 1 0 0 0 0 0 S W mod O O O mem 18/26 3-6 X X X X X X

ace, imm When W = 0 AL - AL + imm 0000010W 4 2-3 X X X X X X
When W = 1 AW - AW+ imm

ADDC reg, reg reg - reg + reg + CY 0001001 W 1 1 reg reg 2 2 X X X X X X

" -~-- mem, reg (mem) - (mem) + reg + CY o o o 1 o o O W mod reg mem 16/24 2-4 X X X X X X

~

reg'.-inem reg - reg + (mem) + CY 0001001 W mod reg mem 11/15 2-4 X X X X X X
reg, imm reg - reg +.imm + CY 100000SW1 1 0 1 0 reg 4 3-4 X X X X X X
mem, imm (mem) - (mem) + imm + CY 1 o o o o o S W mod 0 1 0 mem 18/26 3-6 X X X X X X

~

~

f.; ·_ ,-..ts.
~ I

)))
Operation Code No.of No.of Flags

~

Mnemonic Operand Operation 765432 10765432 I 0 Clocks Bytes AC CY V P S Z

Addition/Subtraction Instructions (cont)
ADDC ace, imm When W =OAL +-AL+ imm + CY 0 0 0 1 0 1 0 W 4 2-3 X X X X X X

When W = 1 AW+- AW+ imm + CY 0 SUB reg, reg reg +- reg - reg 0 0 1 0 1 0 1 W 1 1 reg reg 2 2 X X X X X X

mem, reg (mem) +- (mem) - reg 0 0 1 0 1 0 0 W mod reg mem 16/24 2-4 X X X X X X

reg, mem · reg +- reg - (mem) 0 0 1 0 1 0 1 W mod reg mem 11 /15 2-4 X X X X X X

reg, imm reg+- reg - imm 1 00000SW1 1 1 0 1 reg 4 3-4 X X X X X X

mem, imm (mem)+-(mem)-imm 1 O O O O O S W mod 1 0 1 mem 18/26 3-6 X X X X X X

ace, imm When W = 0 AL +-AL - imrn 0 0 1 0 1 1 0 W 4 2-3 X X X X X X
When W = 1 AW+- AW - imm

SUBC reg, reg reg +- reg - reg - CY 0 0 0 1 1 0 1 W1 1 reg reg 2 2 X X X X X X

mem, reg (mem) +- (mem) - reg - CY 0 0 0 1 1 0 0 W mod reg rnem 16/24 2-4 X X X X X X

reg, mem reg +- reg - (mem) - CY 0 0 0 1 1 0 1 W mod reg mem 11/15 2-4 X X X X X

reg, imm reg +- reg - imm - CY 1 00000SW1 1 0 1 1 reg 4 3-4 X X X X X X

mem, imm (mem) +- (rnem) - imm - CY 1 O O O O O S W mod 0 1 1 mem 18/26 3-6 X' X X X X X

ace, imm When W = 0 AL+- AL - imrn - CY 0 0 0 1 1 1 0 W 4 2-3 X X X X X X
When W = 1 AW+- AW - imm - CY

BCD Operation Instructions

~ ADD4S dst BCD string +- dst BCD string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 7 + 19n 2 u X X U U X
+ src BCD string 0~ 'J-o

k SUB4S dst BCD string +- dst BCD string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 T+19n 2 u X X U U X
- src BCD string 0 r.:. -2:i ..

~

CMP4S dst BCD string - src BDC string 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 7 + 19n 2 u X X U U X
or.: '1-& n: number of BCD numerals divided by 2

ROL4 reg8 7 AL 0 reg 0000·1 1 1 1 · 0 0 1 0 1 o o o· 25 3

I I H Upper 4 bits I Lower4 bl1s I · I 1 1 0 0 0 reg
ALL

oi= '2 'S I
"'t::

mem8 7 AL 0 mern 0 0 0 0 1 1 1 1 • 0 0 1 0·1 0 0 0 28 3-5 ,,
AILL I · I Upper 4 bl1s I Lower 4 bits I · I mod O O O mem a

b,; ts --.a k ROR4
0

reg8 7 AL 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 29 3 '""' reg

I I ALL H Upper 4 bits I Lower 4 bits j j 1 1 0 0 0 reg 0
+ c} 1-=- 1..- fv CD

mem8 7 AL 0 mem 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 33 3-5 <
I I H Upper 4 bits I Lower 4 bits b mod O O O mem ~

ALL 0 I\) + -...j

)
ro

Operation Code No.of No.of Flags "t:: CD -a Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S Z

Increment/Decrement Instructions (cont) Cl --.a
INC regs regs - regs + 1 1 1 1 1 1 1 1 0 1 1 0 0 0 reg 2 2 X X X X X 0

(mem) - (mem) + 1 1 1 1 1 1 1 1 W mod 0 0 0 16/24 2-4 .. mem mem X X X X X 0
reg16 reg16 - reg16 + 1 0 1 0 0 0 reg 2 1 X X X X X 0)

DEC regs regs - regs - 1 1 1 1 1 1 1 1 0 1 1 0 0 1 reg 2 2 X X X X X
(mem) - (mem) - 1 1 1 1 1 1 1 1 W mod 0 0 1 16/24 2-4 < mem mem X X X X X ._,

reg16 reg16 - reg16 - 1 0 1 0 0 1 reg 2 1 X X X X X 0 ._..
Multlpllcatlon Instructions

MUlU reg8 AW +-Alx reg8 1 1 1 1 0 1 1 0 1 1 1 0 0 reg 21-22 2 u X X U u u
AH= 0: CY +- 0, V - 0 f- b
AH ~ 0: CY - 1, V - 1

mem8 AW-Al x (mem8) 1 1 1 1 0 1 1 0 mod 1 0 0 mem 27-28 2-4 u X X U U u
AH= 0: CY - 0, V - 0
AH~ 0: CY - 1, V - 1

reg16 DW, AW - AW x reg16 1 1 1 1 0 1 1 1 1 1 1 0 0 reg 29-30 2 u X X U u u
DW = O: CY - 0, V - 0
DW ~ 0: CY -1, V - 1

mem16 DW, AW - AW x (mem16) 1 1 1 1 0 1 1 1 mod 1 0 0 mem 39-40 2-4 u X X U u u
DW = 0: CY - 0, V - 0
DW ~ O: CY - 1, V - 1

MUl reg8 AW-Alx reg8 1 1 1 1 0 1 1 0 1 1 1 0 1 reg 33-39 2 u X X U u u
AH = Al sign expansion: CY - 0, V - 0
AH ~ Al sign expansion: CY - 1, V - 1

mem8 AW-Al x (mem8) 1 1 1 1 0 1 1 0 mod 1 0 1 mem 39-45 2-4 u X X U u u
AH = Al sign expansion: CY - 0, V - 0
AH~ Al sign expansion: CY -1. V -1

reg16 DW, AW - AW x reg16 1 1 1 1 0 1 1 1 1 1 1 0 1 reg 41-47 2 u X X U u u
DW = AW sign expansion: CY- 0, V - o
DW ~ AW sign expansion: CY - 1, V - 1

mem16 DW, AW-AW x (mem16) 1 1 1 1 0 1 1 1 mod 1 0 1 mem 51-57 2-4 u X X U u u
DW = AW sign expansion: CY - 0, V - O
DW ~ AW sign expansion: CY-1, V +-1

reg 16, reg16 - reg16 x imm8 0 1 1 0 1 0 1 1 1 1 reg reg 28-34 3 u X X U u u .. (reg16,) Product s 16 bits: CY - 0, V +- 0
._. i!J)~B Product> 16 bits: CY+- 1, V +-1

.~

reg 16, reg16 - (mem16) x imm8 0 1 1 0 1 0 1 1 mod reg mem 38-44 3-5 u X X U U u
mem16, Product ::5 16 bits: CY - 0, V +- 0
imm8 Product > 16 bits: CY - 1, V +- 1

.·~

----,---~ -- ~-- -- - -- - ·-· - - ··---- --- -· --·-· -···---·--··-. ·- ·- - =
, r .,...,....

~
))

Operation Code No.of No.of Flags

~

Mnemonic Operand Operation 765432 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S Z

Multlpllcatlon lnstrucllons (cont)
MUL reg 16, reg16 - reg16 x imm16 0 1 1 0 1 0 0 1 1 .1 reg reg 36-42 4 u X X U U U

(reg16,) Product s 16 bits: CY +- 0, V - 0

~
imm16 Product> 16 bits: CY +-1, V -1
reg16, reg16 +- (mem16) x imm16 0 1 1 0 1 0 0 1 mod reg mem 46-52 4-6 u X X U U U
mem16, Product :s 16 bits: CY +- o. V - o
imm16 Product> 16 bits: CY +-1, V - 1

Unsigned Division Instructions
DIVU · regs temp +-AW 1 1 1 1 0 1 1 0 1 1 1 1 0 reg 19 2 u u u u u u

When temp + regs > FFH
(SP-1, SP-2) +- PSW, (SP- 3, SP-4) +- PS
(SP - 5, SP - 6) +- PC, SP +- SP - 6
IE+- 0, BRK +- 0, PS+- (3, 2), PC+- (1, 0)
All other times
AH +- temp % reg8, AL +- temp + reg8

mem8 temp+-AW 1 1 1 1 0 1 1 0 mod 1 1 0 mem 25 2-4 u u u u u u
When temp + (memS) > FFH
(SP - 1, SP - 2) +- PSW, (SP - 3, SP - 4) +- PS
(SP - 5, SP - 6) +- PC, SP +- SP - 6
IE+-0, BRK +-0, PS +-(3,2), PC +-(1, 0)
All other times
AH +-temp% (memS), AL - temp+ (mem8)

reg16 temp+-AW 1 1 1 1 0 1 1 1 1 1 1 1 0 reg 25 2 u u u u u u
When temp+ reg16 > FFFFH
(SP-1, SP - 2) +- PSW, (SP - 3, SP- 4) +- PS
(SP - 5, SP - 6) +- PC, SP +- SP - 6
IE +-0, BRK +-0, PS +-(3, 2), PC +-(1, 0)
All other times
AH +- temp% reg16, AL +-temp+ reg16

mem16 temp+-AW 1 1 1 1 0 1 1 1 mod 1 1 0 mem 35 2-4 u u u u u u
When temp+ (mem16) > FFFFH
(SP - 1, SP - 2) +- PSW, (SP - 3, SP - 4) +- PS
(SP - 5, SP - 6) +- PC, SP +- SP - 6
IE +-0, BRK +-0, PS +-(3,2), PC +-(1, 0) 1:::
All other times ,,
AH+- temp% (mem16), Al+- temp+ (mem16) a

Signed Division Instructions
._.

DIV regs temp +-AW 1 1 1 1 0 1 1 0 1 1 1 1 1 reg 29-34 2 0
' u u u u u u ...

When temp+ reg8 > 0 and temp + regs> 7FH or 0 temp+ reg8 < 0 and temp+ reg8 < 0 - ?FH - 1
(SP - 1, SP - 2) +- PSW, (SP - 3, SP - 4) +- PS CD
(SP - 5, SP - 6) +- PC, SP +- SP - 6 ~
IE +-0, BRK +-0, PS +-(3,2), PC +-(1, 0) <
All other times ~

I\) AH - temp% reg8, AL - temp+ regs 0
CD-

))
uJ 1::: 0 Operation Code No.of No.of Flags ,,

Mnemonic Operand Operation 76543210765432 1 0 Clocks Bytes AC Cl' VP S Z

Signed Division Instructions [cont)
C,

DIV mem8 temp-AW 1 1 1 1 0 1 1 O mod 1 1 1 mem 35-40 2-4 u u U U U U· 0
When temp+ (mem8) > 0 and (mem8) > 7FH or ..
temp + (mem8) < 0 and 0
temp + (mem8) < O - 7FH - 1 CD
(SP -1, SP - 2) - PSW, (SP - 3, SP - 4) - PS ..--.
(SP - 5, SP - 6) - PC, SP - SP - 6 < IE - 0, BRK - 0, PS+- (3, 2), PC - (1, 0) ~ All other times 0 AH - temp % (mem8), AL - temp + (mem8) ._..

reg16 temp-AW 1 1 1 1 0 1 1 1 1 1 1 1 1 reg 38-43 2 u u u u u u
When temp+ reg16 > O and reg16 > 7FFFH or
temp+ reg16 < O and
temp + reg16 < 0 - 7FFFH - 1
(SP-1, SP-2)-PSW, (SP-3, SP-4) -PS
(SP - 5, SP - 6) - PC, SP - SP - 6
IE - 0, BRK - 0, PS - (3, 2), PC - (1, 0)
All other times
AH - temp% reg 16, AL - temp+ reg 16

mem16 temp-AW 1 1 1 1 0 1 1 1 mod 1 1 1 mem 48-53 2-4 u u u u u u
When temp+ (mem16) > O and (mem16) > 7FFFH
or temp + (mem16) < 0 and temp+ (mem16)
< 0 - 7FFFH -1
(SP-1, SP-2)- PSW, (SP-3, SP-4) - PS
(SP - 5, SP - 6) - PC, SP - SP - 6
IE - 0, BRK - 0, PS - (3, 2), PC - (1, 0)
All other times
AH - temp% (mem16), AL - temp+ (mem16)

BCD Complement Instructions

ADJBA When (AL AND OFH) > 9 or AC= 1, 0 0 1 1 0 1 1 1 3 1 X X u u u u
AL-AL+6, AH-AH+ 1, AC-1,
CY - AC, AL - AL AND OFH

ADJ4A When (AL AND OFH) > 9 or AC= 1, 0 0 1 0 0 1 1 1 3 1 X X U X X X
AL-AL +6, CY-CYORAC, AC-1,
When AL> 9FH, or CY= 1
AL - AL + 60H, CY - 1

ADJBS When (AL AND OFH) > 9 or AC= 1, 0 0 1 1 1 1 1 1 7 1 X X u u u u
AL-AL-6, AH -AH-1, AC-1,

' CY - AC, AL - AL AND OFH

~

-
ADJ4S ~i- When (AL AND OFH) > 9 or AC= 1, 0 0 1 0 1 1 1 1 7 1 X X U X X X

AL - AL - 6, CY - CY OR AC, AC - 1
When AL > 9FH or CY = 1
AL +- AL - 60H, CY - 1

~

~

-· (;-· ..-. -~)) }
Operation Code No.of No.or flags

~.

Mnemonic Operand Operation 765432 107654 3 2 1 D Clocks Bytes AC CYVPSZ

Data Conversion Instructions

CVTBD AH - AL + OAH, AL - AL % OAH 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 15 2 u u U X X X

CVTDB AH - 0, AL - AH x OAH + AL 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 7 2 u u U X X X

~ CVTBW When AL< 80H, AH - 0, 1 0 0 1 1 0 0 0 2 1
all other times AH - FFH

CVTWL When AL < 8000H, OW - 0, 1 0 0 1 1 0 0 1 4-5
all other times OW - FFFFH

Comparison Instructions
CMP reg, reg reg - reg 0 0 1 1 1 0 1 W 1 1 reg reg . 2 2 X X X X X X

mem, reg (mem)- reg 0 0 1 1 1 0 0 W mod reg mem 11/15 2-4 X X X X X X

reg, mem reg-(mem) 0 0 1 1 1 0 1 W mod reg mem 11/15 2-4 X X X X X X

reg, imm reg- imm 1 00000SW1 1 1 1 1 reg 4 3-4 X X X X X X

mem, imm (mem)-imm 1 O O O O O S W mod 1 1 1 mem 13/17 3-6 X X X X X X

ace, imm When W = 0, AL - imm 0 0 1 1 1 1 0 W 4 2-3 X X X X X X
WhenW=1,AW-imm

Complement Instructions

NOT reg reg+- reg 1 1 1 1 0 1 1 W 1 1 0 1 0 reg 2 2
mem (mem) +- (mem) 1 1 1 1 0 1 1 W mod O 1 0 mem 16/24 2-4

NEG reg reg+- reg +·1 1 1 1 1 0 1 1 W 1 1 0 1 1 reg 2 2 X X X X X X

mem (mem) +- (mem) + 1 1 1 1 1 0 1 1 W mod O 1 1 mem 16/24 2-4 X X X X X X

Logical Operation Instructions
TEST reg, reg reg AND reg 1000010W1 1 reg reg 2 2 u 0 0 X X X

mem, reg (mem) AND reg 1 O O O O 1 O W mod reg mem 10/14 2-4 u 0 0 X X X
or reg, mem
reg, imm reg AND imm 1 1 1 1 0 1 1 W 1 1 0 0 0 reg 4 3-4 u 0 0 X X X

mem, imm (mem) AND imm 1 1 1 1 0 1 1 W mod O O 0 mem 11/15 3-6 u 0 0 X X X

ace, imm When W = 0, AL AND imm8 1 0 1 0 1 0 0 W 4 2-3 0 0 X X X 1::: u ,,
When W = 1, AW AND imm8 C:

AND reg, reg reg +- reg AND reg 0 0 1 0 0 0 1 W 1 1 reg reg 2 2 u 0 0 X X X
mem, reg (mem) +- (mem) AND reg 0 0 1 0 0 0 O W mod reg mem 16/24 2-4 u 0 0 X X X 0
reg, mem reg +- reg AND (mem) 0 0 1 0 0 0 1 W mod reg mem 11/15 2-4 u 0 0 X X X 0
reg, imm reg +- reg AND imm 1 OOOOOOW1 1 1 0 0 reg 4 3-4 u 0 0 X X X CD
mem, imm (mem) +- (mem) AND imm 1 O O O O O O W mod 1 1 O mem 18/26 3-6 u 0 0 X X X - <
ace, imm When W = 0, AL +-ALAND imm8 0 0 1 0 0 1 0 W 4 2-3 u 0 0 X X X ~

When W = 1, AW+- AW AND imm16 0 (.,) _.,

----=--=..

) _,,,
(;) 1:::: I\:) Operation Code No.of No. of Flags

Mnemonic Operand Operation 765432 10765432 1 0 Clocks Bytes AC CY~PSZ
,,

Logical Operation Instructions (cont) C,
~

OR reg, reg reg +- reg OR reg 0000101 W 1 1 reg reg 2 2 u 0 0 X X X 0
mem, reg (mem) +- (mem) OR reg 0 0 0 0 1 O O W mod reg mem 16/24 2-4 u 0 0 X X X

....
0 reg, mem reg +- reg OR (mem) 0000101 W mod reg mem 11/15 2-4 u 0 0 X X X CD

reg, imm reg +- reg OR imm 1000000W1 1 0 0 1 reg 4 3-4 u 0 0 X X X
mem, imm (mem)+-(mem)ORimm 1 0 0 0 0 0 0 W mod 0 0 1 mem 18/26 3-6 u 0 0 X X X <

N
ace, imm When W = 0, AL+- AL OR imm8 0000110W 4 2-3 u 0 0 X X X 0

When W = 1, AW+- AW OR imm16
XOR reg, reg reg +- reg XOR reg 0 0 1 1 0 0 1 W 1 1 reg reg 2 2 u 0 0 X X X

mem, reg (mem) - (mem) XOR reg 0 0 1 1 O O O W mod reg mem 16/24 2-4 u 0 0 X, X X

reg, mem reg - reg XOR (mem) 0 0 1 1 O O 1 W mod reg mem 11/15 2-4 u 0 0 X X X

reg, imm reg - reg XOR imm 1000000V/1 1 1 1 0 reg 4 3-4 u 0 Q X X X

mem, imm (mem)-(mem)XORimm 1 0 0 0 0 0 0 'JI mod 1 1 0 m::m 12/26 3--s u 0 0 X)'. X

ace, imm When W = 0, AL +- AL XOR immB 0 0 1 1 0 1 0 W 4 2-3 u 0 0 X X X
When W = 1, AW+- AW XOR imm16

Bit Operation Instructions
2nd byte* 3rd byte*

TEST1 reg8, CL reg8 bit no. CL = O: Z +- 1 0 0 0 1 0 0 0 0 1 1 0 0 0 reg 3 3 u 0 0 U U X
reg8 bit no. CL = 1: Z - O

memB, CL (memB) bit no. CL= O: Z +- 1 0 0 0 1 0 0 0 0 mod 0 0 0 mem 12 3-5 u 0 0 U U X
(mem8) bit no. CL = 1: Z +- O

reg16, CL reg16 bit no. CL= O: Z +-1 0 0 0 1 0 0 0 1 1 1 0 0 0 reg 3 3 u 0 0 U U X
reg16 bit no. CL= 1: Z +- O

mem16, CL (mem16) bit no. CL= 0: Z +-1 0 0 0 1 0 0 0 1 mod 0 0 0 mem 16 3-5 u 0 0 U U X
(mem16) bit no. CL= 1: Z +- O

reg8, imm3 reg8 bit no. imm3 = 0: Z +- 1 0 0 0 1 1 0 0 0 1 1 0 0 0 reg 4 4 u 0 0 U U X
regB bit no. imm3 = 1: Z +- 0

memB, imm3 (mem8) bit no. imm3 = 0: Z +- 1 0 0 0 1 1 0 0 0 mod O O 0 mem 13 4-6 u 0 0 U U X
(mem8) bit no. imm3 = 1: Z +- 0

reg16, imm4 reg16 bit no. imm4 = O: Z +- 1 0 0 0 1 1 0 0 1 1 1 0 0 0 reg 4 4 u 0 0 U U X
... reg16 bit no. imm4 = 1: Z +- 0

·mem~6.Jmm4 (mem16) bit no. imm4 = 0: Z +- 1 0 0 0 1 1 0 0 1 mod 0 0 0 mem 17 4-6 u 0 0 u u·x

~

(mem16) bit no. imm4 = 1: Z +- 0
,· 2nd byte* 3rd byte•

*Note: First byte= OFH

~

~

(· ~) j
Operation Code No.of No.of Flags

~

Mnemonic Operand Operation 765432 1076543210 Clocks Bytes AC CY V P S Z

Bit Operation Instructions (cont)
2nd byte" 3rd byte"

NOT1 reg8, CL reg8 bit no. CL - reg8 bit no. CL 0 0 0 1 0 1 1 0 1 1 0 0 0 reg 4 3 I ~
mem8,CL (mem8) bit no. CL - (mem8) bit no. CL 0 0 0 1 0 1 1 O mod O O 0 mem 18 3-5
reg16, CL reg16 bit no. CL - reg16 bit no. CL 0 0 0 1 0 1 1 1 1 1 0 0 0 reg 4 3
mem16, CL (mem16) bit no. CL - (mem16) bit no. CL 0 0 0 1 0 1 1 1 mod O O O mem 26 3-5
reg8, imm3 reg8 bit no. imm3 - reg8 bit no. imm3 0 0 0 1 1 1 1 0 1 1 0 0 0 reg 5 4
mem8, imm3 (mem8) bit no. imm3 - (mem8) bit no. imm3 0 0 0 1 1 1 1 O mod O O O mem 19 4-6

reg16, imm4 reg16 bit no. imm4 - (reg16) bit no. imm4 0 0 0 1 1 1 1 1 1 1 0 0 0 reg 5 4
mem16, imm4 (mem16) bit no. imm4 - (mem16) bit no. imm4 0 0 0 1 1 1 1 1 mod O O 0 mem 27 4-6

2nd byte· 3rd byte*
*Note: First byte= OFH

CY CY-CY 1 1 1 1 0 1 0 1 2 1 X

2nd byte* 3rd byte*

CLR1 reg8, CL . reg8 bit no. CL - O 0 0 0 1 0 0 1 0 1 1 0 0 0 reg 5 3
mem8, CL (mem8) bit no. CL - O 0 0 0 1 O O 1 O mod O O O mem 14 3-5.

reg16, CL reg16 bit no. CL - 0 0 0 0 1 0 0 1 1 1 1 0 0 0 reg 5 3
mem16, CL (mem16) bit no. CL - 0 0 0 0 1 0 0 1 1 mod O O O mem 22 3-5

reg8, imm3 reg8 bit no. imm3 - 0 0 0 0 1 1 0 1 0 1 1 0 0 0 reg 6 4
memB, imm3 (memB) bit no. imm3 - O 0 0 0 1 1 0 1 0 mod O O 0 mem 15 4-6

reg16, imm4 reg16 bit no. imm4 - O 0 0 0 1 1 0 1 1 1 1 0 0 0 reg 6 4
mem16, imm4 (mem16) bit no. imm4 - 0 0 0 0 1 1 0 1 1 mod O O O · mem 27 4-6

2nd byte" 3rd byte•
*Note: First byte = OFH

1::
CY CY-o 1 1 1 1 1 0 0 0 2 1 0 ,,
DI~ DIR-O 1 1 1 1 1 1 0 0 2 1 C: .._.

0
0
CD
<
~

I 0 w w

. - .. - ·- - - ... ~ .

)))
(,> 1::: ~ Operation Code No. of No.of Flags

Mnemonic Operand Operation 765432 1 0 765432 I 0 Clocks Bytes AC CY'VPSZ
,,

Bit Operation Instructions (cont) a .._.
SET1 reg8, CL reg8 bit no. CL +- 1 0 0 0 1 0 1 0 0 1 1 0 0 0 reg 4 3 0

mem8, CL (mem8) bit no. CL +- 1 0 0 0 1 0 1 0 0 mod 0 0 0 mem 13 3-5
0 · reg16, CL reg16 bit no. CL+- 1 0 0 0 1 0 1 0 1 1 1 0 0 0 reg 4 3 a,

mem16, CL (mem16) bit no. CL +- 1 0 0 0 1 0 1 0 1 mod 0 0 0 mem 21 3-5
reg8, imm3 reg8 bit no. imm3 +- 1 0 0 0 1 1 1 0 0 1 1 0 0 0 reg 5 4 <

~
mem8, imm3 (mem8) bit no. imm3 +- 1 0 0 0 1 1 1 0 0 mod 0 0 0 mem 14 4-6 0,
reg16, imm4 reg16 bit no. imm4 +-1 0 0 0 1 1 1 0 1 1 1 0 0 0 reg 5 4
mem16, imm4 (mem16) bit no. imm4 +- 1 0 0 0 1 1 1 0 1 mod O O O mem 22 4-6

2nd byte* 3rd byte*
*Note: First byte= OFH

CY CY+-1 1 1 1 1 1 0 0 1 2
DIR DIR +-1 1 1 1 1 1 1 0 1 2

Shift Instructions
SHL reg, 1 CY +- MSB of reg, reg +- reg x 2 1 1 0 1 0 0 0 W 1 1 1 0 0 reg 2 2 u X X X X X

When MSB of reg c;6 CY, V +- 1
When MSB of reg= CY, V +- 0

mem, 1 CY - MSB of (mem), (mem) +- (mem) x 2 1 1 0 1 O O O W mod 1 0 0 mem 16/24 2-4 u X X X X X
When MSB of (mem) c;6 CY, V +- 1
When MSB of (mem) = CY, V +- 0

reg, CL temp +- CL, while temp » 0, 1 1 0 1 0 0 1 W1 1 1 0 0 reg 7+n 2 u X U X X X
repeat this operation, CY +- MSB of reg, ;

reg - reg x 2, temp +- temp - 1
. mem, CL temp - CL, while temp= 0, 1 1 0 1 0 0 1 W mod 1 0 0 mem 19/27+n 2-4 u X U X X X

repeat this operation, CY +- MSB of (mem),
(mem) +- (mem) x 2, temp - temp - 1

reg, imm8 temp +- imm8, while temp# 0, 1 1 OOOOOW1 1 1 0 0 reg 7+n 3 u X U X X X
repeat this operation, CY+- MSB of reg,
reg +- reg x 2, temp +- temp - 1

mem, immB temp +- imm8, while temp » 0, 1 1 0 0 0 0 0 W mod 1 0 0 mem 19/27+n 3-5 u X U X X X
repeat this operation, CY+- MSB of (mem),
(mem) +- (mem) x 2, temp - temp - 1 n: number of shifts

SHR "1<.,,req1,..1 ~·. CY - LSB of reg, reg +- reg + 2 1 1 0 1 0 0 0 W 1 1 1 0 1 reg 2 2 u X X X X X

~

When MSB of reg# bit following MSB
of reg: V - 1
When MSB of reg = bit following MSB
of reg: V +- O

(')

-.
r: ~. l)) ~

Operation Code No. of No. of Flags

~

Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CYVPSZ

Shift Instructions (cont)

SHR mem, 1 CY+- LSB of (mem), (mem) +- (mem) + 2 1 1 0 1 0 O O W mod 1 0 1 mem 16/24 2-4 u X X X X X
When MSB of (mem) 'F bit following MSB

~
of (mem): V +- 1
When MSB of (mem) = bit following MSB
of (mem): V +- 0

reg, CL temp +- CL, while temp= 0, 1 1 0 1 0 0 0 W 1 1 1 0 1 reg 7+n 2 u X U X X X
repeat this operation, CY +- LSB of reg,
reg +- reg + 2, temp +- temp -1

mem,CL temp +- CL, while temp e- O, 1 1 0 1 0 0 1 W mod 1 0 1 mem 19/27+n 2-4 u X U X X X
repeat this operation, CY +- LSB of (mem),
(mem) +- (mem) + 2, temp +- temp - 1

reg, immB temp +- immB, while ternp ee 0, 1 1 0 0 0 0 0 W 1 1 1 0 1 reg 7+n 3 u X u X X X
repeat this operation, CY +- LSB of reg,
reg +- reg + 2, temp +- temp -1

mem, immB temp +- immB, while temp « 0, 1 1 0 0 0 O O W mod 1 0 1 mem 19/27+n 3-5 u X U X X X
repeat this operation, CY +- LSB of (mem),
(mem) +- (mem) + 2, temp +- temp - 1 n: number of shifts

SHRA reg, 1 CY +- LSB of reg, reg +- reg + 2, V +- O 1 1 0 1 0 0 0 W 1 1 1 1 1 reg 2 2 u X 0 X X X

MSB of operand does not change
mem, 1 CY +- LSB of (mem), (mem) +- (mem) + 2, 1 1 0 1 0 0 0 W mod 1 1 1 mem 16/24 2-4 u X 0 X X X

V +- 0, MSB of operand does not change

reg, CL temp +- CL, while temp# 0, 1 1 0 1 0 0 1 W 1 1 1 1 1 reg 7+n 2 u X U X X X
repeat this operation, CY +- LSB of reg,
reg +- reg + 2, temp +- temp -1
MSB of operand does not change

mem,CL temp _:.. CL, while temp# 0, 1 1 0 1 0 0 1 W mod 1 1 1 mem 19/27+n 2-4 u X U X X X
repeat this operation, CY +- LSB of (mem),
(mem) +- (mem) + 2, temp +- temp - 1
MSB of operand does not change

reg, imm8 temp +- imm8, while temp v 0, 1 1 0 0 0 0 0 W 1 1 1 1 1 reg 7+n 3 u X U X X X
repeat this operation, CY +- LSB of reg, 1::::
reg +- reg + 2, temp +- temp -1 ,,
MSB of operand does not change a

mem, imm8 ternp e-- imm8, while temp 'F 0, 1 1 0 0 0 0 0 W mod 1 1 1 mem 19/27+n 3-5 u X U X X X ~
repeat this operation, CY +- LSB of (mem), 0
(mem) +- (mem) + 2, temp +- temp - 1 ...
MSB of operand does not change n: number of shifts 0

CD
<
~

(,) I 0
01

..._.

))
*' w 1:::: 0) Operation Code No. of No. of Flags

Mnemonic Operand Operation 7654321076543210 Clocks Bytes AC CfVPSZ
,,

Rotation Instructions e
ROL reg, 1 CY - MSB of reg, reg +- reg x 2 + CY 1 101000W1 1 0 0 0 reg 2 2 X X 0

MSB of reg ¥ CY: V - 1 ..
MSB of reg = CY: V - 0 0

mem, 1 CY - MSB of (mem), 1 1 0 1 0 O O W mod 0 0 0 mem 16/24 2-4 X X CX)
(mem) - (mem) x 2 + CY
MSB of (mem) ¥ CY: V - 1 <
MSB of (mem) = CY: V - 0 ~

reg, CL temp - CL, while temp » 0, 1 101001 W1 1 0 0 0 reg 7+n 2 X u 0
· repeat this operation, CY - MSB of reg,
reg - reg x 2 + CY
temp - temp - 1

mem, CL temp - CL, while temp¥ 0, 1 1 0 1 0 0 1 W mod 0 0 0 reg 19/27+n 2-4 X u
repeat this operation, CY - MSB of (mem),
(mem) - (mem) x 2 + CY
temp - temp - 1

reg, immB temp - immB, while temp¥ 0, 1 100000W1 1 0 0 0 reg 7+n 3 X u
repeat this operation, CY +- MSB of reg,
reg - reg x 2 + CY
temp - temp - 1

mem, immB temp - immB, while temp¢ 0, 1 1 0 0 0 0 0 W mod O O 0 mem 19/27+n 3-5 X u
repeat this operation, CY +- MSB of (mem),
(mem) - (mem) x 2 + CY
temp - temp - 1 n: number of shifts

ROR reg, 1 CY - LSB of reg, reg - reg + 2 1 1 0 1 0 0 0 W 1 1 0 0 1 reg 2 2 X X
MSB of reg +- CY
MSB of reg¥ bit following MSB of reg: V - 1
MSB of reg = bit following MSB of reg: V +- O

mem, 1 CY - LSB of (mem), (mem) - (mem) + 2 1 1 O 1 o o o W mod O O 1 mem 16/24 2-4 X X
MSB of (mem) - CY
MSB of (mem) ¥ bit following MSB
of (mem): V - 1
MSB of (mem) = bit following MSB
of (mem): V - O

reg, CL temp - CL, while temp¥ 0, 1 1 0 1 0 0 1 W 1 1 0 0 1 reg 7+n 2 X u
repeat this operation, CY +- LSB of reg,
reg - reg + 2, MSB of reg - CY .. temp - temp - 1

.~

. mem,CL: temp - CL, while temp¥ 0, 1 1 0 1 0 0 1 W mod O O 1 mem 19/27+n 2-4 X u
repeat this operation, CY - LSB of (mem),
(mem) +- (mem) + 2, MSB of (mem) - CY
temp - temp - 1 n:number of shifts

r)

(- - ' '
)))

Operation Code No.of No. of Flags

~

Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CYVPSZ

Rotation Instructions (cont)

ROR reg, immB temp - imm8, while temp= 0, 1 1 0 0 0 0 0 W 1 1 0 0 1 reg 7+n 3 X u
repeat this operation, CY - LSB of reg, 0 . reg - reg + 2, MSB of reg - CY
temp - temp - 1

mem, immB temp - imm8, while temp # 0, 1 1 0 0 0 0 0 W mod 0 0 1 mem 19/27+n 3-5 X u
repeat this operation, CY - LSB of (mem),
(mem) - (mem) + 2
temp - temp - 1 n: number of shifts

Rotate Instruction
ROLC reg, 1 tmpcy s-- CY, CY- MSB of reg 1 1 0 1 0 0 0 W 1 1 0 1 0 reg 2 2 X X

reg +- reg x 2 + tmpcy
MSB of reg = CY: V ._ 0
MSB of reg # CY: V ._ 1

mem, 1 tmpcy s-- CY, CY+- MSB of (mem) 1 1 0 1 O O O W mod 0 1 0 mem 16/24 2-4 X X
(mem) - (mem) x 2 + tmpcy
MSB of (mem) = CY: V ._ 0
MSB of (mem) # CY: V ._ 1

reg, CL temp - CL, while temp# 0, 1 1 0 1 0 0 1 W 1 1 0 1 0 reg 7+n 2 X u
repeat this operation, tmpcy - CY,
CY - MSB of reg, reg - reg x 2 + tmpcy
temp +- temp - 1

mem,CL temp - CL, while temp# 0, 1 1 0 1 0 0 1 W mod 0 1 0 mem 19/27+n 2-4 X u
repeat this operation, tmpcy -CY,
CY - MSB of (mem),
(mem) - (mem) x 2 + tmpcy
temp - temp - 1

reg, imm8 temp - imm8, while temp » 0, 1 1 OOOOOW1 1 0 1 0 reg 7+n 3 X u
repeat this operation, tmpcy - CY,
CY - MSB of reg, reg - reg x 2 + tmpcy
temp - temp - 1

mem, imm8 temp - imm8, while temp# 0, 1 1 O O O O O W mod 0 1 0 mem 19/27+n 3-5 X u
repeat this operation, tmpcy - CY, 't::
CY - MSB of (mem) .,,
(mem) - (mem) x 2 + tmpcy a
temp +- temp - 1 n: number of shifts

0 ..
0
CD

---- I <
~

(,.) I 0
--.i

")) J
(.>
CX) Operation Code No.of No.of Flags 1::

Mnemonic Operand Operation 765432 1076543210 Clocks Bytes AC CY• V P S Z
.,,

Rotate Instructions (cont)
C,
--a

RORC reg, 1 tmpcy - CY, CY - LSB of reg 1 1 0 1 0 0 0 W 1 1 1 0 1 reg 2 2 X X 0
reg - reg + 2, MSB of reg - tmpcy ...
MSB of reg ¥ bit following MSB of reg: V - 1 0
MSB of reg = bit following MSB of reg: V - 0 CD

mem, 1 tmpcy - CY, CY - LSB of (mem) 1 1 0 1 0 0 0 W mod O 1 1 mem 16/24 2-4 X X ..--.
(mem) - (mem) + 2, MSB of (mem) - tmpcy <
MSB of (mem) ¥ bit following MSB ~
of (mem): V -1 0
MSB of (mem) = bit following MSB ._.-
of (mem): V - 0

reg, CL temp - CL, while temp¥ 0, 1 101001 W 1 1 0 1 1 reg 7+n 2 X u
repeat this operation, tmpcy - CY,
CY - LSB of reg, reg - reg + 2,
MSB of reg - tmpcy, temp·- temp -1

mem,CL temp - CL, while temp¥ 0, 1 101001 W mod O 1 1 mem 19/27+n 2-4 X u
repeat this operation, tmpcy - CY,
CY - LSB of (mem), (mem) - (mem) + 2
MSB of (mem) - tmpcy, temp - temp -1

reg, imm8 temp - imm8, while temp¥ 0 1 100000W1 1 0 1 1 reg 7+n 3 X u
repeat this operation, tmpcy - CY,
CY - LSB of reg, reg - reg + 2
MSB of reg - tmpcy, temp - temp -1

mem, imm8 temp - imm8, while temp¥ 0, 1 1 0 0 O O O W mod O 1 1 mem 19/27 + n 3-5 X u
repeat this operation, tmpcy - CY,
CY - LSB of (mem), (mem) - (mem) + 2
MSB of (mem) - tmpcy, temp - temp -1 n: number of shifts

Subroutine Control Instructions
CALL near-proc (SP -1, SP - 2) - PC, SP - SP- 2 1 1 1 0 1 0 0 0 20 3

PC- PC+ disp
regptr16 (SP - 1, SP - 2) - PC, SP - SP - 2 1 1 1 1 1 1 1 1 1 1 0 1 0 reg 18 2

PC - regptr16
memptr16 (SP - 1, SP - 2) - PC, SP - SP - 2 1 1 1 1 1 1 1 1 mod O 1 O mem 31 2-4

PC - (memptr16)
far-proc (SP -1, SP - 2) - PS, (SP - 3, SP - 4) - PC 1 0 0 1 1 0 1 0 29 5

... SP - SP - 4, PS - seg, PC - offset
··-m~mpt~~2 (SP -1, SP - 2) - PS, (SP - 3, SP - 4) - PC 1 1 1 1 1 1 1 1 mod O 1 1 mem 47 2-4

~

SP - SP - 4, PS - (memptr32 + 2),
PC - (memptr32)

(')

--~ -- -·- r·, .--...))
Operation Code No.of No. of Flags

~

Mnemonic Operand Operation 765432 1076543210 Clocks Bytes AC CY V P S Z

Subroutine Control Instructions (cont)

RET PC- (SP+ 1, SP), SP-SP+2 1 1 0 0 0 0 1 1 19 1

pop-value PC- (SP+ 1, SP) 1 1 0 0 0 0 1 0 24 3
~ SP - SP + 2, SP - SP + pop-value

PC- (SP+ 1, SP), PS - (SP +3, SP +2) 1 1 0 0 1 0 1 1 29
SP-SP+4 .;

pop-value PC - (SP+ 1, SP), PS - (SP+ 3, SP+ 2) 1 1 0 0 1 0 1 .o 32 3
SP - SP+ 4, SP - SP+ pop-value

Stack Manipulation Instructions

PUSH mem16 (SP -1, SP - 2) - (mem16), SP - SP- 2 1 1 1 1 1 1 1 1 mod 1 1 0 mem 26 2-4

reg16 (SP-1, SP-2) - reg16, SP-SP-2 0 1 0 1 0 reg 12 1

sreg (SP-1, SP-2) - sreg, SP - SP-2 0 0 O sreg 1 1 0 12 1

PSW (SP -1, SP - 2) - PSW, SP - SP - 2 1 0 0 1 1 1 0 0 12

R Push registers on the stack 0 1 1 0 0 0 0 0 67 1

imm (SP -1, SP - 2) - imm 0 1 1 0 1 0 S 0 11/ 2-3
SP - SP - 2, When S = 1, sign extension 12

POP mem16 (mem16) - (SP+ 1, SP}, SP - SP+ 2 1 0 0 0 1 1 1 1 mod O O 0 mem 25 2-4

reg16 reg16- (SP+ 1, SP), SP - SP+ 2 0 1 0 1 1 reg 12

sreg sreg - (SP+ 1, SP) sreg : SS, DSO, DS1 O O O sreg 1 1 1 12
SP-SP+2

PSW PSW-(SP+ 1, SP), SP-SP+2 1 0 0 1 1 1 0 1 12 1 R R R R R R

R Pop registers from the stack 0 1 100001 75

PREPARE · imm16, imm8 Prepare new stack frame 1 1 0 0 1 0 0 0 * 4
*: imm8 = O: 13

imm8 > 1: 22 + 20 (imm8 - 1): Odd Address

DISPOSE Dispose of stack frame 1 1001001 10

Branch Instruction 1:::
BR near-label PC- PC +disp 1 1 101001 13 3 ,,

short-label PC - PC + ext-disp8 1 1 1 0 1 0 1 1 12 2 a .._,
regptr16 PC - regptr16 1 1 1 1 1 1 1 1 1 1 1 0 0 reg 11 2 0
memptr16 . PC - (memptr16) 1 1 1 1 1 1 1 1 mod 1 0 0 mem 24 2-4
far-label PS - seg, PC - offset 1 1 1 0 1 0 1 0 15 5 0 a,
memptr32 PS - (memptr32 + 2), PC - (memptr32) 1 1 1 1 1 1 1 1 mod 1 0 1 mem 35 2-4 .-.. <

"' (,) I 0
<O

.._,

~

)) J
~
0 Operation Code No. of No. of Flags 1:::

Mnemonic Operand Operation 76543210765432 1 0 Clocks Bytes AC CY•YPSZ "'G
Conditional Branch Instructions D .._.

BV short-label if V = 1, PC - PC + ext-disp8 0 1 1 1 0 0 0 0 14/4 2 0
BNV short-label if V = 0, PC - PC + ext-disp8 0 1 1 1 0 0 0 1 14/4 2
BC, BL short-label if CY = 1, PC - PC + ext-dispB 0 1 1 1 0 0 1 0 14/4 2 0

CD
BNC,BNL short-label if CY = 0, PC - PC + ext-dispB 0 1 1 1 0 0 1 1 14/4 2 ...-..
BE, BZ short-label if Z = 1, PC - PC + ext-disp8 0 1 1 1 0 1 0 0 14/4 2 <

t-)
BNE,BNZ short-label if Z = 0, PC - PC + ext-disp8 0 1 1 1 0 1 0 1 14/4 2 0
BNH short-label if CY OR Z = 1, PC - PC + ext-disp8 0 1 1 1 0 1 1 0 14/4 2

......
BH short-label if CY OR Z = 0, PC - PC + ext-disp8 0 1 1 1 0 1 1 1 14/4 2
BN short-label if S = 1, PC - PC + ext-disp8 0 1 1 1 1 0 0 0 14/4 2

BP short-label if S = 0, PC - PC + ext-disp8 0 1 1 1 1 0 0 1 14/4 2

BPE short-label if P = 1, PC - PC+ ext-disp8 0 1 1 1 1 0 1 0 14/4 2
BPO short-label if P = 0, PC - PC + ext-disp8 0 1 1 1 1 0 1 1 14/4 2

BLT short-label if S XOR V = 1, PC - PC+ ext-disp8 0 1 1 1 1 1 0 0 14/4 2

BGE short-label if S XOR V = 0, PC - PC+ ext-disp8 0 1 1 1 1 1 0 1 14/4 2
BLE short-label if (S XOR V) OR Z = 1, PC - PC + ext-disp8 0 1 1 1 1 1 1 0 14/4 2
BGT short-label if (S XOR V) OR Z = 0, PC - PC + ext-disp8 0 1 1 1 1 1 1 1 14/4 2

DBNZNE short-label cw-cw-1 1 1 1 0 0 0 0 0 14/5 2
if Z = 0 and CW¥- 0, PC - PC+ ext-disp8

DBNZE short-label cw-cw-1 1 1 1 0 0 0 0 1 14/5 2
if Z = 1 and CW¥- 0, PC - PC+ ext-disp8

DBNZ short-label cw-cw-1 1 1 1 0 0 0 1 0 13/5 2
if CW¥- 0, PC - PC + ext-dispB

BCWZ short-label if CW= 0, PC - PC + ext-disp8 1 1 1 0 0 0 1 1 13/5 2
Interrupt Instructions

BRK 3 (SP-1, SP-2) - PSW, (SP-3, SP-4)- PS, 1 1 0 0 1 1 0 0 58
(SP - 5, SP - 6) - PC, SP - SP - 6
IE-0,BRK-O
PS - (15, 14), PC ._ (13, 12)

imm8 (SP-1, SP-2) ._ PSW, (SP-3, SP-4) - PS, 1 1 0 0 1 1 0 1 58 2 ...
'"<Q,(¥- 3) (SP - 5, SP - 6) - PC, SP - SP - 6

~

~·- IE-o. BRK-o
PC - (n x 4, + 1, n x 4)
PS - (n x 4 + 3, n x 4 + 2) n = imm8

n

(\) J
Operation Code No. of No.of Flags

~

Mnemo11lc Operand Operation 76543210765432 1 0 Clocks Bytes AC CY V P S Z

Interrupt Instructions (cont)

BRKV When V = 1 1 1 0 0 1 1 1 0 60/3 1
(SP-1, SP-2) - PSW, (SP-3,SP-4) - PS,

~
(SP - 5, SP - 6) - PC, SP - SP - 6
IE-o. BRK-o
PS - (19, 18), PC - (17, 16)

RETI PC - (SP+ 1, SP), PS - (SP+ 3, SP+ 2), 1 1 0 0 1 1 1 1 39 1 R R R R R R
PSW - (SP+ 5, SP+ 4), SP - SP+ 6

CHKIND reg16, When (mem32) > reg16 or (mem32 + 2) < reg16 0 1 1 0 0 0 1 0 mod reg mem 81-84/ 2-4
mem32 (SP-1, SP-2)- PSW, (SP-3, SP-4)- PS, {n 1--- 26

(SP - 5, SP - 6) - PC, SP - SP - 6
IE - 0, BRK - 0,
PS - (23, 22), PC - (21, 20)

BRKEM imm8 (SP-1, SP-2)-PSW, (SP-3, SP-4)- PS, 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 58 3
(SP - 5, SP - 6) - PC, SP - SP - 6
MD - 0, PC - (n x 4 + 1, n x 4)
PS - (n x 4 + 3, n x 4 + 2), n = imm8

CPU Control Instructions

HALT CPU Halt 1 1 1 1 0 1 0 0 2 1

BUSLOCK Bus Lock Prefix 1 1 1 1 0 0 0 0 2 1

FP01 fp-op No Operation 1 1 0 1 1 X X X 1 1YYYZZZ 2 2

fp-op, mem data bus - (mem) 1 1 0 1 1 X X X mod Y Y Y mem 15 2-4

FP02 fp-op No Operation 0 1 1 0 0 1 1 X 1 1YYYZZZ 2 I 2

fp-op, mem data bus - (mem) 0 1 1 O O 1 1 X mod Y Y Y mem 15 2-4

POLL Poll and wait 1 0 0 1 1 0 1 1 2+5il 1
n: number of times POLL pin is sampled

NOP No Operation 1 0 0 1 0 0 0 0 3

DI IE-0 1 1 1 1 1 0 1 0 2 1

El IE-1 1 1 1 1 1 0 1 1 2 1
8080 Mode Instructions 1::: ,,

RETEM PC - (SP+ 1, SP), PS - (SP +3, SP+ 2), 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 39 2 R R R R R R D
PSW - (SP+ 5, SP+ 4), SP - SP + 6 --1

CALLN imm8 (SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 58 3 0
- PS, (SP - 5, SP - 6) - PC, SP - SP - 6 ...
MD -1. PC - (n x 4 + 1, n x 4) 0
PS - (n x 4 + 3, n x 4 + 2), n = imm8 CD

<
~

"' I 0

,,
µPD70108 (V20) NEC
Packaging Information

40-Pln Plastic DIP Package (600 mil)

40 21

,'

\. ' 20

A •

E

Notes: 1. Each lellcl centerline la loea tllcl within 0.25 mm [0.01 Inch] of Ila true
position [T.P.J at molmum material cond ition.

2. Item "K" lo center of lellcls whan forrnllcl para llel.

Item Mllllmeters lnehe1

A 53.34max 2.1 max

B 2.54 max .10 max

C 2.54 [T.P.) .10 [T.P.J

D 5±.10 .02 +.004
-.005

E 48.26 ± .1 1.1 ± .004
F 1.2 min .OU min

Q 3.e ± o.3 .142 ± .012
H .51 min .02mln

I 4.31 max .17 max

J 5.72 max .2211 max

K 15.24 (T.P.J .60 [T.P.J

L 13.2 .52

M .25 +.10 .01 +.004
-.05 -.003

N .25 .01

I(

L

-/1-
M

83-0013998

42

.\ ~

.,

NEC µPD70108 (V20)

Packaging Information (cont)

40-Pln Cerdlp Package

40 21

-11-F --o C

E

Uem MIiiimeters Inches

A 53.34max 2.1 max

B 2.54 .1

C 2.54 ± .25 .10± .01

D .5± .1 .020 ± .004

E 48.26 1.9

F 1.3 .05

G 2.54 min .1 min

H .51 min .02mln

4.57 .18

J 5.08max .2max

K 15.24 .6

L 13.2 .52

M .25 ± .05 .010± .002

K \
L

0 -15°

83.()()1.008

43

'II"'.

-µP-D7_0108 (V20)

!"-"-_

/
• . REGIONAL SALES AND

ENGINEERING SUPf>ORT OFFICES

NORTHEAST
Twenty Burlington Mall Road, Suite 449
Burlington, MA 01803
TEL 617-272-1774 TWX 710-348-6515

SOUTHEAST
Radice Corporate Center
600 Corporate Drive, Suite 412
Fort Lauderdale, FL 33334
TEL 305-776-0682 TWX 759839

MIDWEST .
3025 West Salt Creek Lane.Bulte 300
Arlington Heights, IL 60005
TEL 312-577-9090 TWX 910-687-1492

SOUTH CENTRAL
16475 Dallas Parkway, Suite 380
Dallas, TX 75248
TEL 214-931-0641 TWX 910-860-5284

SOUTHWEST
200 EasfSandpointe, Building 8 Suite 460
Santa Ana, CA 92707
TEL 714-546~0501 TWX 759845

NORTHWEST
10080 North Wolfe Road, SW3 Suite 360
Cupertino, OA 95014
TEL 408-446-0650 TLX 595497

DISTRICT OFFICES

200 Broadhollow Road, Suite 302
Route 110
Melville, NY 11747
TEL 516-423-2500 TWX 510-224-6090

Beechwood Office Park
385 South Road
Poughkeepsie, NY 12601
TEL 914-452-4747 TWX 510-248-0066

200 Perinton Hills Office Plaza
Fairport, NY 14615
TEL 716-425-4590 TWX 510-100-8949

5720 Peachtree Parkway, Suite 120
Norcross, GA 30092
TEL 404-447-4409 TWX 910-997-0450

7257 Parkway Drive, Suite 109
Hanover, MD 21076
TEL 301-796-3944 TLX 759847

29200 Southfield Road, Suite 208
Southfield, Ml 48076
TEL 313-559-4242 TWX 810-224-4625

Busch Corporate Center
6480 Busch Blvd., Suite 121
Columbus, OH 43229
TEL 614-436-1778 TWX 510-101-1771

8030 Cedar Avenue South, Suite 229
Bloomington, MN 55420
TEL 612-854-4443 TWX 910-997-0726

DISTRICT (?FFICES [cont]

Echelon Building 2
9430 Research Boulevard, Suite 330
Austin, TX 78759
TEL 512-346-9280

6150 Canoga Avenue, Suite 112
Woodland Hills, CA 91367
TEL 818-716-1535 TWX 559210

Lincoln Center Building
10300 S.W. Greenburg Road, Suite 540 ·
Portland, OR 97223
TEL 503-245-1600

NATICK TECHNOLOGY CENTER

One Natick Executive Park
Natick, MA 0176Q
TEL 617-655-8833 TWX 710-386-2110

NEC·.
NEC Electronics Inc.
CORPORATE HEADQUARTERS
401 Ellis Street
P.O. Box 7241
Mountain View, CA 94039
TEL 415-960-6000
TWX 910-379-6985

c19as NEC Electronics lnc./Prlnted in U.S.A.·

' ;

No part of this document may be copied or reproduced in any iorm or by any means wit~out ;he pri&~ritten consentol NEC · {
Electronics Inc. The information In this document Is subject to change witho~t notice. Devices sold by NEC Electronics Inc.
are covered by the warranty and patent lndemnlllcatlon provisions appearing In NEC Eleetronlcs Inc. Terms and Conditions
of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by 5'escription, regarding the
Information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics
Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility !or any
errors that may appear In this document. NEC Electronics Inc. makes no commitment to update or to keep current the
Information contained In this document.

NECEL-000010--0585
STOCK NO. 500635

